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Abstract- This paper presents an evolutionary methodology 
to automatically generate finite state automata (FSA) con­
trollers to control hybrid systems. The proposed �pproach 
reduce the search space using an invariant analysIs of the 
system. FSA controllers for a case study of two-tank �ystem 
have been successfully obtained using the proposed evolutionary 
approach. Experimental results show that these controllers have 
good performance on the set of training targets as well as on 
a randomly generated set of validation targets. 

I. INTRODUCTION 

Mechatronic systems are the complete integration of me­
chanics, electronics and information processing. Tight inte­
gration of these domains make them highly dependent on 
each other. Design choices in one domain affect the per­
formance of the other domains. Therefore, design of such a 
system usually requires iterations in each doma.in [1] in or.der 
to find an optimal balance between the basIc mechanical 
structure, sensor and actuator implementations, automatic 
digital information processing and overall control. In an 
effort to automate the generation of mechatronic systems 
spanning multiple domains, the use of the bond graph [2] 
representation and genetic programming for search was pro­
posed [3]-[8]. In this previous work, interesting re�ults on 
a variety of case studies were presented. However, In all of 
these examples of automated design, the information process­
ing capability was quite limited. In fact, all the case studies 
presented were of time-driven systems. The addition of an 
event-driven controller to a mechatronic system results in a 
more intelligent device. Mixing both time-driven and event­
driven control in a hybrid controller increases the design 
complexity achievable in comparison to current automated 
design systems. 

Such hybrid systems may be viewed as an extension of 
a classical time-driven system, typically modelled through 
differential or difference equations, with occasional discrete 
events causing a change in its dynamic behaviour. When such 
an event takes place, the system is thought of as switching 
from one operating mode to another. Hybrid or switched 
bond graph representations [9], [10] have been propose.d 
to model physical dynamic systems with discontinuity. This 
hybrid system representation extends the normal bond graph 
by adding a switch element that can act as a flow source 
or as an effort source according to the current system state 
or controller action. A supervisory control system [11], [12] 
can thus extend the decision making capability of a normal 
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Fig. 1. Hybrid control system. 

bond graph in a compact way. The resulting hybrid syste� 
can be represented as in Figure 1 [12], where the hybrid 
bond graph acts as the plant and the controller manages the 
state of the switch element in the bond graph. The interface 
acts as a translator between the continuous space and the 
discrete controller space, whereas the switches in the hybrid 
bond graph act as the actuators. The generator is usually part 
of the controller design as it needs to generate meaningful 
symbols according to the state of the plant. 

Several techniques have been proposed through the years 
to automate the design of controllers. Neural networks with 
fixed and open topologies [13] are often seen for time-driven 
systems. However, for supervisory controllers, finite state 
automata (FSA) are usually better at representing the logical 
relationships in the system. The interest in evolution of FSA 
is a very old one, having started almost 50 years ago with the 
work of Larry Fogel [14], but is still active today [15]-[17]. 

This article uses an invariant analysis of the system in 
order to reduce the search space of an evolutionary algorithm 
that generate a FSA controllers for hybrid systems. A two­
tank system is used as a study case to demonstrate of the 
feasibility of the approach. The remainder of the paper is 
organized as follows the next section describes the two tanks 
systems and its controller. Then Section I I I  presen�s the evo­
lutionary setup that was used to conduct the experiments for 
which results are analysed in Section IV. Finally, Section V 
concludes the paper with perspectives and future work 

I I. T wo-TANK SYST EM 

Multiple-tank systems are often encountered in the re­
search literature concerning non-linear multi-variable feed­
back control, as well as in fault diagnosis literature [18], [19]. 
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Fig. 2. The two-tank system. 
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Fig. 3. The hybrid bond graph of the two-tank system. 

The mechanical simplicity and the ease of getting physical 
insight into the system behaviour, combined with the achiev­
able control complexity, make the multi-tank problem a very 
attractive testbed. Therefore, a two-tank system was defined 
to test the controller synthesis methodology presented in this 
article. Figure 2 shows the actual configuration. A pump is 
continuously filling the first tank at a constant flow rate, and 
a set of valves allows drainning each tank independently and 
also allows bidirectional transfer from one tank to the other. 

The hybrid bond graph of this two-tank system is shown in 
Figure 3. The pipe and valve restrictions are represented by 
the resistive components, • , while the tanks are represented 
by the capacitances, • . The valves are simply modelled 
by switch components, • • . These switches act as a O-flow 
source or a O-effort source, depending on their state. A 0-
flow source imposes a flow equal to zero at the junction 
connected to it, therefore the valve is said to be closed as no 
fluid is able to pass through it. A O-effort source indicates 
that the switch does not impose any restriction on the flow. 
The valve is then said to be open. 

The vector state equation of the two-tank system can be 
obtained from the hybrid bond graph : 

.� . ·1 ·1 ·2 ·2 ·1 . .  _ . _ . _ . .  -_ . 

·1 ·1 · 2 · 2·1 
·1 ·1 ·2 ·3 ·2 ."2. _ . _ . _ • •  -_ . ·2·X·U· 
·1 ·1 · 2 ·3· 2 

(1 ) 

in which· denotes the state vector and· the input vector. 

The level· of tank· can be obtained from the state variables: 
. .. . --

.... (2) 

where· is the fluid density and· is gravity. This system of 
equations can also be expressed using the matrix formula­
tion : 

• _'_1_. _'_2_ _'_1_ 
x. ·1·�·2·1 . �1:2 _'_3_ x • 

• 
• 1' 1 • l' 2 • 3' 2 

y. 
. y' x 

• 2" 
(3) 

Therefore, the equation in state space form for this two-tank 
system is : 

y • •  x··· 
(4) 

A. I nvariant analysis 

In the proposed approach, the natural invariants of the 
dynamical system describe by equation (1) are analysed. 
This analysis aim at identifying the control policies that can 
partition the continuous state space. The pol icies that don't 
provide partitionning hypersurfaces of the state space wi II be 
discarded from the valid control policy set. 

A set of candidate partitionning hypersurfaces for a given 
control policy, Uj, can be identified by solving the charac­
teristic equation of the system : 

(5) 

If these hypersurfaces can be found, this means that a 
stream leading to the target zone can be defined using the 
actuator states defined by that control pol icy. However, if 
no hypersurface can be defined for a given control pol icy, 
that would means that the behavior of the system cannot 
be clearly establ ish when applying the associated actuator 
states. 

Solving the characteristic equation of the two-tank system 
was only possible for five of the eight possible actuator states. 
Therefore, three of the eight control policy were r�ected: 

U· ...... . U· ...... . U· ....... (6) 
This reduction of the number of control policy reduce 
significantly the search space needed to be explored by the 
evolutionary algorithm. 

B. FSA controller 

The controller trained for this two-tank system is a FSA 
having a fixed number of five states as established in the 
previous section. Each state corresponds to a possible switch 
configuration in the hybrid bond graph, where·. is associ­
ated to the bond graph switch • •  ' .  

The input symbols are generated by the interface when the 
state variables cross predefined surfaces in the state space. 
These surfaces are separated into two sets, one for each tank, 
and are defined as follow : 

• -1 • •• • • • • • 

(7) 
• -2· •• • • • • • 
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in which • • is the desired level for tank • and • is the 
tolerance about the target. Each set separates the space into 
three regions depending on whether the level of the tank· is 
above, below or at its target. Then nine symbols are formed 
from the logical conjunction of the two sets. 

The transitions used in this implementation of the FSA 
do not have any actions associated with them; they simply 
specify what the new state will be, in reaction to the input 
symbol received. Therefore, the controller can be expressed 
as a simple matrix with the states as row indices and the input 
symbols as column indices. The elements of the matrix then 
specify the next state to which the FSA should move. An 
initial state need also to be defined outside this matrix to 
complete the definition. 

I I I . EXP ERIMENT A L  SET UP 

For the experiments reported, the two-tank controller was 
trained to keep the fluid levels of the tanks within their target 
regions. 

A. Fitness evaluation 

When evaluating the fitness of the evolved controllers, for 
each simulation case, the system of equations 1 is integrated 
for a period of 15 seconds. An objective function • ••• is 
computed for each tank at the end of the simulation, based 
on the level errors : 

•• • • •  2 • •  (8) 

Later, the fitness of this simulation case is defined as the 
fitness of the tank with the worst error: 

(9) 

Looking at the tank with the worst error proved to be a 
more successful approach than looking at the average fitness 
of the two tanks. When looking at the average, the incentives 
to reach the target were not strong enough, and the evolution 
was ceasing after finding compromises between the errors 
of the two tanks. Most of the time it was observed that 
one of the tanks sacrificed itself in order to get excellent 
performance by the other. The really poor performance of the 
sacrificed tank was then compensated for by the performance 
of the other tank, yielding a high average. However, looking 
at the worst tank disallows such behavior and enforce having 
good performance of both tanks. 

B. Multiple simulation cases 

In order to obtain controllers that generalize to cases 
outside the training set, the controller is tested on several 
simulation cases. For each case the fitness is computed as 
defined in the previous section and again, the worst case is 
used as the fitness processed by the selection operator. 
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Fig. 4. Encoding example 
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Fig. 5. Population best and average fitness using eight states. 

C. Genetic algorithm implementation 

The evolution of the controller uses a simple genetic al­
gorithm (GA) with standard one-point crossover, bit-flipping 
mutation and tournament selection. The transition table ma­
trix described in section I I-B is encoded in a bit string with 
three bits per element, with three extra bits at the end to 
define the initial state. The evolved bit string is thus 219 bits 
long. The Figure 4 shows the proposed encoding approach 
used in a simpler case with only four states and two input 
symbols. In this example, only two bits per element is used. 
One can see that the elements of the transition matrix are 
written row by row to the associated genotype. 

The implementation of this GA experiment was done using 
the Open BEAGLE C++ framework [20] and the evaluation 
of the fitness was distributed on a cluster of computers using 
MP I [21]. 
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Fig. 6. Population best and average fitness using five states. 

IV. RES U LTS 

300 

The evolutionary algorithm described above was success­
ful in finding controllers that performed well for both the 
reduced and unreduced controller. The graphs of the fitness 
as a function of the generation, presented in Figures 5 and 6, 
show that the fitness of the 5-states controller grows much 
quicker than the 8-states controller. The reduced search space 
significantly help at increasing the speed of convergence of 
the algorithm. 

In the end, the performance of both controllers are quite 
satisfactory. There were still some imperfections that could 
be corrected, such as the overshoot on the way down of the 
first tank as seen in Figures 7(b) and 7(e) and the ripples 
observed in Figure 8(f). On the other hand, both evolved 
controllers are able to overcome some difficult tasks, such 
as the one shown in Figure 7(a). In this case, the desired 
target asks for a level in tank 2 higher that in tank 1. From 
the inspection of Figure 2, the only way to raise the level 
in the second tank is to first raise the level in tank 1 and 
then transfer the fluid between them. Consequently, the level 
in tank 1 needs to go away from its target in order to help 
to reach the objective of the other tank. Even though this 
"enabling" behavior is not rewarded by the fitness function, 
as tank 1 is accumulating much error during this process, the 
evolution is able to find this behavior as the best compromise 
for achieving the best fitness. This kind of task is a difficult 
type to solve, because when looking at the state space, one 
must first leave the target region in order to find a path to it. 

At the end of the evolution, the best-performing controller, 
for which the phenotype is shown in Figure 9, was then tested 
on a set of 20 targets generated at random in order to verify if 
the evolved controller was able to general ize to other control 
targets outside its training set. Figure 10 shows the behavior 
of the controller on the 20 targets of the verification set. As 
can be seen, the evolved controller generalizes very well on 
the submitted random targets. 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 7. 8-States controller behavior on the training target of the best 
individual at the end of the evolution. 

V. CONCLUSION 

In this paper, an evolutionary approach to the generation 
of a FSA controller for hybrid systems was described. A two­
tank system was used as a study case. The genetic algorithm 
implemented successfully evolved controllers showing good 
performance on a set of training targets as well as on a set 
of val idation targets. 

Evolutionary algorithms are again shown to be very pow­
erful search methods. However, the computational power 
required by the repeated simulation of the controllers make 
it difficult to scale up. The speed of convergence of the 
presented algorithm was significantly improved by reducing 
the search space by analysing the control invariants of 
the system. More gains might be made by automating the 
invariant analysis in order to generate a FSA controller 
directly from the hypersurfaces obtained [12]. Then with 
significant speed gain, the search space could be extended 
to include the hybrid bond graph as part of the evolutionary 
process. 
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