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Abstract

This study proposes a distributed algorithm that enables agents’ adaptive grouping and entrapment of multiple targets via automatic
decision making, smooth flocking, and well-distributed entrapping. In this study, an agent distributed decision framework is proposed.
Agents make their own decisions about which targets to surround based on environmental information. Meanwhile, a modified Vicsek
model is proposed to enable agents to smoothly change formations to adapt to the environment, while forming an entrapping effect
on the target. In addition, we provide an optional rotary entrapping function for this model to achieve better effect. We validate the
performance of proposed method using simulation and physical experiments.

Keywords: swarm intelligence, robots, multi-agent systems, multiple targets entrapping, flocking, Vicsek model, distributed control

Highlights:

� An adaptive decision-making model for swarm robots

is proposed to entrap multiple targets.
� Swarm robots orbit the targets while entrapping them.
� Some indexes for evaluating the trapping performance

were put forward.

1. Introduction
In recent years, the research of multi-agent systems has attracted
extensive attention (Sheng et al., 2015; Zhu, 2015, 2020). Multi-
agent systems can be divided into centralized, distributed, and hy-
brid ones in terms of decision-making methods they adopt. Many
multi-agent systems were based on a centralized decision mak-
ing (Loayza et al., 2017; Zhu, 2020). The centralized decision mak-
ing has some advantages, such as centralized information pro-
cessing and convenient management of data. However, they also
have some significant drawbacks. For example, if the central infor-
mation processing node fails, the whole system may collapse and
stop working. Therefore, in recent years, many researches advo-
cate decentralization and distributed decision-making methods
that are gradually applied to more and more systems (Mullender,
1990; Gong et al., 2021). Compared with the centralized system,
the distributed system has more difficulty in the coordination of
agents, with information resources dispersed. However, it also has
some notable and valuable advantages. Distributed systems have
better scalability; that is, it is easy to add a node without affect-
ing the functioning of other nodes in the system. At the same
time, the distributed system has good robustness, which shows
good resistance to damages of part of the system. There is also

a new paradigm that combines the characteristics of centralized
and distributed systems, namely hybrid control architecture (Ye et
al., 2011). There are many central control nodes that collectively
influence the whole system’s decision-making activities through
communication. It is worth noting that this approach, while yield-
ing better performance in some cases, is generally used for larger
systems due to its complexity. The research discussed in this pa-
per is mainly about distributed multi-agent systems.

There have been increasing research interests in the distributed
cooperative control of multi-agent systems generating emergent
flocking behaviors. These studies have received considerable at-
tention since Reynolds proposed three heuristic rules (Reynolds,
1987) including collision avoidance, velocity matching, and flock
centering for multiple agents. Based on the three general rules,
hundreds of models have emerged to model the synchronized
collective motions of animals, humans, or even migrating cells
(Reynolds, 1987; Mastellone et al., 2007; Vicsek & Zafeiris, 2012;
Fine & Shell, 2013; Mehes & Vicsek, 2014). Jinming Du proposed
an evolutionary game theoretic approach to coordinated control
of multi-agent systems. On the basis of the idea of natural selec-
tion, agents in the system act as the role of players in the game.
Agents have different optional behaviors to choose as their strate-
gies (Du, 2019). Jing et al., 2018 proposed two new distributed for-
mation control schemes based on the weak rigidity theory under
the condition of relying only on local relative position measure-
ment (distributed and without communication). Jing et al., 2019
also proposed an angle-based distributed formation shape sta-
bilization method for planar multi-agent systems. The angular
rigidity theory is applied to the formation stabilization problem,
and the formation with angle constraint is realized by multiple
integral modeling agents. Jia & Vicsek, 2019 presented a general
framework for modeling a wide selection of flocking scenarios un-
der free boundary conditions. The stability of the model based on
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leader–follower relationship is studied when the collective motion
is destroyed by random disturbances.

From the application point of view, applications of multi-
agent systems include search and rescue (Baxter et al., 2007),
area/border coverage (Rubenstein et al., 2014), deployment of sen-
sor networks (Kim et al., 2014), collective transportation and con-
struction (Rubenstein et al., 2014), and convoy/escorting missions
(Antonelli et al., 2007; Barnes et al., 2009). Among them, target
entrapping is a typical challenging research field (Zhang et al.,
2018), for which much work has been done. Yang et al., 2020 pro-
posed an estimator–controller framework for the robot. Within
this framework, the robot can entrap the target without any prior
position information in an arbitrarily shaped orbit. Yao et al., 2019
proposed circumnavigation control algorithms enabling multiple
robots to orbit a target that achieves entrapping effect. However,
these methods do not consider how to deal with obstacles in
the environment. In addition, there are many methods such as
behavior-based control methods (Antonelli et al., 2007; Phung et
al., 2018), virtual structure methods (Kawakami & Namerikawa,
2008; Sato & Maeda, 2010), leader–follower control methods (Yu et
al., 2019; Yang et al., 2020), and biological heuristic methods (Jin et
al., 2012; Peng et al., 2016). However, most of them do not explicitly
consider the situations when there are multiple dynamic targets
in the environment. To the best of our knowledge, only a hand-
ful of efforts have focused on multiple target entrapping. Kubo
et al., 2013 proposed a swarm robot multitarget entrapping algo-
rithm. However, the multiple targets are stationary. Yasuda et al.,
2014 used swarm robots to entrap and transport multiple targets
based on evolutionary artificial neural networks. However, there
are no obstacles in the environment.

The challenge in achieving multitarget entrapment for a large
swarm of robots is designing a common self-organized behavioral
model for each individual robot, which enables the robots in the
field to surround each target as evenly as possible through their
own decisions. The gene regulatory network (GRN) method has
achieved superior performance in previous research on entrap-
ping. Inspired by the genetic and cellular mechanisms that con-
trol biological morphogenesis, Jin et al., 2012 proposed a hierar-
chical GRN method that enables agents to generate entrapping
formation according to environmental changes. Peng et al., 2016
proposed an improved GRN for entrapping multiple dynamic tar-
gets in an environment containing obstacles. On this basis, Fan
et al., 2019 used genetic programming to automatically generate
optimal GRN structures according to the scene and realized a bet-
ter entrapping effect of the multiple targets in a variety of com-
plex scenes with obstacles. However, existing GRN methods do
not explicitly deal with the physical constraints of robots. It is
well known that ignoring these constraints can degrade the per-
formance of the system in real-world physical implementations.

Vásárhelyi et al., 2018 presented a flocking model for real
drones, and the experiments demonstrated that the induced
swarm behavior remained stable under realistic conditions for
large flock sizes. This study describes some basic principles and
swarm model design methods that drones should follow to com-
plete the autonomous swarm tasks. It is a critical work that
achieved the world’s first outdoor autonomous flocking flight of
30 drones. It completed the task of flocking with an agent-based
approach, which originates from the Vicsek model. However, this
study only provides the basic swarm model, and the Unmanned
Aerial Vehicle (UAV) swarm does not perform comprehensive
tasks. In this work, we improved it and designed an adaptive force
allocation model to entrap multiple targets. Inspired by Vásárhelyi
et al. (2018), this study proposes an adaptive grouping entrapping

method (AGENT) based on an improved Vicsek model that con-
siders physical motion constraints. Compared with the previous
swarm studies, this study proposes a distributed decision-making
mechanism of swarm agents, and the formation of agents in the
swarm is not fixed or predefined. The agents’ decision makings
and entrapping pattern formations are adaptive to the environ-
mental changes. The main contributions of this study are as fol-
lows:

1. This study proposes a multitarget entrapping model frame-
work combining an adaptive decision-making mechanism
and an improved Vicsek model.

2. The improved Vicsek model proposed in this study enables
the agents to emerge uniformly distributed entrapping of
targets with strong robustness.

3. The adaptive decision-making mechanism facilitates evenly
dividing the agents into groups to entrap multiple targets
according to environmental information.

4. In this study, several evaluation indexes are established to
evaluate the effect of multitarget entrapment. Both simu-
lated and physical experiments are used to validate the pro-
posed model, with the physical experiments conducted on
the E-puck2 platform.

The remainder of this paper is organized as follows. In Section
2, we describe the design of the velocity controller. In Section 3,
the adaptive decision-making method is introduced. In Section 4,
we provide the comparative experiments to verify the feasibility
of the proposed method. Real-world experiments on the E-puck2
robot platform are presented in Section 5. Finally, Section 6 con-
cludes the paper.

2. Velocity Control Mechanism
In this section, we introduce the method of entrapping targets by
agents, which include several factors to be considered. First, when
agents perform tasks in a swarm, they should keep their distance
from each other (Vásárhelyi et al., 2018). In other words, when they
are too close, they should produce a mutually exclusive veloc-
ity term. Likewise, they should produce repulsion velocity terms
when they are too close to the targets to avoid collisions. In addi-
tion, agents need to avoid obstacles in a timely manner. Second,
to entrap the target, agents need to stay within a certain distance
from the targets. Finally, in practical engineering applications, the
aforementioned motions must consider the mobility of the robots,
so the accelerations of them are limited.

2.1. Close to the target
When an agent obtains the information of the targets, its goal is to
reach a point at a certain distance from one of the targets. There-
fore, agents need to have a velocity term pointing toward the tar-
get point and a smooth decay of velocity as they approach the
target. D(.) as an ideal braking curve has a smooth velocity decay
function in space, with constant acceleration at high velocity and
an exponential approach in space at low velocity (Vásárhelyi et
al., 2018). In function D(.), r is the distance between an agent and
the expected stopping point. The p gain determines the crossover
point between the two phases of deceleration, and a is the pre-
ferred acceleration.

D (r, a, p) =

⎧⎪⎨
⎪⎩

0 if r ≤ 0
rp if 0 < rp ≤ a/p√

2ar − a2/p2 otherwise
(1)
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With this smooth decay curve, agents can implement a velocity
decay when approaching the target in equation (2). This is essen-
tially what one does when pressing the brake pedal of a car. First,
the brake pedal is pushed at a high velocity, and then the velocity
is gradually decreased.

vit = [
v f + Ct · D

(
rit − Rentrap , at , pt )] · rti (2)

In the above equations, we set the initial velocity v f for all
agents. Ct is the preferred common travelling velocity coefficient
for all agents approaching targets. ri and rt represent the absolute
position of agent i and its target, respectively. rit = |ri − rt | is the
distance between agents i and the target. at is the maximum ac-
celeration allowed. Higher values assume that agents can brake
quicker. Excessively high values result in the inability of agents
to react to excessively large velocity differences in time and thus
lead to collisions. pt is the gain of the optimal braking curve used
to determine the maximum allowed velocity difference. Large val-
ues approximate the braking curve to the constant acceleration
curve. Small values elongate the final part of the braking (at a
low velocity) with decreasing acceleration and smoother stops. rti

is the direction in which the agent points to the target location.
Rentrap represents the required distance of the stopping point in
front of the target, which is predefined according to the entrap-
ping task.

2.2. Repulsion
Agents generate velocity terms that move away from each other
when the distance between agents is under rarep, the distance at
which the local repulsion kicks in. Larger values create sparser
flocks with fewer collisions.

vrep
ij =

{
prep

a
(
rarep − rij

) · rij if
(
rij < rarep

)
0 otherwise

, (3)

where ri and rj represent the absolute position of agent i and
agent j, respectively. rij = |ri − rj| is the distance between agents
i and j. prep

a is the linear coefficient of the velocity of repulsion be-
tween agents, and rij represents the direction of the velocity of
acting on agent i from agent j to agent i.

Furthermore, repulsion is also used between the agents and tar-
gets unidirectionally. If the distance between the agent and the
target is under rtrep, then the agents will be pushed away from the
target.

vrep
itarget =

{
prep

t (rtrep − rit ) · rit if (rit < rtrep )
0 otherwise

(4)

Similarly, rit = |ri − rt| is the distance between agents i and the
target. prep

t is the linear coefficient of the repulsion velocity be-
tween the agent and the targets. rit represents the repulsion di-
rection acting on agent i from the target. Each agent needs to cal-
culate the repulsion velocity term for all targets.

To obtain aggregated repulsion, we take the vectorial sum of
the interaction terms of repulsion introduced in equations (3) and
(4):

vrep
i =

∑
j �=i

vrep
ij +

∑
target

vrep
itarget . (5)

2.3. Interaction with walls and obstacles
In some practical applications, the task of entrapping targets by
agents needs to be carried out within a certain area. In this study,

the flocking motion mechanism of the AGENT method consid-
ers the constraints of boundary (Yates et al., 2009; Tarcai et al.,
2011) and obstacles of the arena. The targets and agents move
in a square arena with walls and obstacles. To better avoid colli-
sions with the walls, it is assumed that there are virtual agents
distributed on the boundary of walls and obstacles. The virtual
agent is located at the point closest to the agent on the boundary
of the wall or obstacle (Han et al., 2006).

vwall
id =

{
0 if (rid >= rwall )
Cd · (

vid − D
(
rid − rwall , ad, pd

)) · vid otherwise
, (6)

where Cd is the velocity coefficient, and rwall is the safe distance
from the agents to the wall; rd represents the absolute position
of agent i’s closest point on the boundary of the wall or obsta-
cle (virtual agent’s position). rid = |ri − rd| is the distance between
agents i and the closest point on the boundary of the wall or ob-
stacle (virtual agent’s position). ad and pd are same as at and pt in
equation (2) but for avoiding collisions with walls. vid = |vi − vd| .
vd is virtual agent’s velocity that is perpendicular to the wall edge
pointing inwards in the arena. vid (vid = vi−vd

vid
) represents the unit

direction vector of the agent’s obstacle avoidance direction that is
calculated from the vector difference between virtual agent and
agent velocities.

Walls and obstacles are treated similarly in agents’ obstacle
avoidance. Agents can use the same method to avoid obstacles
or walls while entrapping the targets; that is, for each agent and
obstacle, the velocity component vobs

id can be defined similarly to
equation (6). Parameters such as the minimum distance between
the expected agent and the wall rwall can be modified according to
the actual needs to be applied to obstacles (robs ).

2.4. Revolution
In military applications, while the agents emerge the basic entrap-
ping effect on the target, if they can further orbit the target, a
better entrapping performance can be achieved. Take the UAVs
entrapping the target as an example, if the target suddenly hov-
ers in the air, both the UAVs and the target will hover and thus
remain relatively stationary. However, this will cause the UAVs to
lose its initial speed, which is not conducive to entrapping task
(considering that the target suddenly changes from static to ac-
celerated escape movement at this time). In addition, when the
UAVs revolve around the target, it is similar to patrolling while
executing the entrapping task. This can make more efficient use
of their installed sensors (for example, it can make the cameras
have a wider field of vision), facilitating UAVs to find other targets
and take rapid countermeasures. In equation (7), vtan represents
the normal vector of the difference between the agent and the
target position vector. vr is the magnitude of revolution velocity
expected for the agent.

vrevolve
i = vr · vtan (7)

2.5. Final equation of desired velocity
The speed controller needs to consider both of these possible ef-
fects, so the above velocity influence items need to be superim-
posed here. The desired velocity calculated by the algorithm is

vdesire
i = vrep

i + vit + vwall
id + vobs

id . (8)

To make the method closer to the actual application, a velocity
limit term vlimit is introduced. If the obtained velocity term is over
the limit, its magnitude is reduced without changing the velocity
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Figure 1: Process of agents entrapping the target in different scenes. (a) Scene 1. (b) Scene 2. (c) Scene 3.

Figure 2: Process of agents entrapping two targets with GRN. (a) t = 0 s; (b) t = 14 s; (c) t = 240 s; and (d) t = 266 s.

Figure 3: Process of agents entrapping two targets with our method. (a) t = 0 s; (b) t = 14 s; (c) t = 240 s; and (d) t = 266 s.

Table 1: Parameter setting of the AGENT model in simulation
experiment.

Parameter a b Ct Rentrap at pt prep
a rarep

Value 0.22 3.2 2.6 8 5 4 2.55 18
Parameter prep

t rtrep Cd vd ad pd rwall robs

Value 3.4 18 3.2 13.6 4 5 1.5 1.5

direction.

vdesire
i = vdesire

i∣∣vdesire
i

∣∣ · min
{∣∣∣vdesire

i

∣∣∣ , vlimit

}
(9)

3. Adaptive Decision Making
During an entrapping mission that encounters multiple targets
with equal significance, it is preferred that the agents are grouped
evenly to encircle each target. In distributed systems, agents need
to make decisions to surround corresponding targets, and the phe-
nomenon of entrapping appears at the swarm level (van Veen et
al., 2020). In the AGENT method, the problem of target grouping is
transformed into the problem of agents selecting targets accord-
ing to environmental factors.

In the task of entrapping multiple targets, the environmental
factors to be considered include the number of agents surround-
ing the target and the relative distance between the agent and the
target. If the agent is too far from the target A relative to the other
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Figure 4: Number statistics of agents entrapping two targets. This is the statistical result of six simulation experiments (240 steps in every simulation
experiment) with twelve agents and two targets in the same arena. Ideally, six agents should be assigned to each target. The figure shows the number
of agents around the two targets at different sampling moments with the GRN and our AGENT method.

Figure 5: Statistics of the distribution of agents around the target. Twelve robots and two targets moved 1000 steps in the arena using the GRN and our
method. We divided a certain size (radius = 32 m) circle of each target into six uniform fan-shaped areas, and counted the distribution of agents in the
fan-shaped area with a sampling interval of one step.

targets, or there are already enough agents surrounding the tar-
get A, the agent should not choose target A but should choose the
other targets to entrap; consequently, the agent no longer needs
to entrap the target. That is to say, the agent usually needs to com-
bine these two factors including the distance from the target and
the number of agents surrounding the target in entrapping scenes.
Thus, agents should be endowed with the following mechanisms:

The agents calculate their distance from various targets in real
time and detect the number of agents surrounding each target.
All agents calculate the Seq matrix, as shown in equation (10). In
this manner, agents make decisions to divide themselves into dif-
ferent groups to entrap different targets autonomously. The corre-
lation factor is considered on the right-hand side of the equation,
including the distances from the agent to each target ritn and the
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Figure 6: Time for agents to entrap one target and all targets for the first
time. Twelve robots entrap two targets in the 250 m ∗ 250 m arena, using
GRN and our method. The figure shows the time of agents occupying all
fan-shaped areas around one target and all targets.

number of agents surrounding each target Nitn in real time.

(Seq1 Seq2 . . . Seqn ) = (a b) ·
(

rit1 rit2 . . . ritn

Nit1 Nit2 . . . Nitn

)
, (10)

where (a, b) is the weight matrix that represents the importance of
the two factors in the matrix. We can obtain a matrix representing
the target entrapping sequences for each agent. Each agent only
needs to entrap the target corresponding to the element sequence
with the smallest Seq value in the Seq matrix. Furthermore, the Seq
matrix is updated in time by each agent. Thus, agents make more
suitable decisions for efficient entrapping.

We can continue to increase the parameters and correspond-
ing weights to meet the actual needs such that different targets
have different importance; c represents the weight of target’s im-
portance. For example, in equation (11), Pitn represents the differ-
ent encirclement priorities of different targets. In this manner, the
grouping algorithm in the AGENT method can be flexibly applied
to a variety of scenes.

(Seq1 Seq2 . . . Seqn ) = (a b . . . c) ·

⎛
⎜⎜⎜⎝

rit1 rit2 . . . ritn

Nit1 Nit2 . . . Nitn

. . . . . . . . . . . .

Pit1 Pit2 . . . Pitn

⎞
⎟⎟⎟⎠ (11)

As the decision-making framework shows, the factors and the
weight of each factor that we need to consider in decision making
can be increased according to the actual situation. This parame-
ter matrix can be considered as the weight matrix of neural net-
work. If there are many factors to consider, the method of deep
neural network can be considered, which is just like classifying
pictures according to pixel values. The dimensions of the weight
matrix can be adjusted according to actual conditions. Therefore,
the framework exhibits good migration and scalability. All the al-
gorithms of the AGENT system have been introduced, with their
pseudo-codes provided in Algorithm 1.

4. Simulation Experiment and Analysis
4.1. Simulation experiments
In this section, the performance of the proposed AGENT method
is evaluated using simulation cases based on MATLAB. To demon-
strate the validity and robustness of the AGENT method, we set

Algorithm 1 Agent’s adaptive decision on target selection and
generation of target entrapping effect: pseudo-codes in AGENT system

Require: The agent in swarm can obtain the position of agents in the
swarm and the position of targets. The target is selected by the other
agents in the swarm through communication or vision; the number of
targets is n.
1: Initialize the environment parameters, including agent position,
target position, obstacle position, etc.
2: while (1) do
3: for t do = 1 to n
4: Calculate the Seq value recording the distance of agent i from the
target t, the number of agents that select the target t as goal.
5: end for
6: Agent i sorts the Seq values of each target and selects the target with
the smallest Seq value as its target.
7: Calculate the distance (rij) between agent i and its neighbors in the
swarm.
8: Calculate the number of agents (k) within rarep distance of agent i.
9: for j do = 1 to k
10: Calculate the repulsive influence velocity vrep

i j caused by neighboring
agent j to agent i.
11: end for
12: Calculate the vector sum of the repulsive influence velocity of agent i
from the above k neighbor agents.
13: Calculate the distance (rit) between the agent i and targets.
14: Calculate the number of targets (g) within rtrep distance of agent i.
15: for o do = 1 to g
16: Calculate the repulsive influence velocity vrep

itarget caused by target o to
agent i.
17: end for
18: Calculate the vector sum of the repulsive influence velocity of agent i
from the above g targets.
19: Based on its distance from the chosen target, agent i generates the
velocity vit of approaching the target and keeps a distance from its
target Rentrap when it is too close.
20: Calculate the distance (rid) between the agent i and the obstacle or
boundary that the agent i needs to avoid to move within.
21: Based on the distance between agent i and the nearest obstacle or
boundary, the velocity of agent i to avoid the obstacle or boundary is
calculated (vwall

id and vobs
id ).

22: if The AGENT system enables the agent to orbit the target
then
23: Agent i calculates the velocity of revolution vrevolve

i based on its
position and its target position.
24: else
25: vrevolve

i = 0.
26: end if
27: Agent i superimposes the above velocity influence terms on vdesire

i . If
the velocity amplitude exceeds vlimit, then the velocity amplitude is set
to the maximum velocity vlimit of the agent without changing the
velocity direction.
28: end while

different complex obstacles in a square scene, as shown in Fig. 1a,
b, and c. The simulation experiment arena (250 m ∗ 250 m) was
as follows: There were some agents in blue color and a target in
orange color. The mission of the agents was to entrap the target
and not crash into other agents, obstacles, or walls. The agents
obtained the position information of each other through commu-
nication and detected the positions of obstacles and targets. The
velocity of the target was 2.6 m/step and the velocity of the agents
was 0–4 m/step. The trajectories of the target and agents are de-
picted in Fig. 1 along with pictures of the key moments when
agents entrapped the target.
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Figure 7: Average distance for agents to entrap all targets for the first time. Twelve robots entrap two targets in the 250 m ∗ 250 m arena, using GRN
and our method. The figure shows the distance of agents occupying all fan-shaped areas around all targets.

Figure 8: Agents’ minimum distance of entrapping process. Twelve
robots entrap two targets in the 250 m ∗ 250 m arena, with GRN and our
AGENT method. The figure shows the minimum distance of the agents
during the 1000 steps.

In various complex obstacle scenes, agents can flexibly avoid
obstacles and other agents, even in very narrow spaces (the space
where agents are located has large obstacles or agents are very
close to the obstacles). It can be seen from the trajectories of the
agents that they avoid collision with obstacles in the arena dur-
ing the entire entrapping process. Regardless of how the target
changes direction, the agents can entrap the target with good per-
formance.

To further demonstrate the adaptive decision ability of the
AGENT method, we designed multiple target entrapping scenes,
in which targets wandered in the arena. To make the agents and
targets to move in a more realistic way, we used the Lévy flight
model for target movement. The Lévy distribution is a probabil-
ity distribution proposed by French mathematician Lévy in the
1930s (Viswanathan et al., 2000), which is a random search path
that obeys the Lévy distribution. This is a random walking mode
that alternates between short- and long-distance searches, which
conforms to the behavior trajectories of many natural creatures,
such as bees and albatross.

The simulation experiment scene was as follows: There were
red and green targets in the scene (250 m ∗ 250 m). The velocity
of the target was 2.6 m/step, and the velocity of the agents was 0–
4 m/step. The agent changed its color as it approached the target.
The GRN method is famous for entrapping targets, which consists
of two layers: the upper layer is for adaptive pattern generation,
which is evolved by basic network motifs with genes and environ-
mental inputs, and can generate a suitable pattern for entrapping
the targets. The lower layer drives the robots to the target pat-
tern generated by the upper layer. Fan et al., 2019 further improved

the upper layer of GRN, in which genetic programming was used
to automatically generate the optimal GRN upper layer according
to the scene, and the experiments proved that the upper layer of
GRN automatically optimized by genetic programming had bet-
ter performance than the upper layer of GRN designed by human
experts. To prove the superiority of our method, the AGENT and
GRN methods are compared experimentally in Figs. 2 and 3. The
simulation renderings of the agents entrapping two targets in the
same scene are provided in the following figures and the video of
the simulation experiments (its link is provided in the appendix).
Also, the parameters involved in the AGENT model are listed in
Table 1.

By comparing the pictures, both methods developed a forma-
tion that surrounded two targets to a certain extent. However, un-
der the AGENT method, the number of agents was more uniform
for entrapping each target in the arena, and the distribution of
the agents’ positions was more even, which demonstrates that the
AGENT method was more capable of dealing with multiple targets
than the GRN method in entrapping multiple targets.

4.2. Scalability analysis
To quantize the entrapping effect, we designed statistical indica-
tors for the experiments. This study calculates the corresponding
entrapping indicators in experiments to compare the entrapping
effects of the two methods. First, we expect that the position dis-
tribution of the agents around the target should be as even as pos-
sible. In other words, the agents should not be too crowded in one
direction of the target but should disperse as evenly as possible
around the target. We define the occupancy rate of the encircling
circle as the uniformity of the agent position around the target to
evaluate the effect of entrapping. Then, in the mission of entrap-
ping multiple targets in a swarm, we expect agents to be evenly di-
vided into groups when the importance of the goal is the same. In
this manner, multiple targets will be entrapped in an optimal way.
In addition, the agents should entrap the target as soon as possi-
ble and with less traveled distance. Therefore, we calculate the
response time and distance covered by the agents in entrapping
targets. In addition, considering that the agents flock to perform
tasks, we measured the minimum distance between the agents
in the process of entrapping to measure the safety level of the
two methods. Lastly, in practical applications, the motion of the
swarm should be as stable as possible when performing tasks, to
avoid frequently and suddenly changing directions. To meet the
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Figure 9: Velocity correlation of agents in the GRN method at continuous time (step).

Figure 10: Velocity correlation of agents in the AGENT method at continuous time (step).

Table 2: Statistics of the time taken by robots to entrap two targets
in six real-world experiments.

Experiments 1st 2nd 3rd 4th 5th 6th

Entrap one target 35 s 47 s 30 s 67 s 34 s 57 s
Entrap all targets 64 s 52 s 46 s 72 s 59 s 67 s

requirements of practical applications, we calculated the contin-
uous velocity correlation of the agents in the entrapping process.

According to the above principles, six statistical indicators
for evaluating the effectiveness of entrapping were designed as
follows:

1. The number of agents entrapping each target.
2. The uniformity of the agents’ positions around the target.
3. Time for agents to entrap the first target and all targets.
4. The average distance covered by agents to entrap all targets

for the first time.
5. The minimum distance of agents during the entrapping pro-

cess.
6. Velocity correlation of each agent’s movement during the

entrapping process.

We compare the AGENT and GRN methods using the above
indicators. The statistical results are shown in Figs. 4–10. If six
agents are assigned to each target, it is an ideal situation for the
index of the uniformity of the number of agents entrapping the
target. However, it is not an easy task for the agents to achieve
that. The two targets wandered on the map with steps conform-
ing to the Lévy distribution. If the agents’ movements are not suf-
ficiently flexible, they may not be able to form a timely, tight, and
even encirclement of the dynamically moving targets over time.
In the case of the same moving trajectory of targets, we calcu-
lated the indicator statistics of the methods in comparison on the
implementation of the entrapping mission. First, we compare the
number of agents allocated to each target by the AGENT and GRN
methods. From Fig. 4, the AGENT method we propose has better

decision-making ability when entrapping multiple targets; that is,
grouping is more even in numbers.

We then calculated the distribution of agents within a cer-
tain range in six directions around the target as the index of
uniformity of the agents’ positions around the target. In par-
ticular, an imaginary circle with the location of the target as
the origin is setup with a predefined radius of 3.2 m in this
study. We then divided this circle evenly into six sectors. To
test whether the agents entrapped its target successfully, we
counted the number of sectors with agents appearing in these
sectors in each time step. From Fig. 5, in the AGENT method, the
agents are more evenly distributed in the sectors, which shows
that in this indicator the AGENT method is superior to the GRN
method.

In this study, we assume that if the encirclement occupancy of
the target is 6/6, then that means in each of the six sectors some
agents appear to form the entrapment pattern, indicating that the
target is successfully encircled. In a real entrap task, agents also
need to achieve a uniform entrapping effect as quickly as possible.
Therefore, this study counts the time that the agent first entered
all the fan-shaped areas around the first target and all targets in
Fig. 6. In addition, this study calculates the average distance of
agents’ first entrance in all fan-shaped areas around all targets,
as shown in Fig. 7. It can be regarded as the average distance for
agents entrapping all targets.

With the goal of providing more safety of practical applications
of agents flocking to performing entrapping tasks, this study cal-
culates some evaluation indicators related to the motion of flock-
ing. First, we do not expect the distance between agents to become
too small, which would be dangerous for agents while flocking in
the real world. The average minimum distance was calculated as
shown in Fig. 8. The agents should also make reasonable decisions
to minimize sudden changes in the velocity direction, which jeop-
ardizes the security of real-machine applications. The statistics
are shown in Figs. 9 and 10, respectively. The formula for calculat-
ing the velocity correlation is as follows:

φcorr = vi · vi−1

|vi|
∣∣vi−1

∣∣ ,
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Figure 11: Real-world experiments of agents entrapping two targets (scene 1). Ten E-puck2 robots entrap two targets in a 3 m ∗ 3 m arena. (a) t = 0 s;
(b) t = 28 s; (c) t = 60 s; and (d) t = 132 s.

Figure 12: Real-world experiments of agents entrapping two targets (scene 2). Ten E-puck2 robots entrap two targets in a 3 m ∗ 3 m arena. (a) t = 0 s;
(b) t = 35 s; (c) t = 67 s; and (d) t = 139 s.

where vi represents the velocity of the agent at time (step) i, and
vi−1 represents the velocity of the agent at the previous time (step)
of vi. As shown in Figs. 9 and 10, the angle between the current
velocity of the agent and the velocity at the previous moment, the
closer φcorr is to 1, and the more stable the velocity direction of the
agent is. Conversely, the closer φcorr is to −1, the more drastically
the velocity direction of the agent changes. We can clearly see that
the agent using our AGENT method could obtain a more stable
velocity direction than the GRN method.

When the agents use two methods to perform the entrap-
ping task in the same scene, the AGENT method can ensure
that the safe distance between agents is stable within an ap-
propriate range, which is better than the GRN method as the

data in Fig. 8 show. The AGENT method with such a perfor-
mance greatly improves the security during the flocking behav-
ior. Furthermore, it can be seen from Fig. 9 that the agents may
have some repeated jumps in the GRN (continuously chang-
ing the velocity direction by a large margin). This phenomenon
is unfavorable for practical applications. It wastes a lot of
movement resources due to decision errors and this move-
ment is also dangerous for robots, especially in swarms. In our
method, this sudden change in velocity direction is reduced (be-
cause the target will suddenly change direction, this behavior
of agents should not be completely eliminated), as shown in
Fig. 10.
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The above six indicators prove the stability and superiority
of the AGENT method from different directions; in general, the
AGENT method developed in this study allows the agent system
to achieve a good group entrapping effect.

5. Real-World Experiments
To perform real-world experiments on the AGENT method, we
chose the E-puck2 robots to perform the entrapping task. In the
arena with random obstacles and targets, 10 E-puck2 robots used
the AGENT method to entrap two targets. The targets moved in
the arena with the Lévy flight algorithm as their step generation
mechanism. E-puck2 robot adopted differential wheel, and used
the speed difference of two wheels to control the robot direction.
The robots in the swarm communicated with each other via WiFi
and obtained global information from the motion-capturing de-
vices above the arena, including the position information of other
robots, obstacles, and the boundary of the arena. The information
was used for the robot to make decisions (regarding which target
to entrap) and to make movement speed adjustments (to achieve
an entrapping effect). If the robots entered all the sectors of the
quintile circle within a certain radius of the target at the same
time, the target was considered to be successfully encircled. We
need to calculate how fast the swarm robot system can entrap
the two targets, i.e., the shortest entrapping time for the swarm
robot system to reach the enveloping circle with an occupancy
rate of 100%. We counted the time (Table 2) taken by the E-puck2
robots to entrap the two targets in six experiments. From the ta-
ble, we can conclude that E-puck2 robots can effectively and ef-
ficiently complete the task in less than 1.5 min. We selected two
representative experiments, as shown in Figs. 11 and 12 (the real-
world experiment video is also provided via the link of the ap-
pendix).

As shown in Figs. 11 and 12, in the case of the scattered dis-
tribution of the robots’ positions, E-puck2 robots can adaptively
group and entrap the targets evenly according to the environmen-
tal conditions, flexibly adjusting the formation to adapt to the en-
vironment, and avoiding to collide with neighbors and obstacles.
Even if the target suddenly changes direction, the agent adaptively
adjusts its speed to catch up with the target to form a tight circle.
The real-world experiment verifies the effectiveness of the AGENT
method.

6. Conclusions
This study proposes an adaptive grouping method to entrap mul-
tiple targets for distributed systems. Using our method, the agent
can make decisions in real time based on environmental infor-
mation, resulting in the effect of an even grouping and entrap-
ping around the targets. The agents can flexibly respond to a sud-
den change in the direction of the target and always adapt to the
change in movement speed to maintain the entrapping formation
of the target. Furthermore, the flocking movement looks smooth
and natural as possible, although environmental factors are com-
plex and changeable. In conclusion, the AGENT method proposed
by this research can be successfully applied and achieves supe-
rior performance in grouping and entrapping multiple targets in
dynamic and complex environments.
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Appendix 1
The experiment videos are as follows:

Simulation experiment with AGENT entrapping system: https:
//www.bilibili.com/video/BV1sa411r72q?spm_id_from = 333.999.
0.0.

Simulation experiment with AGENT entrapping system (intro-
duce revolution mechanism): https://www.bilibili.com/video/BV1
73411J7Zs?spm_id_from = 333.999.0.0.

Real-world experiment with AGENT entrapping system:
Scene 1: https://www.bilibili.com/video/BV1TZ4y197E3?spm_i

d_from = 333.999.0.0.
Scene 2: https://www.bilibili.com/video/BV1XL41177DC?spm_i

d_from = 333.999.0.0.
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