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Abstract: Active contours, or snakes, are widely applied on biomedical image segmentation.
They are curves defined within an image domain that can move to object boundaries under
the influence of internal forces and external forces, in which the internal forces are generally
computed from curves themselves and external forces from image data. Designing external forces
properly is a key point with active contour algorithms since the external forces play a leading role
in the evolution of active contours. One of most popular external forces for active contour models
is gradient vector flow (GVF). However, GVF is sensitive to noise and false edges, which limits
its application area. To handle this problem, in this paper, we propose using GVF as reference to
train a convolutional neural network to derive an external force. The derived external force is
then integrated into the active contour models for curve evolution. Three clinical applications,
segmentation of optic disk in fundus images, fluid in retinal optical coherence tomography images
and fetal head in ultrasound images, are employed to evaluate the proposed method. The results
show that the proposed method is very promising since it achieves competitive performance for
different tasks compared to the state-of-the-art algorithms.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Biomedical image segmentation plays an important role in developing computer aided systems for
analysis of the images automatically. Numerous biomedical image segmentation methods [1–3]
have been proposed in last few decades. According to the number of segmented objects in the
images, these segmentation methods can be grouped into single object segmentation methods and
multi objects segmentation methods. For single object segmentation, parametric active contour
models are one of most widely used approaches, whose first version was proposed by Kass et al.
in [4]. There are several advantages with parametric active contour models, for example, they
can offer smooth and closed contours as segmentation results and obtain high accuracy of object
boundaries [5]. However, for the classical active contour models [4], the active contours can not
progress into boundary concavities. Besides, the initial curves are required to be close to object
boundaries or else they will converge to wrong places. Many methods have been proposed to
handle these limitations, in which gradient vector flow (GVF) [6] is one of most effective among
them. Even though GVF is insensitive to initial curves and can drive the curves into boundary
concavities, it is sensitive to noise and false edges. Fig. 1 gives an example, in which Fig. 1(a) is
the GVF obtained by the method introduced in [6]. It is observed that the GVF is disordered,
which can not drive the initial curve into object boundary, as shown in Fig. 1(b), where the red
curve is initial curve and the blue is final result.
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Abundant improved versions for GVF have been reported in the literature. For instance, Tang
et al. [7] extended the classical GVF snake into multi direction GVF snake so that it can trace
the boundary of skin cancer. Zhu et al. [8] used a minimal surface and component-normalized
method to improve the GVF. These improved versions, generally, were careful designed based on
some domain knowledge, e.g. the intensity distribution of the region of interest. Different from
these domain knowledge based methods, in this paper, we propose using GVF as reference to
train a convolutional neural network (CNN) [9] to derive an external force for the parametric
active contour models. CNNs belong to end-to-end trainable methods. It allows us to avoid
making hypotheses during designing the external forces, as a result, the dependence on the prior
knowledge is abated, while the quality of the external forces is improved compared with those
obtained by the classical methods [6, 10] (Quantitative comparison is given in Section 4). Fig.
1(c) shows an example. It is observed that the derived external force is ordered and points to
object boundary, which can ensure the active contour models to exclude the interference from
noise and drive the initial curve into the right place, as shown in Fig. 1(d).

Fig. 1. An example to demonstrate different external forces obtained by different ways. (a)
The GVF derived from the gradient of original image. (b) The detected result (blue curve)
with (a). (c) The external force derived by the trained CNN. (d) The detected result (blue
curve) with (c).

2. Related works

As the revival of CNNs in recent years, some researchers have tried to employ CNNs to facilitate
the application of active contour models in biomedical image segmentation domain. For instance,
Srivastava et al. [11] employed a deep neural network to perform a preliminary optic disk
segmentation in fundus images. The preliminary segmentation was then refined further using
active shape models. Avendi et al. [12] applied CNNs to automatically detect left ventricle (LV)
chamber in MRI dataset. Stacked autoencoders were then used to infer LV shape. The inferred
shape was finally incorporated into deformable models to improve the accuracy of segmentation.
Li et al. [13] used CNNs to segment myocardium of LV first. Active contour models were then
applied to segment endocardium based on the initial segmentation.
The above methods [11–13] employed CNNs to highlight the objects directly or indirectly

so that active contour models can capture the objects easier. Besides, several different methods
are also presented to facilitate the application of active contour models based on CNNs. Such
as, Hoogi et al. [14] employed CNNs for adaptive estimation of active contour parameters. Le
et al. [15] boosted the classic active contour methods to a new level of learnable deep learning
approaches by reformulating active contour as deep recurrent neural networks. Different from
these works, in this paper, we employ CNNs to derive an external force for the parametric active
contour models. There are two advantages with the proposed method: 1) CNNs belong to
end-to-end trainable methods, which can abate the dependence on the prior knowledge during
designing the external forces. 2) It can ensure the initial curves close to object boundaries based
on the finding that the magnitude of the external force derived by CNNs around object boundaries
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is larger than other places.
To demonstrate the effectiveness of the proposed method, we apply the proposed method

on different clinical applications, which are segmentation of optic disk in fundus images, fluid
in retinal optical coherence tomography (OCT) images and fetal head in ultrasound images.
These three applications play an important role in developing computer aided systems in their
respective domains. Such as, optic disk segmentation is an important part in the computer
aided systems for diagnosis of glaucoma. Fetal head segmentation is a key step to estimate the
circumference, which is an important measurement to estimate the gestational age and monitor
the growth of fetus. Many different methods have been designed for these three tasks. Due to
the main motivation of this paper is to explore whether the parametric active contour models
with the external force derived by CNNs is effective for single object segmentation in biomedical
images, thus we do not offer a detailed introduction for these methods. For a comprehensive
reading about these methods, we refer readers to papers [16–22] for optic disk segmentation,
papers [23–28] for fluid segmentation and papers [29–32] for fetal head segmentation.

The rest of the paper is organized as follows: the details of the proposed algorithm are described
in Section 3. Section 4 presents experimental results, including the comparison with ad hoc
algorithms. Discussion and conclusion are made in Section 5.

3. Methods

We begin by first reviewing the parametric active contour models, then formulating an active
contour model with the external force derived by CNNs. Finally, we show how to initial the
active contours based on the external force magnitude.

3.1. Active contour models: a quick review

Active contours, or snakes [4] are curves defined within an image domain that can move to object
boundaries under the influence of internal forces and external forces, in which internal forces are
used to hold the curves together and to keep them from bending too much. External forces are
used to drive the curves toward target boundaries [6].

The process of using active contour models to move a curve x(s) = [x(s), y(s)], s ∈ [0, 1] into
an object boundary is formulated as a problem of energy functional minimization

E =
∫ 1

0

1
2
[α |x′(s)|2 + β|x′′(s)|2] + Eext (x(s))ds (1)

where the weighting parameter α controls the tension of x(s) and β controls the rigidity. x′(s)
is the first derivatives of x(s) with respect to s and x′′(s) is the second derivatives. Eext is the
external energy term.
To minimize E , a curve x(s) must satisfy the following Euler equation

αx′′(s) − βx′′′(s) − 5Eext = 0 (2)

Equation (2) can be regarded as a force balance equation

Fint + Fext = 0 (3)

where internal force term Fint = αx′′(s) − βx′′′(s), external force term Fext = − 5 Eext .
It is noted that internal forces are computed from the curve x(s) itself. External forces are

general derived from image data. One of popular external forces is GVF, which is computed as a
diffusion of the gradient vectors of a gray-level or binary edge map derived from an image [6].
Mathematically, GVF is a vector v(x, y) = [u(x, y), v(x, y)] that minimizes the following energy
functional

ε =

∫ ∫
µ(u2

x + u2
y + v

2
x + v

2
y) + |∇ f |2 |v − ∇ f |2dxdy (4)
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where f is an edge map derived from an image. The parameter µ is a regularization parameter
controlling the tradeoff between the first term and the second term in equation (4). ∇ is the
gradient operator. ux , vx and uy , vy are partial derivatives of u and v to x and y respectively.
GVF is achieved by solving the following Euler equations

µ∇2u − (u − fx)( f 2
x + f 2

y ) = 0

µ∇2v − (v − fy)( f 2
x + f 2

y ) = 0
(5)

where ∇2 is the Laplacian operator. For the details of numerical implementations of equations
(2) and (5), we refer readers to papers [4] and [6] respectively.

3.2. Deriving external forces via CNNs

As introduced above, GVF is sensitive to noise and false edges in an image. To handle this
problem, in this work, we propose using GVF as reference to train a CNN to derive an external
force that points to the target boundaries, so that the active contour models can exclude the
interference from false edges and noise with the derived external force. Mathematically, an active
contour model with the external force obtained from CNNs is formulated as

αx′′(s) − βx′′′(s) − φ(I,w) = 0 (6)

where φ(I,w) is a network, termed GVF-Net for future reference, which is trained by using GVF
as reference to derive an external force from a raw image I.

Given a training set of images and their referenced GVFs {Ii, vi}Ni=1, the weights w of GVF-Net
φ(I,w) are learned to minimize the mean squared error [9]

ŵ = arg min
w

N∑
i=1
|vi − φ(Ii,w)|2 (7)

It is noteworthy to point out that the referenced GVFs are computed from the boundary ground
truth with equation (5), which can guarantee the referenced GVFs to point to the target boundaries.
Fig. 2 gives an example, where Fig. 2(b) is the boundary ground truth of Fig. 2(a). Fig. 2(c) is
the referenced GVF computed by equation (5) based on Fig. 2(b).

(a) (b) (c)

Fig. 2. An example to demonstrate the process of obtaining the referenced GVF. (a) Raw
image. (b) Boundary ground truth of (a). (c) Referenced GVF.

In this work, we employ u-net structure [33] for GVF-Net, which can ensure the output without
reducing size after a series of operations. Note that GVF is a matrix with size of m× n× 2, where
m × n is the size of an image. As shown in Fig. 3, the left part of GVF-Net is termed contracting
path, which processes the input images through a series of convolutional layers. The size of each
kernel in each convolutional layer is 3 × 3. Every two convolutional layers is followed by a 2 × 2
max pooling operation with stride 2 for downsampling. The number of feature map channels are
doubled after each pooling step.
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Fig. 3. The structure of GVF-Net.

(a) (b) (c) (d)

Fig. 4. An example to demonstrate the process of automatic initialization of curve. (a) The
external force. (b) The magnitude of (a). (c) Maximum connected region of (b). (d) The
initial curve (red) and final result (blue).

The right part in Fig. 3 is termed expansive path, which upsamples the feature maps by a series
of deconvolutional layers. The size of each kernel in each deconvolutional layer is 2 × 2. Each
deconvolutional layer has a concatenation with the correspondingly cropped feature maps from
contracting path and is followed by two convolutional layers. The final layer is a fully connected
layer which used to map each component feature channel as the external force. In total, there are
fourteen convolutional layers, three pooling layers, three deconvolutional layers and one fully
connected layer in GVF-Net.

3.3. Initialization with external force magnitude

Curve initialization is one of key concerns with active contour algorithms. In general, an initial
curve should be close to the truth boundaries or else it will likely converge to a wrong place [6].
In this paper, the initial curves are obtained based on the external force derived by GVF-Net.
We find that the magnitude of the derived external force around object boundaries is larger than
other places. Fig. 4 gives an example, in which Fig. 4(a) and Fig. 4(b) are the external force and
corresponding magnitude respectively. The dark regions in the magnitude image indicate that the
force is very weak, while the gray regions indicate that the force is strong. If an initial curve is
located in the strong force regions and surrounds the objects as much as possible, it is very likely
to converge to the target boundaries.

Based on these findings, we propose an automatic initialization approach for fluid segmentation
and another for optic disk segmentation respectively. As shown in Fig. 4, the first step of the
automatic approach for fluid segmentation is to transfer the external force magnitude into a binary
image with thresholding method [34]. The maximum connected region in the binary image is
extracted, as shown in Fig. 4(c). We then calculate the centroid of the maximum connected
region. In addition, the major axis length and minor axis length of the ellipse that has the same
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(a) (b)

Fig. 5. An example to show the interactive initialization. (a) The external force magnitude
and initial curve. (b) The fetal heal boundary obtained by active contour model (red curve)
and the result of ellipse fitting (blue curve).

normalized second central moments as the maximum connected region [35] are also computed.
An original ellipse is obtained based on the centroid, major axis length and minor axis length.
The original ellipse is then rotated with the interval of 10 degree around the centroid. The one
containing the largest number of pixels belonging to the maximum connected region is selected
as the initial curve, as shown in Fig. 4(d). For optic disk segmentation, we search a circle as the
initial curve with circle hough transform [36] based on the binary images of the external force
magnitude.

It is noteworthy to point out that the above automatic initialization approaches are not effective
for fetal head segmentation. Hence, an interactive initialization method is proposed. As shown in
Fig. 5(a), we draw a polygon as the initial curve based on the external force magnitude. The rules
required to follow to draw a polygon are to ensure that each edge of polygon is located in the
strong force regions and the polygon surrounds the object. We believe that the task of drawing
such a polygon is simple since the strong force regions are obvious in the magnitude images.

3.4. Cascaded version

As introduced above, the external force is derived by CNNs directly. We believe that some
existing schemes in machine learning community might have the capacity to improve the external
force further. In this work, a cascaded scheme reported in [37] is employed to improve the
external force. Concretely, the image-GVF pairs are first applied to train the GVF-net. The output
of the trained GVF-net paired with the referenced GVF are then used to train another GVF-net.
In this scheme, the second time training can be regarded as a fine tuning process, which is used
to fine tune the external force obtained by the first GVF-Net. The effectiveness of the cascaded
scheme will be verified by the experiments in Section 5.

4. Result analysis

4.1. Materials

4.1.1. For optic disk segmentation in fundus images

Three public databases for optic disk segmentation in fundus images are employed to evaluate
the performance of the proposed algorithm, which are MESSIDOR database [38], DRIONS
database [39] and ONHSD database [40]. There are 1200 images in MESSIDOR database, 110
images in DRIONS database and 99 images in ONHSD database. Note that there are 9 images
without discriminable optic nerve head in ONHSD database, which will not be employed to
evaluate the algorithm. The annotation of optic disk in each image has been marked by experts.
Since the resolutions of fundus images in different databases are different, for convenience, the
method for optic disk localization in [41] is first used to locate the disk in a fundus image. A
301 × 301 sub image for optic disk segmentation is then determined based on the optic disk
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location. To train and test the GVF-Net, 60% of the images in MESSIDOR database are randomly
selected as training set, 20% as validation set and 20% as test set. 60%-20%-20% is a common
used proportion to split a small dataset into training set, validation set and test set to train and
test a CNN [42]. All the images in DRIONS and ONHSD databases are used as test set.

4.1.2. For fetal head segmentation in ultrasound images

The data for fetal head segmentation in ultrasound images is from a grand challenge 2018 [43].
The purpose of this challenge is to measure circumference of fetal head. The database contains a
total of 1334 two-dimensional (2D) ultrasound images, which is divided into a training set of 999
images and a test set of 335 images. The size of each 2D ultrasound image is 800 × 540 with a
pixel size ranging from 0.052 to 0.326 millimeters (mm). In this challenge, the annotations are
available for training set only. According to the requirement of sponsors, the boundary of a fetal
head should be fitted by an ellipse, which is described by five parameters, namely the center (x,y),
semi major axis length, semi minor axis length and angle of rotation. The detected parameters by
algorithms on test set are required to upload to sponsors to gain final results. In this work, we
employ the direct least squares fitting of ellipses method [44] to fit the fetal head boundaries
obtained by the active contour models. An example to show the result of fitting is given in Fig.
5(b).

4.1.3. For fluid segmentation in OCT images

There are 481 OCT B-scan images for fluid segmentation. These images are collected from
different OCT volumes obtained by ZEISS scanner in a local database. The resolution of each
B-scan image is 512 × 1024. The fluid regions in these images have been depicted by an expert.
To train and test the proposed method, these images are divided into training set, validation set
and test set with the ratio of 60%-20%-20%.

4.2. Metrics

Different metrics are employed to evaluate the performance of the proposed method according to
different tasks.

4.2.1. For optic disk segmentation and fluid segmentation

The performance of the proposed method for these two tasks is evaluated according to area
overlap (AOL), Dice similarity coefficient (DSC), accuracy (Ac), true positive fraction (TPF) and
false positive fraction (FPF) [17], which are defined as

AOL = TP/(TP + FN + FP) (8)
DSC = 2TP/(2TP + FN + FP) (9)
Ac = (TP + T N)/(TP + T N + FP + FN) (10)
TPF = TP/(TP + FN) (11)
FPF = FP/(FP + T N) (12)

where TP is short for true positive, TN true negative, FP false positive and FN false negative.

4.2.2. For fetal head segmentation

The metrics used to evaluate the methods for fetal head segmentation are difference (DF), absolute
difference (ADF), Hausdorff distance (HD) and Dice similarity coefficient (DSC) [29]. DF, ADF
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and HD are defined as

DF = HCS − HCR (13)
ADF = |HCS − HCR | (14)
HD = max(h(S, R), h(R, S)) (15)

where HCR is the head circumference measured by the expert and HCS is the head circumference
determined by algorithms. h(S, R) = maxs∈S maxr ∈R | |s−r | |, in which R = {r1, r2, ..., rq} are the
pixels in fetal head boundary from the expert, S = {s1, s2, ..., sp} are the pixels from algorithms.

4.3. Training details and parameter setting

A PC, equipped with an Intel (R) Core (TM) i7-4790 M CPU at 3.60 GHZ and 8 GB of RAM
capacity, is employed to perform the experiments with MATLAB. We use the MatConNet [45] to
train the CNNs. All the parameters of GVF-Net are initialized with Xavier initialization and
trained for 66 epochs with the mini-batch size of 3 image instances. Training convergence can be
observed within 60 epochs. For other hyperparameters, learning rate is set to 0.02, momentum
0.9 and weight decay 0.0005. Once training done, α and β are parameters which may influence
the performance of the proposed method. However, we find that the performance of the proposed
method is insensitive to these two parameters and we set α = 0.7 and β = 0 for the following
experiments.

4.4. Performance analysis

Fig. 6 shows some examples for optic disk segmentation, fetal head segmentation and fluid
segmentation respectively. It is observed that the proposed method works well for most of cases
in the given examples, which demonstrates that the ability of generalization of the proposed
method is high. However, the proposed method might fail for some cases, e.g. Fig. 6(c). Fig.
7 gives an example to explain why the proposed method might fail or succeed, where we can
observe that for the case that the proposed method fails to detect the boundary, the external force
derived by the GVF-Net dose not point to the target boundary. Conversely, if the derived external
force points to the target boundary, it can guarantee the initial curve to be converged into the
target boundary.

Table 1. The average values and standard deviations of different performance metrics
achieved on different databases.

MESSIDOR DRIONS ONHSD Local

AOL 0.9144(0.0786) 0.8972(0.0668) 0.8045(0.1106) 0.8980(0.0613)

DSC 0.9531(0.0554) 0.9444(0.0412) 0.8871(0.0751) 0.9451(0.0374)

Ac 0.9864(0.0151) 0.9832(0.0128) 0.9869(0.0098) 0.9967(0.0025)

TPF 0.9471(0.0581) 0.9822(0.0198) 0.9351(0.0529) 0.9499(0.0404)

FPF 0.0066(0.0120) 0.0165(0.0153) 0.0100(0.0101) 0.0019(0.0024)

The average values and standard deviations of different performance metrics for optic disk
segmentation and fluid segmentation achieved on different databases are summarized in Table
1. One might wonder that why the performance of the method on MESSIDOR database is
better than on DRIONS and ONHSD databases. The reason is that GVF-Net for optic disk
segmentation is trained by the images in MESSIDOR database only. In the discussion section,
we will demonstrate that the performance of the method on DRIONS and ONHSD databases can
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m) (n)

Fig. 6. Examples for optic disk segmentation(first row), fetal head segmentation (second
row) and fluid segmentation (third row), where green curves are ground truth and blue curves
are curves detected by the proposed algorithm.

(a) (b) (c) (d)

Fig. 7. An example to explain why the proposed method might fail or succeed. (a)
Unsatisfactory external force. (b) Initial curve (red), detected result (blue) with (a) and
ground truth (green). (c) Satisfactory external force. (d) Initial curve (red), detected result
(blue) with (c) and ground truth (green).

Table 2. The performance of the proposed method for fetal head segmentation.

ADF(mm)±std DSC(%)±std AD(mm)±std HD(mm)±std

2.45 ± 2.55 95.49 ± 4.11 -1.05± 3.38 2.44 ± 1.96

be improved by using a few of images in these two databases to fine tune the trained GVF-Net.
Table 2 lists the results of quantification for fetal head segmentation in ultrasound images.

A correlation analysis through a scatterplot is performed to assess the performance of the

                                                                      Vol. 10, No. 8 | 1 Aug 2019 | BIOMEDICAL OPTICS EXPRESS 3808 



(a) MESSIDOR (b) DRIONS (c) ONHSD (d) Local

Fig. 8. Scatterplot of region area between manual segmentation and automatic segmentation.

Table 3. The percentage of images with AOL > 0.8 in different databases.

MESSIDOR DRIONS ONHSD Local

92.50% 92.73% 67.78% 95.18%

proposed method in depth. Concretely, the correlation between the object area (the total number
of object pixels) determined by the algorithm automatically and ground truth is given, as shown
in Fig. 8. Note that the scatterplot for fetal head segmentation is not given here since the ground
truth for test set is not available. The different styles of points in Fig. 8 mean the method
performs on different types of images, which categorized according to different AOL intervals. It
is observed that the points are very close to identity line for those images that the objects are
segmented correctly (AOL>0.8). The percentage of images with AOL>0.8 in each database is
summarized in Table 3, which illustrates that the proposed method is effective for most of images.

Table 4. Average AOL and DSC obtained by different methods.

MESSIDOR Local

AOL DSC AOL DSC

GVF [6] 0.4795 0.6354 0.4606 0.6155

VFC [10] 0.3433 0.5092 0.5896 0.7453

U-net-O [33] 0.8791 0.9299 0.8897 0.9348

U-net-S 0.7264 0.8245 0.8059 0.8894

Proposed 0.9144 0.9531 0.8980 0.9451
U-net-O is the original U-net introduced in [33]. U-net-S is the network applied
in this work.

4.5. Comparison with hand designed external forces

To analyse the effectiveness of the proposed method, we compare the external force obtained by
the GVF-Net with the hand designed external forces, including GVF [6]. Table 4 summarizes the
results. It is observed that the results obtained by the proposed method are improved significantly
compared with those obtained by the active contour models with GVF or VFC as external force,
which illustrates that employing CNNs to derive an external force for active contour models is a
very effective way. Besides, we also employ two neural networks for comparison. One is the
original u-net introduced in [33] and we use the Dice coefficient as the loss function for it. The
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other is the network introduced in Fig. 3 with the same loss function as GVF-Net. Note that
these two neural networks are trained with image-region pairs. The results are summarized in
Table 4. It is observed that the proposed method outperforms the u-net whether in terms of AOL
or DSC, which verifies the effectiveness of the proposed method further.

4.6. Comparison with ad hoc algorithms

In this section, the ad hoc methods, namely designed for a specific task mentioned in this work,
are selected for comparison.

4.6.1. For optic disk segmentation

Since most of the existing methods for optic disk segmentation are mainly evaluated according
to AOL, thus AOL is selected as the metric for comparison in this section. If a method in the
relevant literature has been not evaluated on an analysed database, the result will not be included
in the table.
The existing methods for optic disk segmentation can be divided into unsupervised based

methods and supervised based methods. Table 5 summarizes the comparison with several
unsupervised methods. Even though the results obtained by the proposed method are superior
to those obtained by the listed unsupervised methods, it might be unfair for these unsupervised
methods since the test set used for evaluating the proposed method and the unsupervised methods
is different. However, the images in DRIONS and ONHSD databases are not employed to train
the GVF-Net, compared with the mathematical morphology based method [17], our method
performs better on these two databases, which indicates that our method is very competitive.
Several supervised based methods are also selected for comparison, including a structured

learning based method [22] and a deep learning based method [21]. Even though the training
set and test set used to evaluate these supervised methods are different, we only employ the
images in MESSIDOR database to train the GVF-Net while obtain very competitive results in
DRIONS and ONHSD databases compared with the structured learning based method [22]. It is
noteworthy to point out that K-fold cross validation is employed to construct training set and test
set in [22], in which K=12 for MESSIDOR database, K=10 for DRIONS database and K=9 for
ONHSD database.

Table 5. Comparison with different methods for optic disk segmentation with AOL metric.

DRIONS ONHSD MESSIDOR

Unsupervised Methods

Morphology [17] 0.8424 0.8045 0.8228

Circular Hough. [16] - - 0.8600

Sliding bank filter [19] - - 0.8886

Ellipse fitting [18] - - 0.8800

Supervised Methods

Structured learning [22] 0.8473 0.8346 0.8636

Deep learning [21] - - 0.8888

Superpixels [20] - - 0.8750

Proposed 0.8972 0.8045 0.9144
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Table 6. Comparison with different methods for fluid segmentation with DSC metric.

Methods Graph cut [25] RF [28] Enface [23] Blob [27] Proposed

DSC 0.9053 0.9193 0.9460 0.9470 0.9451

Table 7. Comparison with different methods for fetal head circumference measurement.

Participant ADF(mm)±std DSC(%)±std AD(mm)±std HD(mm)±std

Mohbay 1.76 ± 1.66 98.09 ± 0.95 0.15 ± 0.42 1.19 ± 0.66

shenzexu 1.81 ± 1.69 97.94 ± 1.34 0.59 ± 2.41 1.22 ± 0.77

Proposed(cascaded) 2.18 ± 2.40 95.53 ± 3.98 -0.24± 3.23 2.42 ± 1.93

bacon 2.28 ± 2.10 97.20 ± 2.87 -1.05± 2.92 1.62 ± 1.03

dra_v 2.31 ± 3.64 95.21 ± 5.37 0.11± 4.31 2.47 ± 2.24

Proposed 2.45 ± 2.55 95.49 ± 4.11 -1.05± 3.38 2.44 ± 1.96

Baseline [29] 2.83 ± 3.16 97.10 ± 2.73 0.56± 4.21 1.83 ± 1.60

4.6.2. For fluid segmentation

Since the code of the existing methods for fluid segmentation is not open-sourced. Thus we
re-implement the graph cut based method [25] and the random forest based method [28] and
apply them on the same database with the proposed method for comparison. Besides, we also
compare with the enface fundus driven method [23] and blob detection based method [27] via
citing the best results recorded in the literature directly. Note that DSC is a common used metric
to evaluate the performance of these methods, thus we compare with these methods based on
DSC metric. Table 6 summarizes the results, where we can observe that the result obtained
by the proposed method is very competitive with those obtained by the listed methods, which
illustrates that the proposed method is very promising.

4.6.3. For fetal head segmentation

We can make direct comparison among different methods for fetal head segmentation since these
methods have been evaluated on the same test set with the same metrics. The results obtained by
different methods can be found from the home page of the challenge [43], in which some of them
obtained by the state-of-the-art methods are listed in Table 7. It is observed that the proposed
method is very competitive with the methods for this task also, which verifies the effectiveness of
the proposed method further.

5. Discussion & conclusion

In this paper, we propose using GVF as reference to train a CNN to derive an external force for
the parametric active contour models. The derived external force is also used for initializing
the active contours. As a result, the quality of external force influences the performance of the
proposed method directly. We set an experiment to verify this conclusion. Concretely, 20% of
the images in DRIONS database are selected randomly as training set and 20% as validation set
to fine tune the GVF-Net trained on MESSIDOR database. The remaining 60% is used as test
set. The same setup is also for ONHSD database. Table 8 summarizes the results. It is observed
that the results obtained by GVF-Net with fine tuning are better than those without fine tuning,
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Table 8. Comparison with and without fine tuning on DRIONS and ONHSD databases.

DRIONS ONHSD

With Without With Without

AOL ≥ 0.95 15.15% 10.61% 5.56% 0

AOL ≥ 0.9 81.82% 69.70% 61.11% 12.96%

AOL ≥ 0.85 92.42% 86.36% 74.07% 57.41%

AOL ≥ 0.8 95.45% 89.39% 87.04% 72.22%

AOL ≥ 0.7 100% 96.97% 94.44% 81.48%

AOL 0.9170 0.8984 0.8779 0.8119

which indicates that the quality of the external force plays a leading role in the performance of
the proposed method.

To improve the external force, we employ a cascaded strategy developed in machine learning
community, which has been introduced in Section 3.4. The effectiveness of the cascaded strategy
can be verified by the results summarized in Table 7. We believe that other existing schemes in
machine learning community might also have the capacity to improve the external force further,
e.g. by improving the structure of the network. Besides, integrating the shape prior knowledge
about the objects into the learning process [46] would be also another potential way to improve
the external force.
In summary, in this paper, we propose a novel algorithm for biomedical image segmentation

by deriving an external force via CNNs for the active contour models. Abundant experiments
show that the proposed algorithm is very promising since it obtains very competitive results for
different tasks.

Funding

The National Nature Science Foundation of China for Excellent Young Scholars (61622114); the
National Basic Research Program of China (973 Program) (2014CB748600); the National Natural
Science Foundation of China (81371629, 81401472, 61401294, 61401293, 61771326, 61601317);
the International Cooperation Project of Ministry of Science and Technology (2016YFE010770).

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References
1. S. D. Olabarriaga and A. W. M. Smeulders, “Interaction in the segmentation of medical images: A survey,” Med.

Image Analysis 5, 127–142 (2001).
2. X. Chen and L. Pan, “A survey of graph cuts/graph search based medical image segmentation,” IEEE Rev. Biomed.

Eng. 11, 112–124 (2018).
3. G. J. S. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. V. Der Laak,

B. Van Ginneken, and C. I. Sanchez, “A survey on deep learning in medical image analysis,” Med. Image Analysis
42, 60–88 (2017).

4. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Int. journal computer vision 1, 321–331
(1988).

5. B. Wu and Y. Yang, “Local- and global-statistics-based active contour model for image segmentation,” Math. Probl.
Eng. 2012, 94–113 (2012).

6. C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector flow,” IEEE Transactions on Image Process. 7, 359–369
(1998).

                                                                      Vol. 10, No. 8 | 1 Aug 2019 | BIOMEDICAL OPTICS EXPRESS 3812 



7. J. Tang, “A multi-direction gvf snake for the segmentation of skin cancer images,” Pattern Recognit. 42, 1172–1179
(2009).

8. S. Zhu and R. Gao, “A novel generalized gradient vector flow snake model using minimal surface and component-
normalized method for medical image segmentation,” Biomed. Signal Process. & Control. 26, 1–10 (2016).

9. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc.
IEEE 86, 2278–2324 (1998).

10. L. Bing and S. T. Acton, “Active contour external force using vector field convolution for image segmentation,” IEEE
Transactions on Image Process. 16, 2096–2106 (2007).

11. R. Srivastava, J. Cheng, D. W. K. Wong, and J. Liu, “Using deep learning for robustness to parapapillary atrophy in
optic disc segmentation,” in IEEE International Symposium on Biomedical Imaging, (2015), pp. 768–771.

12. M. R. Avendi, A. Kheradvar, and H. Jafarkhani, “A combined deep-learning and deformable-model approach to fully
automatic segmentation of the left ventricle in cardiac mri,” Med. Image Analysis 30, 108–119 (2016).

13. Z. Li, A. Lin, X. Yang, and J. Wu, “Left ventricle segmentation by combining convolution neural network with
active contour model and tensor voting in short-axis mri,” in IEEE International Conference on Bioinformatics and
Biomedicine, (2017), pp. 736–739.

14. A. Hoogi, A. Subramaniam, R. Veerapaneni, and D. L. Rubin, “Adaptive estimation of active contour parameters
using convolutional neural networks and texture analysis,” IEEE Transactions on Med. Imaging 36, 781–791 (2017).

15. T. H. N. Le, K. G. Quach, K. Luu, N. D. Chi, and M. Savvides, “Reformulating level sets as deep recurrent neural
network approach to semantic segmentation,” IEEE Transactions on Image Process. 27, 2393–2407 (2018).

16. A. Aquino, M. E. Gegúndez-Arias, and D. Marín, “Detecting the optic disc boundary in digital fundus images
using morphological, edge detection, and feature extraction techniques,” IEEE transactions on Med. Imaging 29,
1860–1869 (2010).

17. S. Morales, V. Naranjo, J. Angulo, and M. Alcañiz, “Automatic detection of optic disc based on pca and mathematical
morphology,” IEEE transactions on Med. Imaging 32, 786–796 (2013).

18. A. Giachetti, L. Ballerini, and E. Trucco, “Accurate and reliable segmentation of the optic disc in digital fundus
images,” J. Med. Imaging 1, 1–11 (2014).

19. B. Dashtbozorg, A. M. Mendonça, and A. Campilho, “Optic disc segmentation using the sliding band filter,” Comput.
Biol. Medicine 56, 1–12 (2015).

20. J. Cheng, J. Liu, Y. Xu, F. Yin, D. W. K. Wong, N.-M. Tan, D. Tao, C.-Y. Cheng, T. Aung, and T. Y. Wong, “Superpixel
classification based optic disc and optic cup segmentation for glaucoma screening,” IEEE transactions on Med.
Imaging 32, 1019–1032 (2013).

21. G. Lim, Y. Cheng, W. Hsu, and M. L. Lee, “Integrated optic disc and cup segmentation with deep learning,” in IEEE
International Conference on TOOLS with Artificial Intelligence, (2016), pp. 162–169.

22. Z. Fan, Y. Rong, X. Cai, J. Lu, W. Li, H. Lin, and X. Chen, “Optic disk detection in fundus image based on structured
learning,” IEEE J. Biomed. Heal. Informatics 22, 224–234 (2018).

23. M. Wu, Q. Chen, X. He, P. Li, W. Fan, S. Yuan, and H. Park, “Automatic subretinal fluid segmentation of retinal sd-oct
images with neurosensory retinal detachment guided by enface fundus imaging,” IEEE Transactions on Biomed. Eng.
65, 87–95 (2018).

24. Y. Xu, K. Yan, J. Kim, X. Wang, C. Li, L. Su, S. Yu, X. Xu, and D. D. Feng, “Dual-stage deep learning framework
for pigment epithelium detachment segmentation in polypoidal choroidal vasculopathy,” Biomed. Opt. Express 8,
4061–4076 (2017).

25. X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abràmoff, and M. Sonka, “3d segmentation of fluid-associated
abnormalities in retinal oct: Probability constrained graph-search -graph-cut,” IEEE transactions on Med. Imaging
31, 1521–1531 (2012).

26. T. Hassan, A. M. Usman, B. Hassan, A. M. Syed, and S. A. Bazaz, “Automated segmentation of subretinal layers for
the detection of macular edema.” Appl. Opt. 55, 454–461 (2016).

27. Z. Ji, Q. Chen, M. Wu, S. Niu, W. Fan, S. Yuan, and Q. Sun, “Beyond retinal layers: A large blob detection for
subretinal fluid segmentation in sd-oct images,” in International Conference on Medical Image Computing and
Computer-Assisted Intervention, (2018), pp. 372–380.

28. A. Lang, A. Carass, E. K. Swingle, O. Al-Louzi, P. Bhargava, S. Saidha, H. S. Ying, P. A. Calabresi, and J. L. Prince,
“Automatic segmentation of microcystic macular edema in oct,” Biomed. optics express 6, 155–169 (2015).

29. T. L. A. V. D. Heuvel, D. D. Bruijn, C. L. D. Korte, and B. V. Ginneken, “Automated measurement of fetal head
circumference using 2d ultrasound images,” Plos One 13, 1–20 (2018).

30. L. Wu, Y. Xin, S. Li, T. Wang, P. A. Heng, and D. Ni, “Cascaded fully convolutional networks for automatic prenatal
ultrasound image segmentation,” in IEEE International Symposium on Biomedical Imaging, (2017), pp. 663–666.

31. L. Zhang, X. Ye, T. Lambrou, W. Duan, N. Allinson, and N. J. Dudley, “A supervised texton based approach for
automatic segmentation and measurement of the fetal head and femur in 2d ultrasound images,” Phys. Medicine &
Biol. 61, 1095–1115 (2016).

32. S. Rueda, S. Fathima, C. L. Knight, M. Yaqub, A. T. Papageorghiou, B. Rahmatullah, A. Foi, M. Maggioni, A. Pepe,
and J. Tohka, “Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric
measurements: a grand challenge,” IEEE Transactions on Med. Imaging 33, 797 (2014).

33. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in
International Conference on Medical image computing and computer-assisted intervention, (2015), pp. 234–241.

                                                                      Vol. 10, No. 8 | 1 Aug 2019 | BIOMEDICAL OPTICS EXPRESS 3813 



34. N. Otsu, “A threshold selection method from gray-level histograms,” Automatica 11, 23–27 (1975).
35. D. Zhang and G. Lu, “Review of shape representation and description techniques,” Pattern Recognit. 37, 1–19 (2004).
36. J. Illingworth and J. Kittle, “The adaptive hough transform,” IEEE Transactions on Pattern Analysis Mach. Intell. 9,

690–698 (1987).
37. M. Liu, D. Cheng, K. Wang, and Y. Wang, “Multi-modality cascaded convolutional neural networks for alzheimer

disease diagnosis,” Neuroinformatics 16, 1–14 (2018).
38. M. T.-V. Project, “Messidor: Digital retinal images france,” http://messidor.crihan.fr/download-en.

php (2008).
39. E. J. Carmona, M. Rincón, J. García-Feijoó, and J. M. Martínez-de-la Casa, “Identification of the optic nerve head

with genetic algorithms,” Artif. Intell. Medicine 43, 243–259 (2008).
40. U. Lincoln, “etinal image computing & understanding, onhsd-optic nerve head segmentation dataset,” http:

//reviewdb.lincoln.ac.uk/ImageDatasets/ONHSD.aspx (2004).
41. J. Lowell, A. Hunter, D. Steel, A. Basu, R. Ryder, E. Fletcher, and L. Kennedy, “Optic nerve head segmentation,”

IEEE Transactions on Med. Imaging 23, 256–264 (2004).
42. I. Zafar, G. Tzanidou, R. Burton, N. Patel, and L. Araujo, Hands-On Convolutional Neural Networks with TensorFlow

(Packt Publishing Ltd, 201-202(2018)).
43. T. van den Heuvel, D. de Bruijn, C. L. de Korte, and B. van Ginneken, “Automated measurement of fetal head

circumference,” https://doi.org/10.5281/zenodo.1327317 (2018).
44. A. W. Fitzgibbon, M. Pilu, and R. B. Fisher, “Direct least squares fitting of ellipses,” IEEE Transactions on Pattern

Analysis Mach. Intell. 21, 476–480 (1999).
45. A. Vedaldi and K. Lenc, “Matconvnet – convolutional neural networks for matlab,” in Proceeding of the ACM Int.

Conf. on Multimedia, (2015), pp. 689–692.
46. F. Milletari, A. Rothberg, J. Jia, and M. Sofka, “Integrating statistical prior knowledge into convolutional neural

networks,” in International Conference on Medical Image Computing & Computer-assisted Intervention, (2017), pp.
161–168.

                                                                      Vol. 10, No. 8 | 1 Aug 2019 | BIOMEDICAL OPTICS EXPRESS 3814 

http://messidor.crihan.fr/download-en.php
http://messidor.crihan.fr/download-en.php
 http://reviewdb.lincoln.ac.uk/Image Datasets/ONHSD.aspx
 http://reviewdb.lincoln.ac.uk/Image Datasets/ONHSD.aspx
https://doi.org/10.5281/zenodo.1327317



