
An Evolutionary Many-Objective Optimization
Algorithm Based on Coverage and Cache Strategy

Haoran Sun
The College of

Computer Science

and Technology

Nanjing University of

Aeronautics and Astronautics,

Nanjing, Jiangsu,

210016 P. R. China

Email: nuaa sunhr@yeah.net

Xinye Cai
The College of

Computer Science

and Technology

Nanjing University of

Aeronautics and Astronautics,

Nanjing, Jiangsu,

210016 P. R. China

Email: xinye@nuaa.edu.cn

Muhammad Sulaman
The College of

Computer Science

and Technology

Nanjing University of

Aeronautics and Astronautics,

Nanjing, Jiangsu,

210016 P. R. China

Email: sulman0909@gmail.com

Zhun Fan
Department of

Electronic Engineering,

School of Engineering,

Shantou University,

Guangdong, P. R. China

Email: zfan@stu.edu.cn

Abstract—How to balance the diversity and convergence plays
an important role on the performance of a multiobjective evolu-
tionary optimizer. Due to the loss of selection pressure and the
exponential expansion in the high-dimensional objective space,
it is even more difficult for an optimizer to balance between
convergence and diversity for a many-objective optimization
problem. To address this issue, in this paper, we propose a cache
mechanism to improve the convergence and a coverage-based
method for maintaining better diversity. Based on these two
mechanisms, a many-objective evolutionary algorithm is further
proposed. The experimental studies are conducted to verify the
effectiveness of the proposed approach.

I. INTRODUCTION

A multiobjective optimization problem (MOP) can be de-

fined as follows:

minimize F (x) = (f1(x), . . . , fm(x))T (1)

subject to x ∈ Ω

where Ω is the decision space, F : Ω → Rm consists of m
real-valued objective functions. The attainable objective set is

{F (x)|x ∈ Ω}. Let u, v ∈ Rm, u is said to dominate v, denot-

ed by u ≺ v, if and only if ui ≤ vi for every i ∈ {1, . . . ,m}
and uj < vj for at least one index j ∈ {1, . . . ,m}1. A

solution x∗ ∈ Ω is Pareto-optimal to (1) if there exists no

solution x ∈ Ω such that F (x) dominates F (x∗). The set

of all the Pareto-optimal points is called the Pareto set (PS)

and the set of all the Pareto-optimal objective vectors is the

Pareto front (PF) [1]. A Pareto front approximation apparently

can be very helpful for decision makers to understand the

tradeoff relationship among different objectives and choose

their preferred solutions. Over the past decades, multiobjective

evolutionary algorithms (MOEAs) have been recognized as a

major methodology for approximating the PFs in multiobjec-

tive optimization problems (MOPs) [2]–[4].

In MOEAs, selection is of great importance for the perfor-

mance of MOEAs. Usually, it is desirable to balance between

convergence and diversity for obtaining good approximation

1In the case of maximization, the inequality signs should be reversed.

to the set of Pareto optimal solutions [5]. Convergence can be

measured as the distance of solutions towards the PF, which

should be as small as possible. Diversity can be measured

as the spread of solutions along the PF, which should be as

uniform as possible.

It is usually even more difficult for a MOEA to address

many-objective optimization problems (MaOPs), i.e., MOPs

with more than three objectives, which are very common in the

real-world applications. For dominance-based MOEAs [3], [6],

it becomes increasingly difficult to keep the selection pressure

of nondominated solutions in the high-dimensional objective

space, which makes them ineffective, in terms of maintaining

the convergence. In addition, the density estimation of the

population in MaOPs also becomes more difficult for the

diversity maintenance.

In this paper, we propose a many-objective evolutionary

algorithm based on coverage and cache strategy (MaOEA-CC).

In MaOEA-CC, the density of a solution in the population is

evaluated by the number of reference vectors covered by it and

the convergence is further improved by a cache strategy. The

rest of this paper is organized as follows. Section II elaborates

the MaOEA-CC. In Section III, the systematic experiments are

conducted to verify the effectiveness of MaOEA-CC. Finally,

Section IV concludes this paper.

II. MAOEA-CC

In this section, we firstly introduce the method to evaluate

the diversity and improve the convergence, which is the main

contributions of this paper. Then, these two methods are

embedded in a dominance-based MOEA.

A. Density estimation based on coverage

It is well-known that a set of uniformly distributed reference

vectors can divide the objective space into subregion [7], [8].

Given a solution set S, to evaluate the diversity of these

solutions, a set of uniformly distributed reference vectors V
(|V | = |S|) are firstly generated by the method in [9] or [10].

Then, each reference vector in V finds its nearest solution.

2017 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information

Integration

978-1-5386-2434-0/17 $31.00 © 2017 IEEE

DOI 10.1109/ICIICII.2017.82

108

f1

f2

Better solution

Worse solution

O

Fig. 1: An illustration of diversity evaluation by coverage

method.

If the nearest solution of a reference vector λ is s, we say

that s covers λ. In this case, one solution can cover different

number of reference vectors and one reference vector can

only have one nearest solution. If a solution covers more than

one reference vectors, it must be located in a sparse region.

The number of reference vectors covered by a solution is

called coverage of the solution. For instance, in Fig. 1, the

solution s4 is a good solution because it covers two reference

vectors while s6 is considered as a bad solution as it covers

no reference vectors, in terms of diversity.

The pseudocode of set coverage for solutions in S is given

by the Algorithm. 1. Each reference vector λi finds its closest

solution sim, where im is the index of the closest solution.

The coverage of solution sim, denoted by cim, is incremented

by one accordingly. The closeness between a reference vector

λi and solution sj is represented by the angle between them,

which is defined as follows:

angle(λi, F (sj)) = arccos(
(λi)T · (F (sj)− z∗)
‖λi‖‖F (sj)− z∗‖) (2)

where z∗ = (z∗1 , z
∗
2 , ..., z

∗
m)T is the ideal objective vector with

z∗i = minx∈Ω fi(x), i = {1, 2, ...,m}.

B. Improving convergence based on cache strategy

In the previous dominance-based MOEAs, to select a solu-

tion set S (size of N) from a merged solution set U (|U | > N),

the Pareto dominance is used as the first selection criterion and

diversity maintenance mechanism is applied as the secondary

selection criterion. The unselected solutions in U (denoted

by C = U \ S) are discarded. As the selection pressure

of Pareto dominance becomes increasingly weak in MaOPs,

the secondary diversity maintenance mechanism becomes the

major selection operator. Under this circumstance, solutions

that have much better convergence and slightly worse diversity

are very likely to be discarded. A simple cache strategy is

adopted to avoid this issue, where the solutions is saved in

an archive (cache set) C, instead of discarding directly. Given

a solution set S and a cache set C, the procedure of cache

strategy can be described as Algorithm 2.

Algorithm 1: Set Coverage (SETCOVERAGE)

Input:
• Solution set S :

{
s1, s2, . . . , sN

}

• Reference vectors V :
{
λ1, λ2, . . . , λM

}
.

Output: c.
1 Initialize c : (c1, c2, . . . , cN)T , and each ci = 0;

2 for i = 1 to M do
3 im =∞, θm =∞;

4 foreach sj ∈ S do
5 θj = angle(sj , λi);
6 if θj < θm then
7 im = j;

8 θm = θj ;

9 end
10 end
11 cim = cim + 1;

12 end
13 return c;

At first, the norm and radian functions should be defined.

In Algorithm 2, the norm of a solution s is defined as the

norm from the function vector of s to ideal point which can

be formulated as follows:

norm(s) = ‖F (s)− z∗‖ (3)

The radian between two solutions, si and sj , is defined as

follows accordingly:

radian(si, sj) = min{norm(si), norm(sj)} × angle(si, sj)
(4)

For each solution sci in C, its nearest solution sm in S is

found firstly. Then, if norm(sci) is less than norm(sm) and

the difference value of them is larger than the radian of sm

and sci, then sm is replaced by sci. In fact, norm(sci) <
norm(sm) means that the convergence of sci is better than

sm; |norm(sm) − norm(sci)| > radian(sm, sci) means the

improvement of convergence is larger than the degeneration

of diversity; thus we use sci to replace sm.

Algorithm 2: Cache strategy (CACHE)

Input:
• S : The current population.

• C : The cache population.

Output: S : The updated population.

1 foreach sci ∈ C do
// find the nearest solution in S

2 sm = argminsm∈S angle(sm, sci);
3 if norm(sci) < norm(sm)∧
4 |norm(sm)− norm(sci)| > radian(sm, sci) then
5 sm = sci;
6 end
7 end
8 return S;

109

C. The framework of MaOEA-CC

In this section, the coverage-based diversity maintenance

mechanism and cache strategy are integrated into a dominance-

based MOEA framework, to address MaOPs. The framework

of MaOEA-CC is the same as the classical MOEA NSGA-

II [3], which is described as follows. A population S is

initialized randomly and then the reproduction and selection

methods are applied iteratively until the stop criterion is

fulfilled. In MaOEA-CC, SBX crossover [11] and polynomial

mutation [12] are used to generate new solutions.

Algorithm 3: Selection procedure (SELECTION)

Input:
• U : The merged population;

• V : The reference vector set;

Output: S: The elite population.

1 (F1, F2, ...) = NONDOMINATED-RANKING(U) ;

2 S = Φ, i = 1;

3 while |S|+ |Fi| ≤ N do
4 S = S ∪ Fi and i = i+ 1 ;

5 end
6 if |S| = N then
7 return S ;

8 end
9 Fl = Fi;

10 c = SETCOVERAGE(S ∪ Fl ,V) ;

/* Descending sort Fl according to c
values. SFi is the set in which the
solution have the same c. */

11 (SF1, SF2, ...) = SORTING(Fl);

12 i = 1;

13 while |S|+ |SFi| ≤ N do
14 S = S ∪ SFi and i = i+ 1 ;

15 end
16 SFl = SFi;

17 if |S| < N then
18 S = ANGLESELECTION(S, SFl);

19 end
20 S = CACHE(S ,Fl \ S) ;

21 return S;

The main different from NSGA-II is selection procedure

which is shown in Algorithm 3. the fast non-dominated

sorting [3] is applied firstly to divide the merged population

U into a number of fronts {F1, F2, . . . }. For each solution

y in Fj , a solution x in Fi is found which dominates y if

i < j. All the solutions in the same front are nondominated to

each other. Each non-dominated front Fi, starting from F1, is

selected one by one to form the offspring population S until

|S| + |Fl| > N . All the solutions in the last front Fl are not

able to be added to S completely; instead, N − |S| solutions

are selected from Fl and added to S.

To select solutions from Fl, the coverage for each solution

is calculated by calling the Algorithm 1. Then, the solutions in

Fl are sorted based on their coverage values in a descending

TABLE I: The population size of different objective problems

of objectives 3 5 8 10

population size 300 210 156 275

order. It should be noted that some of the solutions may have

the same coverage values. So all the solutions in Fl are divided

into a group of solution sets (SF1, SF2, ...) according to their

coverage values. All the solutions in a SFi have the same

coverage values and the solutions in front SF have larger

coverage values. After that, solutions from (SF1, SF2, ...) are

added to S until |S|+|SFi| = N . If |S| is less than N , N−|S|
solutions should be selected from the last solution set SFl.

For this purpose, we use the angle-based-selection, which

is used in [13]. For the i-th solution in SF , the θi is used

to record the minimal angle to its nearest solution in S. The

solution with maximal θ is added to S and deleted from SF
one by one until the population size of S reaches N .

If the angle between each solution in SF and the newly

added solution x is less than its previous θ, then the θ is

updated by the new angle value.

After the above procedures, the new offspring population

S contains N individuals. Furthermore, to maintain better

convergence, some solutions from Fl \ S is used to replace

the solutions in S based on cache strategy, by calling the

Algorithm 2.

III. EXPERIMENTAL RESULTS

Two widely used test suites, DTLZ [14] and WFG [15], are

used for our empirical studies. The number of objectives are

set to 3,5,8 and 10. The population size for different problems

are given in Table I.

Two performance metrics, inverted generational distance

(IGD) [5] and Hypervolume (HV) [16], are used to compare

the performance of the different algorithms.

Three many-objective evolutionary algorithms

(MOEA/D [4], NSGA-III [10] and MOEA/DD [7]) are

used to compare with MaOEA-CC. For all the four compared

MOEAs, the crossover probability pc is set to 1 and the

distribution index ηc is set to 30; the mutation probability

pm is set to 1/l, where l is the number of decision variables

and its distribution index ηm is set to 20. In MOEA/D and

MOEA/DD, the neighborhood size T is set to 20, and the

penalty parameter θ for PBI is set to 5. The neighborhood

selection probability for MOEA/DD is set to 0.9. Each test

instance is run 30 times independently and the maximum

number of generations is set to 1000.

IGD is used to evaluate the performance of all the compared

algorithms on DTLZ test suite while HV is used for WFG test

suite, whose true PFs are unknown. 2

The final ranking according to IGD or HV of all the DTLZ

and WFG problems obtained by four algorithms are plotted in

Fig. 2. The problem DTLZ1-3 means the 3 objective DTLZ1.

2The reference points of HV are set as (3, 5, ..., 2m + 1)T , where m is
the number of objectives.

110

0

1

2

3

4

5
D
T
LZ

1
-3

D
T
LZ

1
-5

D
T
LZ

1
-8

D
T
LZ

1
-1
0

D
T
LZ

2
-3

D
T
LZ

2
-5

D
T
LZ

2
-8

D
T
LZ

2
-1
0

D
T
LZ

3
-3

D
T
LZ

3
-5

D
T
LZ

3
-8

D
T
LZ

3
-1
0

D
T
LZ

4
-3

D
T
LZ

4
-5

D
T
LZ

4
-8

D
T
LZ

4
-1
0

D
T
LZ

5
-3

D
T
LZ

5
-5

D
T
LZ

5
-8

D
T
LZ

5
-1
0

D
T
LZ

6
-3

D
T
LZ

6
-5

D
T
LZ

6
-8

D
T
LZ

6
-1
0

D
T
LZ

7
-3

D
T
LZ

7
-5

D
T
LZ

7
-8

D
T
LZ

7
-1
0

W
FG

1
-3

W
FG

1
-5

W
FG

1
-8

W
FG

1
-1
0

W
FG

2
-3

W
FG

2
-5

W
FG

2
-8

W
FG

2
-1
0

W
FG

3
-3

W
FG

3
-5

W
FG

3
-8

W
FG

3
-1
0

W
FG

4
-3

W
FG

4
-5

W
FG

4
-8

W
FG

4
-1
0

W
FG

5
-3

W
FG

5
-5

W
FG

5
-8

W
FG

5
-1
0

W
FG

6
-3

W
FG

6
-5

W
FG

6
-8

W
FG

6
-1
0

W
FG

7
-3

W
FG

7
-5

W
FG

7
-8

W
FG

7
-1
0

W
FG

8
-3

W
FG

8
-5

W
FG

8
-8

W
FG

8
-1
0

W
FG

9
-3

W
FG

9
-5

W
FG

9
-8

W
FG

9
-1
0

MOEA/D MOEA/DD NSGA-III MaOEA-CC

Fig. 2: The ranking of all the DTLZ and WFG problems with different number of objective obtained by 4 algorithms.

It can be seen that MaOEA-CC has the better comprehensive

performance. The mean rankings of MOEA/D, MOEA/DD,

NSGA-III and MaOEA-CC are 3.1, 2.5 2.4 and 1.9, respec-

tively.

IV. CONCLUSION

In this paper, we propose an evolutionary many-objective

optimization algorithm based on coverage and cache strat-

egy (MaOEA-CC). The cache strategy method is used to

improve the convergence by archiving solutions with much

better convergence and slightly worse diversity; while the

coverage-based method helps maintain better diversity. The

experimental results show that the MaOEA-CC has better

overall performance than other three state-of-the-art MaOEAs.

ACKNOWLEDGMENT

This work was supported in part by the National Program

on Key Basic Research Project (973 Program) under grant

744901, by the National Natural Science Foundation of China

(NSFC) under grant 61300159, 61175073 and 61473241, by

the Natural Science Foundation of Jiangsu Province under

grant BK20130808, by China Postdoctoral Science Foundation

under grant 2015M571751 and by the Fundamental Research

Funds for the Central Universities of China under grant

NZ2013306.

REFERENCES

[1] K. Miettinen, Nonlinear Multiobjective Optimization. Boston: Kluwer
Academic Publishers, 1999.

[2] H. Li and D. Landa-Silva, “An adaptive evolutionary multi-objective
approach based on simulated annealing,” Evolutionary Computation,
vol. 19, pp. 561–595, 2011.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA–II,” IEEE Transactions on
Evolutionary Computation, vol. 6, pp. 182–197, April 2002.

[4] Q. Zhang and H. Li, “MOEA/D: A Multiobjective Evolutionary Algo-
rithm Based on Decomposition,” IEEE Transactions on Evolutionary
Computation, vol. 11, pp. 712–731, December 2007.

[5] P. A. Bosman and D. Thierens, “The Balance Between Proximity and
Diversity in Multiobjective Evolutionary Algorithms,” IEEE Transac-
tions on Evolutionary Computation, vol. 7, pp. 174–188, April 2003.

[6] S. Yang, M. Li, X. Liu, and J. Zheng, “A grid-based evolutionary
algorithm for many-objective optimization,” Evolutionary Computation,
IEEE Transactions on, vol. 17, no. 5, pp. 721–736, 2013.

[7] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many-
objective optimization algorithm based on dominance and decomposi-
tion,” Evolutionary Computation, IEEE Transactions on, vol. 19, no. 5,
pp. 694–716, 2015.

[8] H. L. Liu and X. Li, “The multiobjective evolutionary algorithm based
on determined weight and sub-regional search,” in Eleventh Conference
on Congress on Evolutionary Computation, pp. 1928–1934, 2009.

[9] I. Das and J. E. Dennis, “Normal-boundary intersection: A new method
for generating the pareto surface in nonlinear multicriteria optimization
problems,” SIAM Journal on Optimization, vol. 8, no. 3, pp. 631–657,
1998.

[10] K. Deb and H. Jain, “An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, part
i: Solving problems with box constraints,” Evolutionary Computation,
IEEE Transactions on, vol. 18, no. 4, pp. 577–601, 2014.

[11] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex Systems, vol. 9, no. 3, pp. 115–148, 2010.

[12] K. Deb and M. Goyal, “A combined genetic adaptive search (geneas)
for engineering design,” pp. 30–45, 1996.

[13] X. Cai, Z. Yang, Z. Fan, and Q. Zhang, “Decomposition-based-sorting
and angle-based-selection for evolutionary multiobjective and many-
objective optimization.,” IEEE Transactions on Cybernetics, vol. PP,
no. 99, pp. 1–14, 2016.

[14] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable Test Prob-
lems for Evolutionary Multiobjective Optimization,” in Evolutionary
Multiobjective Optimization. Theoretical Advances and Applications
(A. Abraham, L. Jain, and R. Goldberg, eds.), pp. 105–145, USA:
Springer, 2005.

[15] S. Huband, P. Hingston, L. Barone, and L. While, “A review of multiob-
jective test problems and a scalable test problem toolkit.,” Evolutionary
Computation IEEE Transactions on, vol. 10, no. 5, pp. 477–506, 2006.

[16] E. Zitzler and L. Thiele, “Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach,” IEEE
Transactions on Evolutionary Computation, vol. 3, pp. 257–271, Novem-
ber 1999.

111

