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A B S T R A C T

Swarm robotic systems (SRSs), which are widely used in many fields, such as search and rescue, usually
comprise a number of robots with relatively simple mechanisms collaborating to accomplish complex tasks. A
challenging task for SRSs is to design local interaction rules for self-organization of robots that can generate
adaptive patterns to entrap moving targets. Biologically inspired approaches such as gene regulatory network
(GRN) models provide a promising solution to this problem. However, the design of GRN models for generating
entrapping patterns relies on the expertise of designers. As a result, the design of the GRN models is often a
laborious and tedious trial-and-error process. In this study, we propose a modular design automation framework
for GRN models that can generate entrapping patterns. The framework employs basic network motifs to
construct GRN models automatically without requiring expertise. To this end, a constrained multi-objective
genetic programming is utilized to simultaneously optimize the structures and parameters of the GRN models.
A multi-criteria decision-making approach is adopted to choose the preferred GRN model for generating the
entrapping pattern. Comprehensive simulation results demonstrate that the proposed framework can obtain
novel GRN models with simpler structures than those designed by human experts yet better performance in
complex and dynamic environments. Proof-of-concept experiments using e-puck robots confirmed the feasibility
and effectiveness of the proposed GRN models.
1. Introduction

In general, swarm robotic systems [1,2] (SRSs) are composed of
numerous robots with relatively simple mechanisms. The robots col-
laborate to execute a complex task that is impossible for a single
robot to accomplish. A challenging task for SRSs is target entrapping,
which typically requires swarm robots to cooperatively entrap multiple
targets [3]. Target entrapping can be extended to several potential
applications including gas leak detection [4], search and rescue [5,6],
deployment of sensor networks [7,8], convoy/escort missions [9], and
area/border coverage [10].

∗ Corresponding author.
E-mail address: yaochu.jin@uni-bielefeld.de (Y. Jin).

Existing entrapping control models can be generally classified into
five categories: leader–follower structure, virtual structure, behavior-
based approach, reinforcement learning approach, and biologically
inspired approach.

In the leader–follower structure, followers track one or more lead-
ers and maintain a specified geometric relationship [11,12]. In most
related studies, swarm robots were required to generate predefined
patterns. For example, Han et al. [13] programmed followers to main-
tain a regular polygonal entrapping pattern while entrapping a moving
leader (target). Yu et al. [14] applied the leader–follower structure
to design a dynamic control law that allowed all robots to entrap
a given stationary target while remaining evenly spaced along the
circumference of a circle. In real-world applications, followers should
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be able to generate time-varying entrapping patterns while tracking one
or more leaders. Therefore, Yang et al. [15] proposed a control method
for the leader–follower structure to generate an adaptive entrapping
pattern. However, this adaptive entrapping pattern can only be scaled
from a fixed polygonal pattern, and the flexibility of this method is
insufficient.

In a virtual structure, all the robots share a rigid geometric relation-
ship to perform an entrapping task. For example, Kawakami et al. [16]
and Sato et al. [17] applied a circular virtual structure to entrap a
target. Barnes et al. [9] defined an elliptical entrapping shape, which
provided more flexibility for shape transformation than a circle entrap-
ping shape. Rezaee et al. [18] studied the problem of entrapping control
of robots based on a virtual structure, and the designed entrapping
shape could adapt to changes in the number of robots, but the shape
was limited to regular polygons. In these studies [9,16–18], the robots
have to maintain fixed and predefined geometric shapes as the targets
moved, which prevented them from adapting to the environment.

The behavior-based approach allows swarm robots to complete an
entrapping task through a variety of predefined behaviors (e.g., colli-
sion avoidance, obstacle avoidance, target searching, and maintaining
a desired position in a formation). For example, Antonelli et al. [19]
predefined a behavior matrix and sorted the behaviors according to
a priority order. The swarm robots entrapped a target based on this
matrix. A shortcoming of this method is that setting the priority or-
der when the number of behaviors is large becomes difficult. Phung
et al. [20] selected an optimal combination of behaviors using a trial-
and-error method to achieve an entrapping task. In behavior-based
methods, the behavior of swarm robots must be predefined. The multi-
ple behaviors required of a robot may lead to contradictory commands
that can prevent the robots from converging into the desired formation.

The reinforcement learning approach enables SRSs to learn an
optimal entrapment strategy using reward strategies. For example, Ma
et al. [21] proposed a deep reinforcement learning framework for
entrapping pattern generation. Wang et al. [22] proposed a reinforce-
ment learning method for solving multi-pursuer versus single superior
evader games. Park et al. [23] established a co-evolution framework
for predators and prey to allow multiple agents to learn good policies
through deep reinforcement learning. In these studies [21–23], it is
often assumed that the escape strategy of the evader target is known
in advance, which is unrealistic in real-world environments. Another
limitation is that the large number of uncertainties generated from real-
world environments make the reward mechanism difficult to design.
In addition, in the reinforcement learning approach, the size of the
learning space increases exponentially with the number of agents,
causing the ‘‘curse of dimensionality’’ problem.

In these methods, SRSs typically use regular entrapping shapes
(e.g. circles [14,17], ellipses [24], and regular polygons [13]) to entrap
a single target. However, in real-world applications, the number and
distribution of targets may vary, and the environment around the tar-
gets may change dynamically. This makes arbitrary entrapping patterns
more desirable than regular patterns because they are more flexible and
adaptive to various dynamic target scenarios [25,26]. A fixed or regular
shape with limited changes cannot satisfy the need for the dynamic
entrapping of multiple targets. Adaptively generating/transforming en-
trapping patterns in a dynamic target scenario and controlling robots
to form such patterns for flexible entrapments remains a challenge.

Biologically inspired approaches (e.g., morphogen, chemotaxis, and
gene regulatory network (GRN) models) [27] provide promising and
flexible alternatives for generating adaptive and robust patterns amid
unknown environmental changes [28,29]. The morphogen and chemo-
taxis models consider a robot as a cell that can generate an exponen-
tially decreasing morphogen gradient field [30]. The gradient field can
cause its neighborhood robots to move according to the concentration
difference, which generates aggregation behavior [31]. However, even
2

though the morphogen and chemotaxis models can guide robots to
approach a target, they cannot generate adaptable and changing en-
trapping patterns for swarm robots to encircle the target. A GRN model
treats targets and obstacles as cells to produce two types of proteins and
modulates the concentration of these two types of proteins to generate
an entrapping pattern.

For example, Jin et al. [32] proposed a hierarchical gene regulatory
network (H-GRN) model to entrap dynamic targets. The H-GRN model
consists of two layers: the top layer generates an entrapping pattern,
and the bottom layer organizes the swarm robots to move into the
desired pattern while avoiding obstacles. Peng et al. [33] presented a
modified GRN model for enclosing multiple targets in an environment
with obstacles. The top layer of the model uses implicit interpolation
functions to generate entrapping patterns. The position information
of the targets and obstacles was used as focal points of an implicit
interpolation function to adjust the patterns. Therefore, there was no
overlap between the generated patterns and obstacles. Using a similar
approach, Zhang et al. [25] applied an implicit radial basis function
to generate entrapping patterns in the top layer of a GRN model.
Although these methods could [25,33] generate irregular entrapping
patterns, they required large number of feature points determining
the shapes of patterns in advance, which cannot be easily obtained
from the environment. Oh et al. [34] introduced an evolving H-GRN
(named EH-GRN) to generate adaptive patterns that entrap targets
in environments with obstacles. Obstacle information is input to the
top layer to generate an expected pattern to avoid obstacles. Yuan
et al. [35] added an inter-layer based on the H-GRN for obstacle
avoidance. They considered the target information in the top layer of
the GRN and utilized the obstacle information in the inter-layer. In
these studies, GRN models [34,35] have fixed and complex structures
predefined by human experts. Therefore, the design automation of a
simple and efficient GRN model to generate flexible entrapping patterns
under various scenarios remains a challenge.

A GRN model can be automatically assembled from a predefined
set of building blocks [36–38]. The design of the GRN model can be
first formulated as an automatic modular design problem. Then, we
can optimize the structure and parameters of the GRN models [39–
41] using evolutionary algorithms [42]. In this paper, we propose a
framework that uses constrained multi-objective genetic programming
(CMOGP), which combines genetic programming (GP), push and pull
search (PPS) [43], and differential evolution (DE) [44]. For CMOGP,
GP is responsible for expressing and evolving the GRN models. PPS
is applied to search for the optimal set of design candidates satis-
fying constraints to balance the complexity and performance of the
evolved GRN models, and DE is used to optimize the parameters
of the GRN models. CMOGP can simultaneously optimize the struc-
ture and parameters of GRN models. Novel GRN models with simpler
structures than those designed by human experts can be extracted by
investigating the structures of evolved models in the optimal Pareto
set. More importantly, these evolved models maintained satisfactory
performance when transferred to a new application scenario for which
the models have never been trained before. It is notable that the
proposed design automation framework does not require predefined
GRN structures. Instead, a set of basic network motifs are employed
as building blocks for the proposed method to reconfigure themselves
into functional GRN models in an automated manner, which provides a
new method of generating functional GRN models for the applications
under investigation.

The main contributions of this study are as follows:

1. A modular design automation framework is proposed to obtain
GRN models for swarm robots to generate entrapping patterns,
which eliminates the need of human expertise and trial and
error. The models are verified through comprehensive experi-

ments.
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2. A new algorithm named CMOGP is proposed to optimize both
the structures and parameters of the GRN model. Compared with
evolving H-GRN (EH-GRN) [34], which can only optimize the
parameters of a GRN model, the proposed method can achieve
better performance.

3. The automatically obtained GRN models not only outperform
those designed by human experts in challenging environments
but are also transferable to new application scenarios. The
evolved models perform significantly better than human-desig-
ned GRN models in new environments.

The remainder of this paper is organized as follows. Section 2
resents the problem formulation and fundamentals of the GRNs. In
ection 3, a design automation framework for entrapping pattern gen-
ration using the CMOGP is proposed. In Section 4, the simulation
nd physical experimental results for various challenging application
cenarios are discussed to verify the robustness of the framework. In
ection 5, the conclusions and future research directions are discussed.

. Background and problem formulation

.1. GRN models developed for SRSs

According to some studies [27,28], biologically inspired swarm
ontrol methods can be divided into two categories: macroscopic and
icroscopic. The former refers to methods that are inspired by animal

ehaviors, such as flying bird flocks or swimming fish schools. The
atter represents a less well-known group inspired by the collective
ovement of microscopic individuals, such as cells, in which GRN
lays a pivotal role. GRN is a model of the interactions between genes
nd gene products that describes the dynamics of gene expression,
hich plays a central role in biological morphogenesis. Biological
orphogenesis can be viewed as a self-organizing process in which
opulations of cells move autonomously to their destinations, governed
y GRN and cell-to-cell interactions. Under the GRN mechanism, each
ell releases proteins around it according to certain rules, and the
rotein concentration decays with spatial distance. Each point in space
as a corresponding protein concentration value, and we refer to this
oncentration space region as the concentration field. Motion control
an then be performed based on the gradient properties of the concen-
ration field, as shown in Fig. 1A. In morphogenetic SRSs, each robot is
nalogous to a single cell. The position of the robot can be transformed
nto the protein concentration value of the position in the concentration
ield using the GRN model, as shown in Fig. 1B. In addition, the
oncentration contours around the target are used as candidate entrap-
ing patterns (satisfying the requirement that the minimum distance
etween the contour line and the target should surpass the predefined
afe distance). According to the gradient properties of the concentration
ield, each robot moves towards the desired position and eventually
emains in the entrapping pattern. A collective encirclement behavior
ill emerge out of the SRS.

.2. Problem statement

This study aims to develop a method for entrapping dynamic targets
ith swarm robots under environmental constraints. The task consists
f entrapping pattern generation and formation. In pattern generation,
ntrapping patterns are generated to encircle the targets while avoid-
ng the obstacles. In pattern formation, the robots deploy themselves
3

owards the generated patterns to accomplish the entrapping task.
2.3. Assumptions

The following basic assumptions are made to implement the pro-
posed design automation framework for pattern generation:

1. The base station contains an adequate number of robots to com-
plete the pattern generation task. In other words, an adequate
number of robots can be summoned from the command center
to generate entrapping patterns.

2. The SRS uses a motion-capture device with global positioning
capability to achieve the entrapping task.

3. The maximum speed of each robot is faster than that of the
targets.

2.4. Evaluation metrics

This study employs two evaluation metrics [25] to measure the
performance of the proposed method in the entrapping task: (1) the
convergence error (𝐶e), which denotes the entrapment accuracy, and
(2) the distributed variance (𝐷v), which denotes the evenness of the
warm robots deployed in the entrapping pattern.

1. Convergence error (𝐶e)

𝐶e(𝒈) = (
𝑇
∑

𝑡=1

𝑛
∑

𝑖=1
𝑑min(𝑓 (𝑔𝑖), 𝑖, 𝑡))∕𝑇 (1)

where 𝑔𝑖 represents the position of the 𝑖th robot. 𝒈 = (𝑔1, 𝑔2,… ,
𝑔𝑛)𝑇 represents the swarm robot. 𝑓 (𝑔𝑖) is an implicit function
for generating an entrapping pattern, for example 𝑓 (𝑔𝑖) ∶ 𝑔2𝑖,𝑥 +
𝑔2𝑖,𝑦 − 1 = 0 is a unit circle. 𝑑min(𝑓 (𝑔𝑖), 𝑖, 𝑡) is the shortest distance
between the 𝑖th robot and the expected entrapping pattern in the
𝑡th time step. 𝐶e is zero if all the swarm robots are distributed
exactly on the pattern. 𝑛 denotes the number of swarm robots.
𝑇 denotes the total time step.

2. Distributed variance (𝐷v)

𝐷v =
𝑇
∑

𝑡=1
(1 −

𝑚𝑡
∑

𝑖=1

𝑁𝑖,𝑡

𝑚𝑡
+

𝑛
∑

𝑖=1

(𝑑min
𝑖,𝑡 − 𝑑min

𝑡 )2

𝑛
)∕𝑇 (2)

where 𝑚𝑡 indicates that the entrapping pattern is uniformly
divided into 𝑚 sub-patterns in the 𝑡th time step. 𝑁𝑖,𝑡 is unity if
there is a robot on the 𝑖th part in the 𝑡th time step; otherwise, it
is zero. 1 −

∑𝑚𝑡
𝑖=1

𝑁𝑖,𝑡
𝑚𝑡

is zero if all the swarm robots are located
on the 𝑚 sub-patterns in the 𝑡th time step. 𝑑min

𝑖,𝑡 is the shortest
distance between the 𝑖th robot and its neighbors in the 𝑡th time
step. 𝑑min

𝑡 is the mean of all 𝑑min
𝑖,𝑡 in the 𝑡th time step. 𝑛 denotes

the number of swarm robots. 𝑇 denotes the total time step.

3. Automated GRN design for entrapping pattern generation

In this section, a CMOGP-based design automation framework for
entrapping pattern generation is presented. Furthermore, ten prede-
fined basic network motifs as well as fitness functions are discussed.

3.1. Basic network motifs

A fundamental step in the design automation framework is to
define a few basic network motifs as the building blocks. Recent
systems biology research revealed the occurrence of network module
interconnections in real complex networks [45]. Bowers et al. [46]
conducted a logic analysis of phylogenetic profiles to discover the
triplets of proteins, the presence or absence of which obeys certain logic
relationships. These relationships are frequently found in the GRNs
of multicellular organisms. Inspired by these findings, ten predefined
network motifs, 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝐴𝑁𝐷, 𝑁𝐴𝑁𝐷, 𝑂𝑅, 𝑁𝑂𝑅, 𝐴𝑁𝐷𝑁 ,
𝑂𝑅𝑁 , 𝑋𝑂𝑅, and 𝑋𝑁𝑂𝑅, are utilized as the basic network motifs to

construct GRNs, as shown in Table 1, where 𝜃 and 𝑘 are regulatory
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Fig. 1. Mapping relationship between swarm robotic system and multi-cellular system.
parameters and scale factors of gene expression, respectively. Fig. 2
illustrates the tree structure of the GRN through an example. In this
figure, the individual is represented by the function set and the terminal
set, where the terminal set includes environmental inputs (𝑝1 and 𝑝2
are the positions of targets and obstacles to establish corresponding
concentration fields), and the function set includes all or a subset of
the ten predefined network motifs. In this example, the GRN model is
𝑑𝐺1
𝑑𝑡

= −𝐺1 + 𝑠𝑖𝑔(𝑝1 + 𝑝2, 𝜃1, 𝑘) (3)

𝑑𝐺2
𝑑𝑡

= −𝐺2 + 𝑠𝑖𝑔(𝑝1, 𝜃2, 𝑘) (4)

𝑑𝐺3
𝑑𝑡

= −𝐺3 + 𝑠𝑖𝑔(𝐺1 ∗ 𝐺2, 𝜃2, 𝑘) (5)

where 𝐺1 fuses the concentration fields from 𝑝1 and 𝑝2, and 𝐺2 fuses the
concentration field from 𝑝1. 𝐺3 fuses the concentration fields from 𝐺1
and 𝐺2, which corresponds to the generation of entrapping patterns.
Specifically, the concentration field components of the targets and
obstacles are fused by 𝐺1, 𝐺2, and 𝐺3, and then closed contour lines
of concentration values are obtained in the 𝐺3 concentration field.
The concentration contours around the target are used as candidate
entrapping patterns.

3.2. Fitness function

A simpler GRN model is more explainable and preferable. The fewer
the nodes in a GRN model, the less complex it is. Therefore, the number
of nodes in the GRN model is used to define one of the fitness functions
as follows:

𝑓1 = 𝑛𝑜𝑑𝑒() (6)

where  is a GRN model and 𝑛𝑜𝑑𝑒() is the number of its nodes.
An entrapping pattern should enable the robots to entrap the targets

without colliding with them. The formulated entrapping pattern should
not be too far away from or too close to the targets (to avoid colli-
sion with the targets). Furthermore, swarm robots cannot collide with
4

Fig. 2. Example of a GRN tree. 𝐴𝑁𝐷, 𝑂𝑅, and 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 are subsets of the ten
predefined network motifs. 𝑝1 and 𝑝2 are the positions of targets and obstacles
respectively to establish corresponding concentration fields.

obstacles in the environment. Therefore, the second fitness function is
defined as follows:

𝑓2 =𝛴
𝑁𝑝
𝑖=1𝛴

𝑁𝑡
𝑗=1

𝑠𝑖𝑔(𝑑pt
𝑖𝑗 , 𝑑max, 𝑘1) + 𝑠𝑖𝑔(𝑑min, 𝑑

pt
𝑖𝑗 , 𝑘2)

𝑁𝑝𝑁𝑡
(7)

𝑠𝑖𝑔(𝑥, 𝜃, 𝑘) = 1
1 + 𝑒−𝑘(𝑥−𝜃)

(8)

where 𝑑min and 𝑑max are the allowed minimum and maximum distances
between the swarm robots and targets, respectively. In Eq. (7), 𝑁𝑝 and
𝑁𝑡 represent the number of swarm robots and targets, respectively, and
𝑑pt
𝑖𝑗 is the distance from the 𝑖th swarm robot to the 𝑗th target. Slope

values (𝑘1 and 𝑘2) for the sigmoid function in Eq. (7) are both set to 1
in this work.
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Table 1
Definitions of ten predefined network motifs.

Network motifs Definition Functional equation

Positive Gene 𝑥 activates gene 𝑦.
In other words, gene 𝑥 provides positive
feedback to gene 𝑦.

{

𝑑𝑦
𝑑𝑡

= −𝑦 + 𝑠𝑖𝑔(𝑥, 𝜃, 𝑘)
𝑠𝑖𝑔(𝑥, 𝜃, 𝑘) = 1

1+𝑒−𝑘(𝑥−𝜃)

Negative Gene 𝑥 inhibits gene 𝑦.
That is, gene 𝑥 provides negative
feedback to gene 𝑦.

{

𝑑𝑦
𝑑𝑡

= −𝑦 + 1 − 𝑠𝑖𝑔(𝑥, 𝜃, 𝑘)
𝑠𝑖𝑔(𝑥, 𝜃, 𝑘) = 1

1+𝑒−𝑘(𝑥−𝜃)

AND Gene 𝑦 is present if and only if
both gene 𝑥1 and gene 𝑥2 are present.

{

𝑑𝑦
𝑑𝑡

= −𝑦 + 𝑠𝑖𝑔(𝑥1 ∗ 𝑥2 , 𝜃, 𝑘)
𝑠𝑖𝑔(𝑥, 𝜃, 𝑘) = 1

1+𝑒−𝑘(𝑥−𝜃)

NAND Gene 𝑦 is present if and only if
gene 𝑥1 or gene 𝑥2 is absent.

{

𝑑𝑦
𝑑𝑡

= −𝑦 + 𝑠𝑖𝑔((1 − 𝑥1) + (1 − 𝑥2), 𝜃, 𝑘)
𝑠𝑖𝑔(𝑥, 𝜃, 𝑘) = 1

1+𝑒−𝑘(𝑥−𝜃)

OR Gene 𝑦 is present if and only if
gene 𝑥1 or gene 𝑥2 is present.

{

𝑑𝑦
𝑑𝑡

= −𝑦 + 𝑠𝑖𝑔(𝑥1 + 𝑥2 , 𝜃, 𝑘)
𝑠𝑖𝑔(𝑥, 𝜃, 𝑘) = 1

1+𝑒−𝑘(𝑥−𝜃)

NOR Gene 𝑦 is present if and only if
gene 𝑥1 and gene 𝑥2 are present.

{

𝑑𝑦
𝑑𝑡

= −𝑦 + 𝑠𝑖𝑔((1 − 𝑥1) ∗ (1 − 𝑥2), 𝜃, 𝑘)
𝑠𝑖𝑔(𝑥, 𝜃, 𝑘) = 1

1+𝑒−𝑘(𝑥−𝜃)

ANDN Gene 𝑦 is present if and only if
gene 𝑥1 is present and gene 𝑥2 is absent.

{

𝑑𝑦
𝑑𝑡

= −𝑦 + 𝑠𝑖𝑔(𝑥1 ∗ (1 − 𝑥2), 𝜃, 𝑘)
𝑠𝑖𝑔(𝑥, 𝜃, 𝑘) = 1

1+𝑒−𝑘(𝑥−𝜃)

ORN Gene 𝑦 is present if and only if
gene 𝑥1 is present or gene 𝑥2 is absent.

{

𝑑𝑦
𝑑𝑡

= −𝑦 + 𝑠𝑖𝑔(𝑥1 + (1 − 𝑥2), 𝜃, 𝑘)
𝑠𝑖𝑔(𝑥, 𝜃, 𝑘) = 1

1+𝑒−𝑘(𝑥−𝜃)

XOR Gene 𝑦 is present if and only if
both genes 𝑥1 and 𝑥2 are present or
both are absent.

⎧

⎪

⎨

⎪

⎩

𝑑𝑦
𝑑𝑡

= −𝑦 + 𝑠𝑖𝑔(𝑥1 ∗ (1 − 𝑥2), 𝜃, 𝑘)
+𝑠𝑖𝑔((1 − 𝑥1) ∗ 𝑥2 , 𝜃, 𝑘)

𝑠𝑖𝑔(𝑥, 𝜃, 𝑘) = 1
1+𝑒−𝑘(𝑥−𝜃)

XNOR Gene 𝑦 is present if and only if
one of either gene 𝑥1 or 𝑥2 is present.

⎧

⎪

⎨

⎪

⎩

𝑑𝑦
𝑑𝑡

= −𝑦 + 𝑠𝑖𝑔((𝑥1 ∗ 𝑥2), 𝜃, 𝑘)
+𝑠𝑖𝑔((1 − 𝑥1) ∗ (1 − 𝑥2), 𝜃, 𝑘)

𝑠𝑖𝑔(𝑥, 𝜃, 𝑘) = 1
1+𝑒−𝑘(𝑥−𝜃)
w

The effects of obstacles and minimal safe distance between neigh-
oring robots on the pattern must be considered during pattern gener-
tion. Two types of constraints are defined as follows.
obs
𝑖 ≥ 𝑑obs

min (9)

𝑑robot
𝑖𝑗 ≥ 𝑑robot

min (10)

where Eq. (9) assures that the robots do not collide with the obstacles.
Eq. (10) assures that two neighboring robots do not collide. 𝑑obs

min is the
minimum allowed distance between the swarm robots and obstacles.
𝑑obs
𝑖 is the distance from the 𝑖th robot to the obstacle. 𝑑robot

𝑖𝑗 is the
distance from the 𝑖th robot to the 𝑗th robot. 𝑑robot

min denotes the minimum
safe distance between neighboring robots.

3.3. Design automation framework for entrapping pattern generation based
on CMOGP

Because the design of a GRN model is usually a trial-and-error
process, it is largely dependent on the experience and intuition of
human experts. However, this process does not guarantee the feasibility
of the GRN model for a specific application. Fig. 3 illustrates the general
structure of the proposed design automation framework for generating
entrapping patterns, which is divided into three parts: the construction
of the hierarchical GRN model, the automated design of its upper layer
using CMOGP, and its application in various scenarios. The proposed
design automation framework is summarized as follows:

(1) Construction of a hierarchical GRN model: The proposed hier-
archical GRN model is shown in Fig. 3. It is divided into two layers:
an entrapping pattern generation layer and an entrapping pattern
formation layer.

The upper layer of the hierarchical GRN is responsible for gener-
ating entrapping patterns that can adapt to the changes in the envi-
5

ronment and targets. Unlike relying on the experience and intuition t
of human experts, this layer is designed using CMOGP. The locations
of the targets (𝑝1) and obstacles (𝑝2) are translated into an integrated
morphogen gradient space in which the GRN model is automatically
reconfigured with predefined network motifs. Specifically, the concen-
tration field 𝑀 fuses the concentration fields of targets and obstacles,
from which closed contour lines of concentration values are obtained
and transmitted to the lower layer.

The bottom layer is responsible for forming entrapping patterns
that guide swarm robots to approach the pattern generated in the
upper layer. This layer utilizes the dynamics of swarm robot motion,
represented by two vectors (𝑮 and 𝑷 ) [34]. 𝑷 represents the internal
state of the robots and is used to receive the position information
from neighboring robots, targets, and obstacles to prevent collisions.
If the distance between the robot and the target is less than the safe
distance, 𝑷 can also control the robot to move away from the target.
On the other hand, 𝑮 is dynamically adjusted based on the state of 𝑷
and the entrapping pattern, ensuring that the robots move towards the
entrapping pattern. The regulatory mechanism of the bottom layer is
as follows:
𝑑𝑮𝑖
𝑑𝑡

= −𝑮𝑖 + 𝑷𝑖 + 𝒄𝑖 (11)

𝑑𝑷𝑖
𝑑𝑡

= −𝑷𝑖 +𝑫𝑖 + 𝑻𝑖 +𝑶𝑖 (12)

where 𝑖 ∈ 1,… , 𝑁 is the index of 𝑖th robot, and 𝑁 is the number of
robots. 𝑮𝑖 and 𝑷𝑖 are the 2-D position and internal state vectors of the
𝑖th robot, respectively. 𝒄𝑖 guides the 𝑖th robot towards the entrapping
pattern, which is defined as follows:

𝒄𝑖 = −
𝑹𝑖 − 𝑪𝑖

‖𝑹𝑖 − 𝑪𝑖‖
(13)

here 𝑪𝑖 represents the closest position of the entrapping pattern to
he 𝑖th robot. 𝑹 denotes the positions of the 𝑖th robot. In Eq. (12), 𝑫
𝑖 𝑖
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Fig. 3. Diagram of the proposed design automation framework for generating entrapping patterns.
assures that the 𝑖th robot does not collide with its neighboring robots.

𝑫𝑖 =
𝑛𝑖
∑

𝑗=1
𝑫𝑗

𝑖 (14)

𝑫𝑗
𝑖 =

𝑹𝑖 −𝑹𝑗

‖𝑹𝑖 −𝑹𝑗‖
(15)

where 𝑛𝑖 is the number of neighboring robots of the 𝑖th robot. 𝑫𝑗
𝑖 is

vector from the 𝑖th robot to the 𝑗th robot. In addition, the roles of
𝑖 and 𝑶𝑖 are to prevent the 𝑖th robot from colliding with targets and
bstacles, respectively. They are defined as follows:

𝑖 =
𝑡𝑖
∑

𝑗=1
𝑻 𝑗
𝑖 (16)

𝑗
𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 𝑹𝑖−𝑻𝑗
‖𝑹𝑖−𝑻𝑗‖

, ‖𝑹𝑖 − 𝑻𝑗‖ > 𝑑max

0, 𝑑min ≤ ‖𝑹𝑖 − 𝑻𝑗‖ ≤ 𝑑max
𝑹𝑖−𝑻𝑗

‖𝑹𝑖−𝑻𝑗‖
, ‖𝑹𝑖 − 𝑻𝑗‖ < 𝑑min

(17)

𝑶𝑖 =
𝑜𝑖
∑

𝑗=1
𝑶𝑗

𝑖 (18)

𝑶𝑗
𝑖 =

𝑹𝑖 −𝑶𝑗

‖𝑹𝑖 −𝑶𝑗‖
(19)

here 𝑡𝑖 and 𝑜𝑖 are the numbers of targets and obstacles, respectively.
𝑖 is the sum of direction vectors to guide 𝑖th robot to avoid colliding
ith the targets. 𝑶𝑖 is the sum of direction vectors to guide 𝑖th robot to
void colliding with the obstacles. 𝑻 𝑗

𝑖 is the vector from the 𝑖th robot
o the 𝑗th target, which guides the robot to approach the target when
t is too far away and move away from the target when it is too close.
𝑗
𝑖 is the vector from the 𝑖th robot to the 𝑗th obstacle, which guides
6

that the robot avoids collision with the obstacle. 𝑑min and 𝑑max are the
allowed minimum and maximum distances between the swarm robots
and targets, respectively.

In summary, the upper layer is the pattern generation layer, which
generates an entrapping pattern for swarm robots to follow. The bottom
layer is a pattern formation layer; hence, the robots can be guided to
appropriate positions to form the entrapping pattern. If the entrapping
pattern generated in the upper layer cannot trap the targets, the bottom
layer cannot guide the robots to trap the targets. Therefore, this study
focuses on the generation layer.

(2) Automated design of the upper layer of the hierarchical GRN
model using CMOGP: GRN models designed through experience and in-
tuition not only require a tedious and laborious trail-and-error process,
but also cannot guarantee optimal performance for a specific applica-
tion. Therefore, evolutionary algorithms are proposed as a means to
automatically optimize the structures and parameters of GRN models
for different application scenarios to generate effective and innovative
network structures. To achieve this, CMOGP is used, which combines
the constrained multi-objective mechanism (PPS) of PPS-MOEA/D, pa-
rameter optimization mechanism of DE, and the multi-criteria decision-
making (MCDM) approach. During the evolutionary process, GP is
responsible for expressing and evolving GRN models. PPS-MOEA/D is
applied to search for the optimal set of design candidates that balance
the complexity and performance of the GRN models while satisfying
constraints such as avoiding obstacles. DE is used to optimize the
parameters of the GRN model, and MCDM is employed to choose the
desired GRN model in Pareto-optimal solutions. The pseudo-code of the
CMOGP is introduced in Algorithm 1.

In Algorithm 1, initialization is performed in lines 1–3. In line
1, the initial population 𝑃0 is created using the ramped half-and-half
method [47]. In line 2, the regulatory parameters of each robot in the
initial population are optimized using DE. In line 3, the fitness functions

of all the individuals in the initial population are evaluated. In line 6,
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the offspring population 𝑄𝑔 is generated using crossover and mutation.
In lines 7–10, the regulatory parameters of each 𝑞 in the offspring
population are optimized by DE, and the fitness values of 𝑞 are obtained
by evaluating the fitness functions. In line 12, the individuals of new
population 𝑃𝑔+1 are selected through the selection mechanism of the
PPS-MOEA/D. The generation counter is updated in line 13. Finally, in
line 15, the desired non-dominant and feasible solutions are selected
using MCDM.

Algorithm 1: Framework of the CMOGP for entrapping pattern
generation

Input:
Ten predefined network motifs;
𝑔𝑒𝑛𝑚𝑎𝑥: the maximum generation.

Output: a set of non-dominant and feasible solutions.
1 Initialize: An initial population 𝑃0 of GRN-based models is

randomly created using the ramped half-and-half method;
2 Optimal Parameters: The parameters of these models are

optimized by DE;
3 Evaluate: The population 𝑃0 is evaluated using fitness

functions;
4 Set 𝑔𝑒𝑛 = 0;
5 while 𝑔𝑒𝑛 ≤ 𝑔𝑒𝑛𝑚𝑎𝑥 do
6 The offspring population 𝑄𝑔 is generated by applying

genetic operations;
7 foreach 𝑞 ∈ 𝑄𝑔 do
8 The parameters of 𝑞 are optimized by DE; // 𝑞 is an

individual in 𝑄𝑔 ;
9 Each 𝑞 in 𝑄𝑔 is evaluated using fitness functions;
10 end
11 𝑅𝑔 ← 𝑃𝑔 ∪𝑄𝑔 ; // 𝑃𝑔 is the 𝑔th parent population.
12 The new population 𝑃𝑔+1 from 𝑅𝑔 is formed through the

PPS mechanism;
13 𝑔𝑒𝑛 = 𝑔𝑒𝑛 + 1;
14 end
15 A desired non-dominant and feasible solution is output by

applying a multi-criteria decision-making approach.

(3) GRN model application: To demonstrate the efficacy of the GRN
model designed automatically using the CMOGP, the entrapping pat-
tern generated by the GRN model is implemented in several challenging
environments. The swarm robots are expected to form entrapping
patterns adapted to varying environments and moving targets. The
experimental results are discussed in detail in Section 4.

4. Experimental results

Experiments are conducted to verify the effectiveness of the pro-
posed design automation framework. First, the proposed framework
generates a GRN model (GRN-1) to entrap two targets moving through
two circular obstacles (OBS-1). Next, the proposed framework obtains
a new GRN model (GRN-2) to entrap a target moving through a
channel containing barbed obstacles (OBS-2). Finally, GRN-1 and GRN-
2 are tested, as they migrate to a new environment with a random
distribution of multiple circular obstacles (OBS-3). The results of GRN-2
are presented in Appendix A of the supplementary material.

4.1. Entrapping pattern generation in OBS-1

To demonstrate the effectiveness of the design automation frame-
work in OBS-1, the performance of the evolved GRN model is compared
with EH-GRN [34] and TH-GRN [35] in OBS-1. For EH-GRN and TH-
GRN, both models have fixed structures and apply the covariance
matrix adaptation evolution strategy (CMA-ES) [48] to optimize their
7

Fig. 4. Non-dominated solutions achieved by CMOGP. Point A is the selected knee
point.

Table 2
The parameters are detailed in the proposed CMOGP.
The parameter settings of CMOGP

Population size 50

A GRN hyper-parameter optimization times 10

Max evaluation number 25000

Control parameter (𝜖) 0.1

Crossover rates Topology 1

Parameter 0.1

Mutation rates Topology 0.9

Parameter 0.5

parameters. In contrast, the proposed framework can generate GRN
models with both DE-optimized parameters and a CMOGP-optimized
topology. It is worth noting that all three methods are tuned in the
same scenario, as shown in Part I of Appendix B. The parameters of
the evolutionary process are set as follows:

1. For the proposed framework, the regulatory parameter 𝜃 of
Positive and Negative are assigned as real numbers ranging from
0 to 1. The regulatory parameter 𝜃 of other basic network motif
are set as real numbers ranging from 0 to 2. 𝜃 of each basic
network motif is optimized using DE.

2. For EH-GRN, the regulatory parameter 𝜃𝑖 (𝑖 = 1, 2,… , 14) of
each basic network motif is optimized by CMA-ES. Regulatory
parameters 𝜃7, 𝜃8, 𝜃9, 𝜃13, and 𝜃14 are assigned real numbers
ranging from 0 to 2, and the remaining parameters as real
numbers ranging from 0 to 1, according to [34].

3. For TH-GRN, the regulatory parameter 𝜃𝑖 (𝑖 = 1, 2, 3) of each
basic network motif is optimized by CMA-ES. According to [32],
regulatory parameters 𝜃1, 𝜃2 are assigned real numbers ranging
from 0 to 1. 𝜃3 is set as real numbers ranging from 0 to 2.

4. For the proposed framework, the population size is 50. A GRN
hyper-parameter optimization times (ParaNum) is set to 10. Here
ParaNum represents the number of times to optimize the param-
eters when the GRN structure is hold unchanged temporarily.

5. For the EH-GRN and TH-GRN, the population size is set to 200.
6. The crossover and mutation rates of CMOGP and DE are 1.0 and

0.9, and 0.1 and 0.5, respectively.
7. The parameter (𝜖) that control the Push phase to the Pull phase

in the PPS mechanism is set to 0.1.
8. The max evaluation number is set to 25000, and each method is

run 30 times independently.

In order to better understand the proposed CMOGP in this paper,
Table 2 shows the parameter settings of the algorithm.

Before automatically designing the GRN model for OBS-1, some key
parameters in the fitness function are set as follows:
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Fig. 5. Genotype (genetic programming tree) and phenotype (GRN model) of GRN-1. 𝑝1 and 𝑝2 are the positions of targets and obstacles, respectively, to establish corresponding
concentration fields. In (a), ORN and Positive are the two basic network motifs. In (b), 𝐺1 defines two concentration fields regulated by Positive. The concentration field 𝑀 is
required to generate the desired entrapping pattern, which is regulated by ORN.
Fig. 6. EH-GRN-1 [34] structure for entrapping pattern generation. The model has a predefined structure. CMA-ES is applied to optimize the regulatory parameters 𝜃𝑖 (𝑖 = 1,… , 14).
𝑝1 and 𝑝2 are the positions of targets and obstacles respectively to establish corresponding concentration fields.
1. 𝑑min and 𝑑max are the allowed minimum and maximum distances
between the swarm robots and targets, respectively. 𝑑min and
𝑑max are set to 1 and 2, respectively.

2. 𝑑obs
min is the minimum allowed distance between the swarm robots

and obstacles and is set to 1.
3. 𝑑robot

min is the minimum allowed distance between neighboring
robots and is set to 1.

All the non-dominated solutions illustrated in Fig. 4 are achieved
using CMOGP. As shown in the figure, Point A represents the knee
point, and thus the GRN model of Point A, called GRN-1, is selected.
Fig. 5(a) and Fig. 5(b) display the genotype (the genetic programming
tree of Point A) and the phenotype (the GRN model of Point A),
respectively, which is used in the entrapping pattern generation layer
of the proposed framework. A discussion of the optimal solutions for
the Pareto Front can be found in Appendix B.

The GRN-based distributed controller for entrapping pattern gener-
ation developed using GRN-1 is derived as follows:
𝑑𝑇𝑖
𝑑𝑡

= ∇2𝑇𝑖 + 𝛾𝑖 − 𝑇𝑖 (20)

𝑑𝑂𝑖
𝑑𝑡

= ∇2𝑂𝑖 + 𝛽𝑖 − 𝑂𝑖 (21)

𝑝 = 𝛴𝑁𝑡 𝑇 (22)
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1 𝑖=1 𝑖
Fig. 7. TH-GRN-1 [35] structure for entrapping pattern generation. The model has a
predefined structure. CMA-ES is applied to optimize the regulatory parameters 𝜃𝑖 (𝑖 =
1, 2, 3). 𝑝1 represents the positions of targets to establish corresponding concentration
fields.
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Fig. 8. As the two targets move through the two obstacles, the entrapping pattern generated by the GRN-1 traps the two targets. The obstacles are represented by the two shaded
circles. The red contour represents the entrapping pattern. The hexagons represent the swarm robots. The green curves represent the trajectory of the moving swarm robots. The
gray dotted line represents the trajectory of the moving targets. (a)–(d) illustrate several typical scenarios when the two targets are in different positions and the entrapping pattern
that helps the swarm robots trap the targets. The robots follow the pattern and trap the two targets.
𝑝2 = 𝛴𝑁𝑜
𝑖=1𝑂𝑖 (23)

𝑑𝐺1
𝑑𝑡

= −𝐺1 + 𝑠𝑖𝑔(𝑝2, 𝜃1, 𝑘) (24)

𝑑𝑀
𝑑𝑡

= −𝑀 + 𝑠𝑖𝑔(𝐺1 + (1 − 𝑝1), 𝜃2, 𝑘) (25)

where 𝛾𝑖 and 𝛽𝑖 represent the positions of the 𝑖th target and 𝑖th obstacle,
respectively. 𝑇𝑖 and 𝑂𝑖 represent the concentration field components of
𝛾𝑖 and 𝛽𝑖 formed by the 𝑖th target and 𝑖th obstacle, respectively. 𝑝1 and
𝑝2 represent the concentration fields produced by all detected targets
and obstacles, respectively. 𝑁𝑡 and 𝑁𝑜 are the total numbers of targets
and obstacles, respectively. ∇2 is a Laplace operator, which is defined as
the second derivative of 𝑇𝑖 and 𝑂𝑖. 𝐺1 fuses the concentration field from
𝑝2, which is regulated by the Positive regulation (as listed in Table 1).
𝑀 fuses the concentration field from 𝐺1 and 𝑝1, which is regulated by
the ORN regulation, to generate entrapping patterns. By Eqs. (24) and
(25), some closed contour lines of concentration values are obtained
in the 𝑀 concentration field. The concentration contours around the
target are used as the candidate entrapping patterns. In addition, 𝜃1
and 𝜃2 are 0.702 and 1.189, respectively, in Eqs. (24) and (25).

For the generated entrapping pattern to be used by the lower layer
of the GRN, the contour of the pattern must first be extracted [49]. A
concentration contour is selected as the entrapping pattern according
to the following conditions: (1) The minimum distance between the
contour line and the target/obstacle should exceed the predefined safe
distance, to avoid collision. (2) The farthest distance between the
contour line and the target should be less than the allowed maximum
distance between the robot and target, which can ensure entrapping
the target. (3) The contour line is centered on the target as much as
possible, which ensures that the target is encircled. With these selection
criteria, a contour line is selected and considered as an entrapping
pattern that is used by the lower layer of the GRN model to guide the
movements of the swarm robots.

Fig. 6 illustrates a EH-GRN model, namely EH-GRN-1. In this model,
all regulatory parameters 𝜃𝑖 (𝑖 = 1,… , 14) are optimized by CMA-ES:
𝜃1 = 0.6958, 𝜃2 = 1, 𝜃3 = 0.5758, 𝜃4 = 0.1183, 𝜃5 = 0.0432, 𝜃6 = 0,
𝜃7 = 0.4614, 𝜃8 = 0, 𝜃9 = 0.8710, 𝜃10 = 0.3903, 𝜃11 = 0.5621, 𝜃12 =
0.7134, 𝜃13 = 0.8934. In addition, Fig. 7 illustrates a TH-GRN model. In
this model, all regulatory parameters 𝜃𝑖 (𝑖 = 1, 2, 3) are optimized by
CMA-ES: 𝜃1 = 0.5004, 𝜃2 = 0.0822, 𝜃3 = 1.9732.

In Fig. 8, GRN-1 generates an adaptive entrapping pattern to entrap
two moving targets as they navigate through two circular obstacles. For
example, as the two targets approach the obstacles, GRN-1 generates
an ellipsoidal pattern, which is highlighted by the red line in Fig. 8(a),
to lead the swarm robots to entrap the two targets. When the targets
are in the middle of the circular obstacles, as shown in Fig. 8(b),
the entrapping pattern changes from an ellipsoidal to dumbbell-like
pattern, which leads the swarm robots to entrap the two targets without
colliding with the obstacles. This pattern change may have occurred
9

because the concentration field formed by the two circular obstacles
is compressed, and thus changes the shape of the concentration field
formed by the targets. As the two targets are farther from the two
circular obstacles, the entrapping pattern reverts from droplet-like to
ellipsoidal, as shown in Fig. 8(c)–(d).

As shown in Fig. 9, the EH-GRN-1 generates an entrapping pattern
to entrap the two targets as they pass through two circular obstacles.
When the two targets approach the circular obstacles, the entrapping
pattern generated by the model not only entraps the two targets but
also the two obstacles, as shown in Fig. 9(a). This type of entrapping
pattern is generated because the concentration field formed by the
two circular obstacles is fused with that formed by the two targets.
Although swarm robots guided by the pattern entrap the two targets,
they are not evenly distributed in the pattern. When the two targets
are in the middle of two circular obstacles, an ellipsoidal pattern is
generated, as shown in Fig. 9(b). However, the robots are clustered
on one side of the pattern. When the two targets are farther from the
two circular obstacles, the generated pattern still encircles both targets
and obstacles. However, some robots of the swarm remain concentrated
on one side of the obstacles and do not follow and trap the targets,
as shown in Fig. 9(c)–(d). Although the remaining robots achieve the
entrapping task temporarily, if the targets keep moving in a similar
environment, the number of entrapping robots may gradually decrease
and the entrapping task may fail after all. To verify this conjecture, this
study adds a set of experiments to demonstrate what will happen if the
targets pass through two groups of circular obstacles, which is shown
in the fourth part of Appendix B.

For TH-GRN, Fig. 10 shows the process of the entrapping patterns
generated by TH-GRN to guide the swarm robots to entrap the targets
in OBS-1. When the targets pass through the obstacles, the patterns gen-
erated by TH-GRN traverse, as shown in Fig. 10(b). This is because the
upper layer of TH-GRN only considers the targets’ location information
to generate the entrapping pattern, which ignores the influence of the
obstacles. On the other hand, the inter-layer of TH-GRN utilizes the
obstacle information to guide the robots to avoid obstacles. Fig. 10(c)–
(d) show that the robots can move well to the entrapping pattern.
As a result, the entrapping pattern generated by TH-GRN is always a
circular-like shape with no shape change. It is worth noting that when
the environment is complex, this unchanged shape may cause many
robots to be blocked by obstacles, and thus cannot consistently entrap
the targets, as shown in Fig. 15.

To quantify and compare the performances of the EH-GRN-1, TH-
GRN and GRN-1 with OBS-1, Fig. 11(a)–(b) present the curves of 𝐶𝑒
and 𝐷𝑣 evolving over time. In Fig. 11(a)–(b), when the targets do not
pass through two obstacles, the 𝐶𝑒 and 𝐷𝑣 of GRN-1 converges to a
near-zero value, which indicates that the swarm robots basically reach
and distribute well in the entrapping pattern. When the targets pass
through the two obstacles, 𝐶𝑒 and 𝐷𝑣 of GRN-1 fluctuate significantly
during time steps 170–250. This is because the entrapping pattern
generated by GRN-1 changes drastically during this period, to adapt
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Fig. 9. Schematic illustration of the trapping pattern generated by EH-GRN-1 [34] when two targets pass through two obstacles. The obstacles are represented by the two shaded
circles. The red contour represents the entrapping pattern. Hexagonal shapes represent the swarm robots. The green curves represent the trajectory of the moving swarm robots.
The gray dotted line represents the trajectory of the moving targets. (a)–(d) illustrate several typical scenarios for the two targets in different positions, and the entrapping patterns
that lead the swarm robots to trap the targets. The swarm robots cannot follow the targets and fail to trap them.
Fig. 10. As the two targets move through the two obstacles, the entrapping pattern generated by TH-GRN [35] entraps the two targets. (a)–(d) illustrate several typical scenarios
when the two targets are in different positions, and the entrapping pattern that helps the swarm robots entrap the targets.
Fig. 11. The statistical values of the two evaluations on OBS-1 achieved by EH-GRN-1 [34], TH-GRN [35] and GRN-1. (a) Curve of 𝐶𝑒 evolving over time. (b) Curve of 𝐷𝑣 evolving
over time. (c) Curve of 𝐶𝑒 in 30 independent runs. (d) Curve of 𝐷𝑣 in 30 independent runs.
to the environmental variation caused by the presence of obstacles.
It will take some time for the swarm robots to follow up and evenly
distribute themselves in the pattern again, as shown in Fig. 8(b)–(c).
For EH-GRN-1, 𝐶𝑒 and 𝐷𝑣 fluctuate significantly during the time steps
70–130. This is because when the targets are close to the obstacles,
the entrapping pattern generated by EH-GRN-1 suddenly changes from
entrapping the targets to entrapping both the targets and obstacles,
causing the entrapping pattern to become larger, as shown in Fig. 9(a).
In addition, after time step 265, 𝐶𝑒 suddenly increases, as shown in
Fig. 11(a). This is because when the two targets escape far away from
the two circular obstacles, some robots of the swarm remain blocked by
the obstacles and cannot follow the targets, as shown in Fig. 9(c)–(d).
Fig. 11(c)–(d) shows the statistical values of the two evaluations on
OBS-1 achieved by EH-GRN-1, TH-GRN and GRN-1 in 30 independent
runs. We can clearly see that the statistical values of 𝐶𝑒 and 𝐷𝑣 for
GRN-1 are much smaller than those for EH-GRN-1 and TH-GRN for
each number of runs. Table 3 presents the average values of 𝐶𝑒 and
𝐷𝑣 over 30 independent runs, which demonstrate that the performance
of GRN-1 is better than that of EH-GRN-1 and TH-GRN in OBS-1. It is
worth noting that the values of 𝐶𝑒 and 𝐷𝑣 for each independent run are
shown in Part V of Appendix B.
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4.2. Transferring the obtained models to OBS-3

To demonstrate the transferability of the GRN model generated
by the proposed framework, GRN-1 is migrated to a new application
scenario with a large number of randomly distributed obstacles. For
comparison, EH-GRN-1 and TH-GRN are also tested with OBS-3.

When the GRN model generated by the proposed framework is
migrated to the new application scenario, an interesting phenomenon
emerges, as shown in Fig. 12. According to the change of the sur-
rounding environment of the escaping target, the entrapping pattern
generated by the proposed method can be adapted to very irregular
shapes, as shown in Fig. 12, which leads the swarm robots to avoid
the obstacles and entrap the target. This kind of behavior resembles a
phenomenon that can be observed in the biological world. For example,
white blood cells (phagocytizes) change their shape to shuttle between
crowded cells, and engulf a bacterium (as shown in Fig. 13).1 In Fig. 14,
we clearly observe the merging of the entrapping pattern generated by
EH-GRN-1 with the obstacles around the target to entrap the target.

1 https://embryology.med.unsw.edu.au/embryology/index.php/Movie_-
_Neutrophil_chasing_bacteria

https://embryology.med.unsw.edu.au/embryology/index.php/Movie_-_Neutrophil_chasing_bacteria
https://embryology.med.unsw.edu.au/embryology/index.php/Movie_-_Neutrophil_chasing_bacteria
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Table 3
Mean and standard deviation values of Convergence Error and Distributed Variance, obtained by EH-GRN-1 (EH) [34], TH-GRN (TH) [35] and
GRN-1 on OBS-1 and OBS-3.

Convergence error

Instance GRN-1 EH [34] TH [35] t-test (𝑝-value)

GRN-1 vs EH GRN-1 vs TH

OBS-1 mean 1.3581E−01 3.0819E−01 2.7143E−01 6.35E−41 7.33E−37std 3.1688E−03 7.2254E−03 7.1285E−03

OBS-3 mean 8.7313E−02 2.2014E−01 1.1120E−01 1.35E−18 8.34E−25std 2.1643E−02 3.0694E−02 8.4375E−03

Distributed variance

Instance GRN-1 EH [34] TH [35] t-test (𝑝-value)

GRN-1 vs EH GRN-1 vs TH

OBS-1 mean 8.7313E−02 2.2014E−01 1.1120E−01 1.61E−19 4.25E−06std 2.1643E−02 3.0694E−02 8.4375E−03

OBS-3 mean 3.4045E−02 4.0491E−01 3.3760E−01 1.09E−36 3.11E−27std 4.2570E−03 2.3030E−02 4.0088E−02
Fig. 12. When a target passes through OBS-3, with a large number of randomly distributed circular obstacles, the pattern generated by GRN-1 entraps the target. The green curves
represent the trajectory of the moving swarm robots. The gray dotted line represents the trajectory of the moving targets. (a)–(d) illustrate the four typical scenarios in which the
entrapping pattern leads the swarm robots to trap the target as it moves to different locations of OBS-3. The robots firmly trap the targets in all cases.
Fig. 13. A white blood cell phagocytizes a bacterium throughout the process.
However, the entrapping pattern fails to lead the swarm robots to
entrap the target as the target escapes, possibly because the merging
of the pattern produces a new and enlarged pattern that entrapped the
target and obstacles simultaneously, as shown in Fig. 14(b). Because
the new entrapping pattern is largely distracted by the obstacles and
does not focus on the target, it fails to lead all swarm robots to form
a pattern to firmly entrap the target. For TH-GRN, when the target
passes between obstacles, quite some robots are blocked by obstacles
and thus cannot entrap the targets well, as shown in Fig. 15(b)–(c).
This is because the entrapping pattern generated by TH-GRN cannot
adaptively change its shape according to the environment, resulting in
many robots being blocked by the obstacles.

To quantify and compare the performances of GRN-1, EH-GRN-1
and TH-GRN in the OBS-3, Fig. 16(a)–(b) present the curves of 𝐶𝑒
and 𝐷𝑣 evolving over time. In Fig. 16(a), GRN-1 obtained through
the proposed framework performs significantly better than EH-GRN-
1 and TH-GRN. This is because the entrapping pattern generated by
EH-GRN-1 entraps the target and obstacles simultaneously, producing
a new and enlarged pattern. If the obstacle size (such as a combination
of multiple obstacles) is large, the entrapping pattern generated by
EH-GRN-1 will be large too, as shown in Fig. 14(b)–(c). In addition,
the entrapping pattern generated by TH-GRN is always a circular-
like shape, which prevents it from adapting itself to variable shapes
to accommodate with changing obstacle environment, as shown in
Fig. 15(b)–(c). Therefore, swarm robots following patterns generated
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by EH-GRN-1 and TH-GRN do not have competitive convergence and
distribution as those of GRN-1, as shown in Fig. 16. By comparing the
results shown in Fig. 16(a)–(b), we clearly find that the value of 𝐶𝑒
and 𝐷𝑣 of GRN-1 are significantly smaller than those of EH-GRN-1 and
TH-GRN. In addition, Fig. 16(c)–(d) illustrate the values of the two
evaluations on OBS-3 achieved by GRN-1, EH-GRN-1 and TH-GRN in
30 independent runs. We can clearly see that the values of 𝐶𝑒 and 𝐷𝑣
for GRN-1 are much smaller than those of EH-GRN-1 and TH-GRN in
each run. Statistical significance is also verified by 𝑝-value, as shown
in Table 3. Therefore, it is considered that the performance of GRN-1 is
better than that of EH-GRN-1 and TH-GRN in OBS-3, and that GRN-1
can be successfully transferred to OBS-3. It is worth noting that the
values of 𝐶𝑒 and 𝐷𝑣 for each independent run are shown in Part V of
Appendix B.

4.3. Experiments using e-puck robots

4.3.1. Entrapping multiple targets simultaneously
The proposed method has the capability to generate patterns that

can entrap multiple targets, which actually stems from the ability
of the proposed method to generate adaptable entrapping formation
without predefined pattern. For example, when it is necessary that the
existing large pattern to encircle some clustered targets needs to divide
itself into multiple small ones to entrap the scattered targets when the
escape in different directions, it will do so ‘‘automatically’’ without any
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Fig. 14. As a target passes through OBS-3, with numerous randomly distributed circular obstacles, the entrapping pattern generated by EH-GRN-1 [34] entraps the target. The
green curves represent the trajectory of the moving swarm robots. The gray dotted line represents the trajectory of the moving targets. (a)–(d) illustrate the four typical scenarios
in which the entrapping pattern leads the swarm robots to trap the target in OBS-3. The pattern merges with the boundary of the obstacles, and the swarm robots are unevenly
distributed in a significantly enlarged pattern contour. Consequently, many robots deviate from the pattern and fail to trap the target as it moves to the location of (d).
Fig. 15. When a target passes through OBS-3, with a large number of randomly distributed circular obstacles, the pattern generated by TH-GRN [35] entraps the target. (a)–(d)
illustrate the four typical scenarios in which the entrapping pattern leads the swarm robots to trap the target as it moves to different locations of OBS-3.
Fig. 16. The statistical values of the two evaluations on OBS-3 achieved by GRN-1, EH-GRN-1 [34] and TH-GRN [35]. (a) Curve of 𝐶𝑒 evolving over time. (b) Curve of 𝐷𝑣 evolving
over time. (c) Curve of 𝐶𝑒 in 30 independent runs. (d) Curve of 𝐷𝑣 in 30 independent runs.
specifications. Fig. 17 shows a physical experiment conducted using E-
Puck robot systems. The two targets (in blue lights) are first surrounded
by two swarms of robots (in red lights) in two circles. Then the two
targets begin to escape and approach each other. When they almost
move into the same position, the two circles gradually merge into a big
one, entrapping the two targets as a whole. After that, the two targets
continue to escape in opposite directions. When they get apart enough
distance, the big circle is divided into two small ones again, with each
entrapping one target separately. During the whole process, no specific
instructions are given to the swarm robots to make group merge and/or
division, which resembles the process of cell fusion and cell division in
biology. The above experiment video is given in Appendix C.

4.3.2. Entrapping targets when some robots fail to function
Because the proposed method follows a fully distributed control

scheme, if some robots in the swam fail to function, the remaining
robots can still fulfill the task of entrapment. As shown in Fig. 18,
from the beginning, the first three snapshots Fig. 18(a)–(b) show that
the surrounding swarm robots (in red) entrap the target (in blue)
successfully. Then the target tries to escape through the obstacles (in
white). The swarm robots follow the target and keep the entrapment
formation in Fig. 18(c). Then two robots in the swarm fail to function
suddenly, and stand still (in yellow), as shown in Fig. 18(d). However,
the remaining swarm robots still bypass the obstacles and the failed
robots as well. The swarm robots finally entrap the target tightly, as
demonstrated in Fig. 18(e)–(f). The video of the physical experiment
can also be found in Appendix C.
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5. Conclusion

The design of GRN models for the self-organization of swarm robots
is usually a tedious and laborious trial-and-error process that is largely
dependent on the experience and intuition of human experts. Further-
more, a GRN model specially designed for a particular application sce-
nario cannot guarantee its applicability in a new scenario. To address
these issues, this study proposes a design automation framework to
generate entrapping patterns using CMOGP, a program that synthesizes
GRN models by reconfiguring a predefined set of basic GRN network
motifs. By using the proposed framework, a comprehensive investiga-
tion of the evolved candidates in the Pareto front provides knowledge
for designing a GRN model that can generate patterns to perform prede-
fined tasks. The experimental results show that the evolved GRN models
using this framework can generate patterns that guide swarm robots to
successfully entrap targets in a variety of challenging scenarios.

The evolved GRN models have three main features: (1) According to
the change of surrounding environment of the escaping targets, the en-
trapping patterns generated by the evolved GRN models can be adapted
to very irregular shapes to avoid obstacles while entrapping the targets.
(2) The entrapping patterns generated by the evolved GRN models
can achieve group division and merge to enable entrapping multiple
targets at the same time, without any predefined specifications. (3) The
proposed method follows a fully distributed control scheme, meaning
that even if some robots of the swarm fail to function, the remaining
robots can still fulfill the entrapping task.
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Fig. 17. The entrapping pattern generated by our proposed method entraps two targets in an environment with obstacles. (a) The two targets (in blue light) are first surrounded
by two swarms of robots (in red light) in two circles. (b)–(c) Then the two targets begin to escape and approach each other. (d) When they almost move into the same position,
the two circles gradually merge into a big one, entrapping the two targets as a whole. (e) After that, the two targets continue to escape in opposite directions. (f) When they get
apart enough distance, the big circle is divided into two small ones again, with each entrapping one target separately.
Fig. 18. Entrapping pattern generated by our proposed method entraps one target in an environment with obstacles. The target is the robot with blue light. Normally working
robots are lit up in red, and failed robots are shown in yellow. The stationary obstacles have white color. (a)–(b) the surrounding swarm robots (in red) entrap the target (in blue)
successfully. (c) the target tries to escape through the obstacles (in white). The swarm robots follow the target and keep the entrapment formation. (d) two robots in the swarm
fail to function suddenly, and stand still (in yellow). (e)–(f) the remaining swarm robots still bypass the obstacles and the failed robots as well, and entrap the target tightly.
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