
A Problem Solving Environment for Combinatorial Optimization Based

on Parallel Meta-heuristics

Rong Huang, Shurong Tong, Weihua Sheng, Zhun Fan

Abstract— Computational grid offers a great potential so-
lution to parallel meta-heuristics toward combinatorial opti-
mization. However, it is quite difficult for specialists in com-
binatorial optimization to develop parallel meta-heuristics in
extremely heterogeneous computational environment, starting
from scratch without any toolkit. This paper presents a Problem
Solving Environment for Combinatorial Optimization Based
on Parallel Meta-heuristics (PSEPMH) to help specialists to
harness heterogeneous computational resources and handle
dynamic granularity control. PSEPMH requires specialist to
decompose one problem into two sub-problems with divide-and-
conquer framework just as generic sequential algorithm. Then
compiler of PSEPMH generates mobile agent code that auto-
matically forms adaptive multi-granularity parallel computing
at runtime by cloning himself and distributing along dynamic,
complex grid environment with the support of PSEPMH. Not
only can PSEPMH relieve specialists’ burden, but also make
use of the computational resources more efficiently.

I. INTRODUCTION

Combinatorial optimization [1] is the problem of finding

the minimum or maximum of an objective function under

some constraints, which is very important because of solving

so many practical problems, such as traveling salesman,

quadratic assignment, job-shop scheduling, etc. But it is

proved that many combinatorial optimization problems are

NP-hard, and it is unlikely able to find the efficient al-

gorithms to obtain a globally optimal solution. Hence, the

various algorithms categorized meta-heuristics [2, 3] such

as Genetic Algorithm, Neural Network, Ant Algorithm, and

Particle Swarm Optimization, etc., have been proposed in

recent years to obtain near optimal solution whose measure is

not too far from the optimum. The meta-heuristics represent

effective and robust search algorithms and achieve good

results in combinatorial optimization. Despite helps from

the meta-heuristics, some large-scale problems still require

a huge amount of computation time. Therefore, parallel

programming techniques have been introduced generally

and naturally to solve this kind of problems to reduce the

processing time needed to reach an acceptable solution. All

those meta-heuristics have something in common. They are

This paper has been supported by National Natural Science Foundation
of China (NSFC) under the Grant 70462066 and Aeronautical Science
Foundation of China under the Grant 03J53073.

Rong Huang is a PhD student at the School of Manage-
ment, Northwestern Polytechnical University, Xi’an 710072, China.
dr.huangrong@163.com

Shurong Tong is with the School of Management, Northwestern Poly-
technical University, Xi’an 710072, China

Weihua Sheng is with the School of Electrical and Computer Engineering,
Oklahoma State University, Stillwater 74074, USA

Zhun Fan is with the Department of Mechanical Engineering, Technical
University of Denmark, Kgs.Lyngby, 2800 Denmark

inspired by nature having inherent parallelism, adaptability

and weak synchronicity requirements. The idea of the ant

system is based on the following observation. A colony of

ants with limited capability is able to succeed in the task that

is to collectively establish the shortest route between a source

of food and their nest. Particle swarm optimization is inspired

by social behavior of bird flocking or fish schooling. Whilst,

Genetic Algorithm follows an intelligent evolution process

for individuals. These algorithms are good candidates for

parallel implementation [4, 5, 6]. Recently, the computational

Grids have been the focus as promising infrastructure for

high performance computing. Computational grids [7, 8, 9]

provide one of the most attractive collaborative environ-

ments for running large compute-intensive applications by

integrating geographically distributed, heterogeneous and in-

expensive computational resources to work together in ways

that were previously impossible. This paves the new way

for parallel meta-heuristics to solve large-scale combinatorial

optimization problems. However, It is extremely difficult for

specialists of combinatorial optimization to develop parallel

meta-heuristics in such high degree of heterogeneity Grid,

starting from scratch without any tools kit. In this paper, we

propose the Problem Solving Environment for Combinato-

rial Optimization Based on Parallel Meta-heuristics Toward

(PSEPMH) which defines a set of appropriately layered ab-

stractions and associated libraries, so irrelevant complexities

are hidden from user, which allows specialists to concentrate

on designing meta-heuristics, without having to become

experts in computer science issues, such as networks, parallel

computing or computational grid. The remainder of paper is

organized as follows: Section 2 gives an explanation that

the properties of mobile agent are naturally suitable for

parallel computing and addresses how to form adaptive multi

granularity parallel computing for meta-heuristics by cloning

mobile agent. Section 3 presents architecture of PSEPMH.

Finally, section 4 summarizes the paper.

II. MOBILE AGENT AND ADAPTIVE

MULTI-GRANULARITY CONTROL ON GRID

A computational grid is a hardware and software infras-

tructure that provides dependable, consistent, pervasive, and

inexpensive access to high-end computational capabilities,

which distinguishes from conventional distributed computing

by its focus on large-scale resource sharing and problem

solving in dynamic, multi-institutional virtual organizations

without considering the physical arrangement of computing

resources. With the help of unprecedented computational

power provided by computational grid, more efficient algo-

Proceedings of the 2007 IEEE International Symposium on
Computational Intelligence in Robotics and Automation
Jacksonville, FL, USA, June 20-23, 2007

FrCT1.4

1-4244-0790-7/07/$20.00 ©2007 IEEE. 432

rithms resolving large-scale combinatorial optimization can

be potentially developed. Most of programs for combinatorial

optimization have experimental character, that is, they always

adjust parameters and code in order to try if they can get

better performance or change the data for different problems.

Nevertheless, in grid environment computing sources belong

to different virtual organizations and scale is very large, so it

is not realistic to let all members download the latest version

of program and data, and manually update their own comput-

ers frequently. In proposed PSEPMH when program begin to

run, mobile agents attached by all elements including Task,

Data, Code, and Result as the whole are scattered along the

network. At runtime, mobile agents distributed different hosts

for parallel computing, so there is no problem about updating

software. Furthermore, computational grid is concerned with

large-scale pooling of computers, data, sensors, or people.

Computational resources serve a lot of users, unlike other

parallel systems monopolizing the computational resources.

Therefore the computational resources change dynamically,

even during the execution of program. The ability of mobile

agent to react dynamically to adverse situations makes it

easier to build fault tolerant behavior, especially in a highly

distributed unpredictable system. Mobile agent [10, 11, 12,

13] is an autonomous software entity with the capability

of roaming among computational nodes. Mobile agent can

clone himself, then partition part of his task to the duplicate

that moves to a new computational node for parallel comput-

ing. The following properties of mobile agent are naturally

suitable for parallel computing in dynamic, complex grid

environment.

1) Autonomy (to act on their own) gives opportunities for

mobile agent to make a decision whether cloning himself

and migrating duplicate to another computational node for

part task or do the whole task by himself according to both

environment and his goals at runtime.

2) Re-activity (to process external events) senses the change

of environment such as appearing some computational re-

sources, etc., then informs agent that there are some new

computational nodes available, and the decision of migration

can be made. Re-activity also accepts the synchronization

signal from the duplicate. When the duplicate finishes the

subtask, he will send the synchronization signal to the

original agent. The original agent can perceive the signal,

then collect and unify the result returned by the duplicate.

3) Pro-activity (to reach goals) achieves minimal completion

time.

4) Co-operation (to efficiently and effectively solve tasks) is

a primary advantage for parallel computing. Mobile agent

can cooperate with the duplicate, while the duplicate and

the original can also clone themselves again. The process is

done recursively, which forms the multi granularity parallel

computing.

5) Adaptation (to learn by experience) constantly reshapes

mobile agent according to the dynamic environment and

changes mobile agent’s behavior based on experience via ma-

chine learning, knowledge discovery, statistical techniques,

etc. According to the experience, mobile agent can know the

capability and reliability of all computing nodes, then assign

the appropriate computing tasks to them.

6) Mobility (migration to new places) is convenient vehi-

cle for transporting subtasks from one computing node to

another, by which subtasks can be distributed dynamically

on different computing nodes at runtime, so that multiple

computing nodes can work concurrently for the whole task.

Determining appropriate parallel granularity is one of the

most important issues in parallel processing. The granularity

of a task is informally used to indicate the size of the task.

Too small granularity causes unnecessary overhead due to

frequent context switching, creation and scheduling of tasks,

while too large granularity leads to a loss of parallelism.

Considering a lot of factors, such as the number of proces-

sors, network latency, designers can appoint granularity at

compile time. This job is so difficult that many computer-

aided software tools were developed to help designers make

decisions. But the precondition is that designer must exactly

know the number of computational resources and topol-

ogy of them. But in dynamic, heterogeneous, opportunistic

grid environment, there is not enough available information

before programs run. Dynamic granularity control is good

approach to resolve this problem. It adjusts granularity at

runtime according to computational resources available and

progress of working on problem, which demands the problem

have potential to be flexibly partitioned. Fortunately, meta-

heuristics have relatively loose, independent structures and

weak synchronicity requirements, especially characteristics

of population, which facilitates dynamic granularity control.

Most of them can be generally represented by divide-and-

conquer paradigms or its variations. The following addresses

how to implement adaptive multi-granularity control in terms

of divide-and-conquer paradigm by cloning mobile agent.

Divide-and-conquer [14, 15, 16, 17, 18] algorithm parti-

tions the complex problem into two separate, simpler sub-

problems of roughly equivalent size and then combines these

solutions into a solution for the whole. This process is

applied recursively until the sub-problems are so simple to

solve easily, which can be described generally as follows in

pascal-like pseudocode:

Procedure D_C(P)

1. if (simple(P)) // tests if P is easy enough to solve directly

// instead of partitioning again

2. then

3. return base(P); // give the solutions directly for the final

simple problems

4. else

5. begin

6. (P1 ,P2) :=(f1(P),f2(P)); // partition the problem into

sub-problems

7. T :=combine(D_C(P1),D_C(P2)); //put the two

sub-problems into together

8. return(T);

9. end

Where P is problem of the whole and P1, P2 are the

partitioned sub-problems respectively.

D C algorithm can also be represented as Figure 1 with

FrCT1.4

433

P[a]
Combine(P1,P2)

P1[b] P2[c]

Fig. 1. D C algorithm

8 9 10 11 12 13 1514

4 5 6 7

1

32

Fig. 2. Recursive solution

visiting nodes in order: b, c, a. Whilst the recursive solution

to the problem is viewed as binary-tree with post-order

traversal like Figure 2 whose leaves are the simple problems

noted with squares. The path is 8, 9, 4, 10, 11, 5, 2, 12,

13, 6, 14, 15, 7, 3, 1. Let suppose that the problem is

resolving at computational node 1. At the beginning of the

process, only the left part of binary-tree is executed and

the right part does not take part in the process. So there

is an opportunity for mobile agent to clone himself and

migrate the right branch sub-problem to another available

computational node 2 for parallel computing, at the same

time, computational node 1 is noticed that the right branch

is treated as the simple problem, avoiding overlap computing.

This process can be represented as in Figure 3. Furthermore,

the origin or the duplicate can also either resolve the problem

by himself or clone again. So adaptive multi-granularity can

be formed at runtime. Adaptive multi- granularity control

works beginning with very coarse task and progressively de-

creases granularity when some idle computational resources

appear around. Various granularities are formed based on

the number of computational resources and the capability of

each computational resource. The computational resources

having low capability constantly partition their task to other

computational resources. Thus, the fewer the computational

resources, the larger granularity, whilst, the higher capabili-

Fig. 3. Migrate the right branch

ties, the larger granularity. This dynamic granularity control

not only relieves designer’s burden, but also makes use of

the computational resources more efficiently.

III. PSEPMH INFRASTRUCTURE

Grid integrates all kinds of network connected compu-

tational resources such as workstations, clusters, superco-

muters, etc., into a global parallel computing infrastructure,

which provides incredible computing powers for virtual

organizations. If parallel meta-heuristics can be applied in

Grid, it must be very promising for large-scale combinatorial

optimization. However, it is extremely difficult to develop

a parallel meta-heuristics in extremely heterogeneous com-

putational environment, starting from scratch without any

toolkit that provides basic service for managing resources. In

this paper, the Problem Solving Environment for Combinato-

rial Optimization Based on Parallel Meta-Heuristics toward

(PSEPMH) is introduced as a collaborative problem solving

environment to help developer to implement parallel meta-

heuristics for combinatorial optimization problem. PSEPMH

can not only manage underlying heterogeneous computing

resource but also form adaptive multi-granularity parallel

application automatically using mobile agent in term of the

principle presented in section 2. Developers can focus on

enhancing meta-heuristics and tuning parameters for combi-

natorial optimization problem, just like designing sequential

algorithm, regardless any issues about networks, parallel

computing or computational grid. PSEPMH defines a set of

appropriately layered abstractions and irrelevant complexities

are hidden from higher layer, which is organized in hierarchic

levels: grid service layer, mobile service layer and partition

model layer. Grid service layer addresses issues of security,

information discovery, resource management, data manage-

ment, communication, and portability, which can efficiently

harness highly heterogeneous and dynamic computational

resources. Recently, several projects, such as Globus, Char-

lotte, Atlas and Legion are engaging in grid research. Globus

toolkits are chosen in this paper, which abstract away the

myriad complexities of heterogeneous environments and pro-

vide uniform protocols and APIs, with which mobile service

layer can easily schedule the collection of computational re-

sources. Mobile service layer is the central layer of the infras-

tructure, which built on top of grid service. By his ability to

adapt to the prevailing circumstances, mobile agent will pro-

vide dynamic and robust services in grid environment. While,

by his mobility, mobile agent can clone himself then attach

subtask to the duplicate that migrates another computational

node for parallel computing. Furthermore, the origin or the

duplicate can also either resolve the problem by himself or

clone again in terms of utilization, idle time, recover state,

memory usage and different runtime events, etc. Therefore,

the multi-granularity adapting dynamic partition at runtime

is formed intelligently, which is transparent to PSEPMH

user. Partition Model layer is responsible for translating

formalized sequential code given by application layer into

parallel computing code that will actually resolve the user’

assigned combinatorial optimization problem with adoption

FrCT1.4

434

Security, information discovery, resource

management, data management, communication,

and portability
Grid Service

Migration, Status detection,

Intelligent process, Communication,

Security, Execute task Mobile Service

Partition

Model

all kinds of combinatorial optimization using ant

algorithm, genetic algorithm
Application

Parallel ant

algorithm

Parallel

…

Fig. 4. PSEPMH infrastructure

of the mobile agent model. Application layer requires users

to describe their combinatorial optimization problems with

formalized Divide-and-conquer paradigm just as sequential

code. Subsequently, various layers will be introduced in

detail.

A. Grid Service Layer

The Globus Toolkit [19, 20] is a community-based, open

architecture, open source set of services and software li-

braries that support grid applications, which are in use of

hundreds of sites and by dozens of major Grid projects

worldwide. In PSEPMH grid service layer involves infor-

mation management, security, resources management, and

data access services, as these services are elementary and

essential to computational Grids and provide the founda-

tion for building more advanced Grid services. The cor-

responding Globus services are Meta-computing Directory

Service(MDS), Grid Security infrastructure(GSI), Grid Re-

source Allocation Manager(GRAM) and Globus Access to

Secondary Storage(GASS).

B. Mobile Service Layer

Mobile service layer is responsible for forming multi-

granularity parallel computing automatically by cloning mo-

bile agent. In conventional way, an agent migrating from one

host to another consists of a static part including the agent

code and some static data, and a dynamic part including all

the agent states such as program counter, stack, variables,

etc., which describes at which point it has arrived, so

that it is possible to reason about the new circumstances.

In mobility of PSEPMH, there is a great difference from

conventional approaches. Mobile agent clones himself and

assigns subtask to the duplicate. The original one continues

to run for the left subtask. On the other hand, the duplicate

migrates another computational node with agent code and

static data and subtask, etc., but not including dynamic part

above-mentioned. There are two reasons for this. Firstly, in

PSEPMH the dynamic part was left to the original one to

keep on computing. While, the dynamic part is unnecessary

for the duplicate to restart a new computing for the subtask.

Secondly, the primary objective of Mobile Service layer is

to improve parallelism by forming adaptive multi granularity

parallel computing in order to minimize execution time.

But it is time consuming to collect dynamic information

according to the context. In PSEPMH, migration maybe

occur frequently, so the dynamic part would not migrate in

order to decrease the cost of migration as little as possible.

In following scenario, when a mobile agent is computing

with very heavy load in a computational node, a new more

powerful computational node appears. The mobile agent will

not migrate to the new node with the dynamic part for

keep on computing. Instead, the mobile agent will partition

his task, clone himself, then migrate the duplicate to the

new node with static data (namely subtask, etc.) for parallel

computing. In order to guarantee to absolutely realize the

function of mobile agent layer, the following components

must be included.

1) Migration: Migration is responsible for transferring the

duplicate from one computational node to another with a

transferable data structure that is not only for the duplicate

to correctly run on a new computational node, but also for

the original one to checkpoint to disk and recover later if the

duplicate fails to finish the subtask.

2) Status detection: Status detection concerns itself with

following aspects. First is to discover new computational

nodes, to which a duplicate may be transported; second is

to monitor the duplicate’s activity status, checking whether

the duplicate is active or inactive. If mobile agent finds the

duplicate is inactive, alternative measures will be took. One

is that the original agent will deal with the subtask formerly

attached to the duplicate by himself. Another is that the

duplicate will be recreated and migrated to another compu-

tational node with subtask and other information recovered

from the checkpoint.

3) Intelligent process: Intelligent process revolves around

two issues that are learning and making decision intelli-

gently. The learning is to collect information regarding the

benefits of the cloning and environmental properties, and

statistically analyze them, then form the knowledge for future

cloning. The making decision intelligently can be presented

as follows. Reasoning about the task with respect to time

restrictions, capability, resource requirements and learned

knowledge, mobile agent makes a decision whether clone

himself and transfer part tasks or do the whole task by

himself. In this component a lot of intelligent techniques

can be used, such as neural networks, Bayesian rules, etc.

4) Communication: Mobile agents would be little use if

they were unable to communicate with other entities in a

computational environment. In PSEPMH mobile agent can

clone himself one or more times and the duplicate can also

clone themselves again. Mobile agent just communicates

with his duplicates, that is to check duplicates’ status and

get results worked out by clone agent, rather than directly

FrCT1.4

435

communicate with the offspring created by his duplicates,

which makes communication management simple and effec-

tive.

5) Security: Mobile agent basically provides two aspects

of security. The first is the protection of host nodes from

destructive mobile agents while the second is the protection

of mobile agents from destructive hosts. Furthermore, in grid

environment users share pool of computational resources,

so users do not clearly know where their combinatorial

optimization problems have been scattered by mobile agents.

Therefore, a very important issue is that computational node

that contains mobile agent cannot access the sensitive data of

mobile agent despite it has privilege to kill the mobile agent

process. The security of user’s data must be guaranteed.

6) Execute Task: Execute Task is the most important

component and other components provide auxiliary service

to it, which control problem oriented computing for users’

problems. It involves two Procedure D&C(P) and Procedure

Partition. Procedure D&C(P) is variation of no-cursive form

of D C(P) mentioned-above appending two additional im-

portant functions. Firstly, it can adapt dynamic partition.

Migrating the sub-problem will neither disturb previous

computing result nor cause overlap computing. Secondly,

when it is computing for user’s problem, it can also indicate

work states. That is, what part of problem has been finished

so that Procedure Partition that is respond for dynamically

partitioning subtask can decide what part of problem should

be assigned to duplicate.

C. Partition Model Layer

After user describes their combinatorial optimization prob-

lem as Procedure D C(P) where the Procedure f1, f2, simple,

base and combine are implemented by designers according

to practical problem, the problem still can’t be parallelly

resolved. Because it is just usual recursive procedure for

sequential algorithm, so in order to form adaptive multi gran-

ularity parallel computing Partition Model layer is implement

as compiler which tackles issues about translating Procedure

D C(P) into Execute Task Component of mobile agent layer

with adoption of the mobile agent model.

IV. PROCESS OF CLONING MOBILE AGENT BASED ON

PSEPMH

In Figure 5 MA is abbreviation of mobile agent. Host

systems are various heterogeneous operation systems such

as Linux, Windows, etc. Grid basic services that manage dy-

namic computational resources are implemented by Globus.

MA environment is a software system that is registered as

grid services over a network of heterogeneous computers. Its

primary task is to provide an environment in which mobile

agent can execute. At beginning MA original works on the

whole task in MA environment 1, meanwhile, sends the

request to UDDI Register now and then, querying whether a

new MA environment can be found. If UDDI Register knows

a new MA environment 2, it will give the reply. Then, MA

environment 1 communicates with MA environment 2 further

for more information. MA original will compare the cost of

Fig. 5. Process of cloning mobile agent based on PSEPMH

cloning himself and assigning the subtask to the duplicate

with that of working on the whole task by himself. If he

thinks the former method can shorten the execution time,

he will clone himself, then apportion half of task to the

clone agent that migrate to MA environment 2 for parallel

computing.

V. SUMMARY

First, we explained why the properties of mobile agent

are suitable for parallel computing in dynamic heterogeneous

grid environment. In particular, we addressed the principle

of adaptive dynamic multi-granularity parallel by cloning

mobile agent. Second, based on the principle, we proposed

PSEPMH infrastructure which can help users to implement

parallel meta-heuristics for combinatorial optimization prob-

lem. With support of PSEPMH, when a new computing re-

source appears, application can adaptively partition part task

to the new computing resource at runtime. Meanwhile, repar-

titioning the task can guarantee the previous computing result

available, that is, repartitioning the task doesn’t abandon

the previous effort because of the reassigning the task. The

process of partitioning task, cloning and migrating mobile

agent is transparent to users. PSEPMH just requires users to

decompose one problem into two sub-problems with divide-

and-conquer paradigm just as generic sequential algorithm.

Therefore PSEPMH not only relieves users’ burden, but also

makes use of the computational resources more efficiently.

VI. ACKNOWLEDGMENTS

This paper has been supported by National Natural Science

Foundation of China (NSFC) under the Grant 70462066

and Aeronautical Science Foundation of China under the

Grant 03J53073. Many thanks to the reviewers for their

contributions to improve this manuscript.

FrCT1.4

436

REFERENCES

[1] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization,
Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, 1982

[2] Osman, I. H. and Kelly, J. P. (1996a) (eds) Meta-Heuristics: Theory
and Applications, Kluwer Academic Publishers, Norwell, MA, USA

[3] F. Ben Abdelaziz, S. Krichen, and J. Chaouachi. Meta-heuristics:
Advances and trends in local search paradigms for optimization,
chapter A hybrid heuristic for multi-objective knapsack problems,
pages 205–212. Kluwer Academic Publishers, 1999

[4] W. Crompton, S. Hurley and N.M. Stephens, ”A Parallel Genetic
Algorithm for Frequency Assignment Problems”, Proc. of IMACS
SPRANN’94, pp81-84, 1994.

[5] Petty, C.B., Leuze, M.R., and Grefenstette, J.J. (1987). A Parallel Ge-
netic Algorithm. Proceedings of the Second International Conference
on Genetic Algorithms, pp. 155 - 161.

[6] E.Alba and M.Tomassini. Parallelism and evolutionary algorithms.
IEEE Transaction on Evolutionary Computation,6(5):443-462, Octo-
ber 2002.

[7] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. International Journal of Su-
percomputer Applications, 2001.

[8] I. Foster and C. Kesselman (editors). The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers. July 1998.
17

[9] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems
Integration. Technical report, Open Grid Service Infrastructure WG,
Global Grid Forum, June 2002.

[10] D.Kotz, R. Gray, and D. Rus, Future Directions for Mobile Agent
Research, IEEE Distributed Systems Online, vol. 3, no. 8, 2002.

[11] G. Di Marzo, M. Muhugusa, and C.F. Tschudin. A Survey of Theories
for Mobile Agents. World Wide Web Journal, pages 139–153, 1998.

[12] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility.
IEEE Trans. on Software Engineering, May 1998.

[13] L. Cardelli. Abstractions for Mobile Computations. In Secure Internet
Programming, number 1603 in Lecture Notes in Computer Science,
pages 51-94. Springer, 1999.

[14] M. J. Atallah, R. Cole, and M. T. Goodrich, Cascading Divide-
and-Conquer: A Technique for Designing Parallel Algorithms, SIAM
Journal of Computing, 18 (1989), pp. 499-532.

[15] G. Even, J. Naor, S. Rao, and B. Schieber. Divide-and-conquer
Approximation Algorithms via Spreading Metrics. In 36th Annual
Symposium on Foundations of Computer Science (FOCS96) , pages
62-71, Burlington, Vermont, 1996. IEEE Computer Society Press.

[16] K. S. Gatlin and L. Carter. Architecture-cognizant Divide and Conquer
Algorithms. In SuperComputing ’99. University of California San
Diego, Computer Science and Engineering Department, November
1999.

[17] Renate Knecht. Implementation of Divide-and-conquer Algorithms
on Multiprocessors. In Parallelism, Learning, Evolution Workshop
on Evolutionary Models and Strategies, pages 121-136, Neubiberg,
Germany, Springer-Verlag,1989.

[18] V.M.Lo, S.Rajopadhye, S.Gupta, D.Keldsen, M.Mohamed and J.Telle.
Mapping Divide-and-conquer Algorithms to Parallel Architectures. In
International Conference on Parallel processing. Vol. III, pages 128-
135, CRC Press,1990

[19] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastruc-
ture Toolkit. International Journal of Supercomputing Applications,
11(2):115–128, 1997

[20] I.Foster and C. Kesselman. The Globus project: A Status Report,Future
Generation Computer Systems 15 (1999) pp 607-621

FrCT1.4

437

