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Abstract— This paper presents a comparison of an evolution-
ary methodology for evolving finite state controller to the looka-
head controller for hybrid system. To illustrate the advantages
and disadvantages of both controllers two case studies, namely
a two-tanks system and a single-input double-output DC-DC
converter circuit, are used for comparison.

I. INTRODUCTION

Mechatronic systems are the complete integration of me-
chanics, electronics and information processing. Tight integra-
tion of these domains make them highly dependent on each
other. Design choices in one domain affect the performance of
the other domains. Therefore, design of such a system usually
requires iterations in each domain [1] in order to find an
optimal balance between the basic mechanical structure, sensor
and actuator implementations, automatic digital information
processing and overall control. In an effort to automate the
generation of mechatronic systems spanning multiple domains,
the use of the bond graph [2] representation and genetic
programming for search was proposed [3]–[8]. In this previous
work, interesting results on a variety of case studies were pre-
sented. However, in all of these examples of automated design,
the information processing capability was quite limited. In
fact, all the case studies presented were of time-driven systems.
The addition of an event-driven controller to a mechatronic
system results in a more intelligent device. Mixing both time-
driven and event-driven control in a hybrid controller increases
the design complexity achievable in comparison to current
automated design systems.

Such hybrid systems may be viewed as an extension of
a classical time-driven system, typically modelled through
differential or difference equations, with occasional discrete
events causing a change in its dynamic behaviour. When such
an event takes place, the system is thought of as switching
from one operating mode to another. Hybrid or switched
bond graph representations [9], [10] have been proposed
to model physical dynamic systems with discontinuity. This
hybrid system representation extends the normal bond graph
by adding a switch element that can act as a flow source
or as an effort source according to the current system state
or controller action. A supervisory control system [11], [12]
can thus extend the decision making capability of a normal
bond graph in a compact way. The resulting hybrid system
can be represented as in Figure 1 [12], where the hybrid bond
graph acts as the plant and the controller manages the state
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Fig. 1. Hybrid control system.

of the switch element in the bond graph. The interface acts
as a translator between the continuous space and the discrete
controller space, whereas the switches in the hybrid bond
graph act as the actuators. The generator is usually part of the
controller design as it needs to generate meaningful symbols
according to the state of the plant.

Several techniques have been proposed over the years to
automate the design of controllers. Neural networks with
fixed and open topologies [13] are often seen for time-driven
systems. However, for supervisory controllers, finite state
automata (FSA) are usually better at representing the logical
relationships in the system. The interest in evolution of FSA
is a very old one, having started almost 50 years ago with the
work of Larry Fogel [14], but is still active today [15]–[17].

This article compares the performance and domain of ap-
plication of an evolved FSA controller [18] with a lookahead
controller [19], [20], in order to determine the best approach to
the controller synthesis problem that arises in the development
of a framework for the automated design of hybrid system.
A two-tank system and a single-input double-output DC-DC
converter circuit are used as study cases to illustrate the
advantages and disadvantages of the two approaches. The
remainder of the paper is organized as follows the next section
describes the two tanks systems and the performance achieved
with the different controller. Then Section III presents the
single-input double-output DC-DC converter case studies and
the relevant results. Finally, Section IV concludes the paper
with the lessons learned from this comparison and provides
some perspectives and future work.

978-1-4244-8126-2/10/$26.00 ©2010 IEEE
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II. TWO-TANK SYSTEM

Multiple-tank systems are often encountered in the research
literature concerning non-linear multi-variable feedback con-
trol, as well as in fault diagnosis literature [21], [22]. The
mechanical simplicity and the ease of getting physical insight
into the system behaviour, combined with the achievable
control complexity, make the multi-tank problem a very at-
tractive testbed. Therefore, a two-tank system was defined to
test the controller synthesis methodology presented in this
article. Figure 2 shows the actual configuration. A pump is
continuously filling the first tank at a constant flow rate, and
a set of valves allows draining each tank independently and
also allows bidirectional transfer from one tank to the other.

The hybrid bond graph of this two-tank system is shown in
Figure 3. The pipe and valve restrictions are represented by
the resistive components, R, while the tanks are represented
by the capacitances, C. The valves are simply modelled by
switch components, Sw. These switches act as a 0-flow source
or a 0-effort source, depending on their state. A 0-flow source
imposes a flow equal to zero at the junction connected to it,
therefore the valve is said to be closed as no fluid is able
to pass through it. A 0-effort source indicates that the switch
does not impose any restriction on the flow. The valve is then
said to be open.

A. Evolved FSA controller

The controller trained for this two-tank system is a FSA
having a fixed number of five states as established by an
invariant analysis [23]. Each state corresponds to a possible
switch configuration in the hybrid bond graph.

The input symbols are generated by the interface when the
state variables cross predefined surfaces in the state space.
These surfaces are separated into two sets, one for each tank,
and are defined as follow :

hi1 = yi − Ti + δ

hi2 = yi − Ti − δ
(1)

in which Ti is the desired level for tank i and δ is the tolerance
about the target. Each set separates the space into three regions
depending on whether the level of the tank i is above, below
or at its target. Then nine symbols are formed from the logical
conjunction of the two sets.

The transitions used in this implementation of the FSA do
not have any actions associated with them; they simply specify
what the new state will be, in reaction to the input symbol
received. Therefore, the controller can be expressed as a simple
matrix with the states as row indices and the input symbols
as column indices. The elements of the matrix then specify
the next state to which the FSA should move. An initial state
need also to be defined outside this matrix to complete the
definition.

1) Fitness evaluation: When evaluating the fitness of the
evolved controllers, for each simulation case, the system is
integrated for a period of 15 seconds. An objective function
φ(i) is computed for each tank at the end of the simulation,
based on the level errors :

φ(i) =
∫

(yi − Ti)2dt (2)

Later, the fitness of this simulation case is defined as the fitness
of the tank with the worst error:

Φ =
1

max(φ(i))
(3)

Looking at the tank with the worst error proved to be a
more successful approach than looking at the average fitness
of the two tanks. When looking at the average, the incentives
to reach the target were not strong enough, and the evolution
was ceasing after finding compromises between the errors of
the two tanks. Most of the time it was observed that one of
the tanks sacrificed itself in order to get excellent performance
by the other. The really poor performance of the sacrificed
tank was then compensated for by the performance of the
other tank, yielding a high average. However, looking at the
worst tank disallows such behaviour and enforces a good
performance of both tanks.

2) Multiple simulation cases: In order to obtain controllers
that generalize to cases outside the training set, the controller
is tested on several simulation cases. For each case the fitness
is computed as defined in the previous section and again, the
worst case is used as the fitness processed by the selection
operator.
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3) Genetic algorithm implementation: The evolution of the
controller uses a simple genetic algorithm (GA) with standard
one-point crossover, bit-flipping mutation and tournament se-
lection. The transition table matrix described in section II-A
is encoded in a bit string with three bits per element, with
three extra bits at the end to define the initial state. The
evolved bit string is thus 219 bits long. Figure 4 shows the
proposed encoding approach used in a simpler case with only
four states and two input symbols. In this example, only two
bits per element are used. One can see that the elements of
the transition matrix are written row by row to the associated
genotype.

The implementation of this GA experiment was done using
the Open BEAGLE C++ framework [24] and the evaluation
of the fitness was distributed on a cluster of computers using
MPI [25].

B. The lookahead controller

A single step lookahead controller was also implemented
to control the two-tanks system. This controller will at run
time, for each time step, look at the system responds for each
switch configuration and then choose the best state in which
the system should go to reach the target. The best state is
defined as the one whose vector field points closer to the set
point xd. Thereby, the control action minimizes the cosine of
the angle between the current target direction x− xd and the
system trajectory x− xi for each state i.

C. Results

For the experiments reported, the two-tanks controller was
asked to keep the fluid levels of the tanks within their target
regions. The system responds to different cases are shown in
Figure 5.

The performance of the evolved controller is quite satisfac-
tory as the set points are successfully reached in a minimal
amount of time. There are still some imperfections that could
be corrected, such as the ripples seen in 5(k) and the overshoot
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Fig. 5. Controller behaviour on the target set. On the left, the best
evolved FSA controller. On the right, the one step lookahead controller. The
tanks levels and desired targets are represented by a solid and dashed line
respectively.
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Fig. 6. State-space trajectory for the two-tanks system exhibiting failure of
the lookahead controller. The FSA controller and the lookahead controller are
represented by a dashed line and a solid line respectively. The targets are
marked by circles and the initial state is marked by a square.

on the way down of the first tank as seen in Figures 5(a)
and 5(i). However, the lookahead controller fails completely
at reaching its targets on the second tank in the first three cases
as seen in Figures 5(b), 5(d) and 5(f), where their state space
trajectory is illustrated in Figure 6.

In these cases, the desired target asks for a level in tank 2
higher that in tank 1. From the inspection of Figure 2, the
only way to raise the level in the second tank is to first raise
the level in tank 1 and then transfer the fluid between them.
Consequently, the level in tank 1 needs to go away from its
target in order to help to reach the objective of the other tank.
Therefore, the lookahead controller can’t choose the right state
as it’s not the one going in the direction of the target. The
controller would require a much longer lookahead in order
to establish the correct sequence of action. But when dealing
with a system exhibiting a small time constant, the amount of
simulation time required to go through a deep tree of possible
state can easily be too long.

On the other hand, even though this is not rewarded by
the fitness function, as tank 1 is accumulating much error
during this process, the evolution was able to find the correct
control sequence that will meet the target as this is the best
compromise for achieving the best fitness.

III. DC-DC CONVERTER

Switching circuits are often employed in power applications
as they represent a very effective way to transform energy.
The single-input double-output DC-DC converter [19] shown
in Figure 7 is an example of such a circuit. The hybrid bond
graph equivalent, used as a simulation tool, is also shown in
Figure 8. The purpose of the circuit is to supply the loads
R1 and R2 with voltage V1 and V2 that are both higher than

+
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R2
Sw1

L Sw2

Sw3

C2R1

V1 V2Vin
+ +

Fig. 7. Single-input double-output DC-DC converter circuit.

Se

1

vin

I

0

Sw1

1

Sw2

0

C1

R1

v1

1

Sw3

0

C2

R2

v2

Fig. 8. The hybrid bond graph of the double output DC-DC converter circuit.

the source voltage Vin. This is done by storing energy in the
inductor L when Sw1 is closed while Sw2 and Sw3 are open.
Then, the stored energy is transferred to the capacitors C1

or C2 by closing Sw2 or Sw3, while Sw1 is kept open. In
order to provide sufficient energy to the load resistances, the
switching must occur continually with controlled timing.

The circuit parameters are the same as the one used by
Senesky [19], that is L = 75µH, R1 = 6.25Ω, R2 = 34.1Ω,
C1 = 800µF and Vin = 1.5V. The desired output voltages
are V1d = 1.875V and V2d = 3.75V. The current range is
required to be [0, 2.5]A.

A. Evolved FSA controller

The controller trained for the DC-DC converter is also a
FSA having a fixed number of three states as Sw2 and Sw3

are not closed at the same time.
The input symbols are generated by the interface when the

state variables are crossing predefined surfaces. Those surfaces
are defined in the same way as described for the two-tanks
systems in section II-A, that is, a tolerance is established for
all target values and an input symbol is generated each time
the state variables cross the tolerance limits. In this case, the
tolerances on the output voltages were set to 0.01V. In the case
of the current constraint, an input symbol is generated each
time the current through the inductor goes out of the specified
range of [0, 2.5]A. As a result, there are nine surfaces creating
27 regions in the state space.

1) Fitness evaluation: When evaluating the fitness of the
evolved controllers, the system is integrated for a period of



50ms. An objective function φ(k) is computed for each voltage
output at the end of the simulation, based on their errors :

φ(k) =
∫

(Vk − Vkd)2dt : k ∈ 1, 2 (4)

Also, a third objective function φ(3) is computed based on the
current i through the inductor as follow:

f(i) =


i− 2.5 : i > 2.5
i : i < 0
0 : otherwise

φ(3) =
∫
f(i)2dt

(5)

Later, the fitness for this controller is defined as the worst
objective function:

Φ =
1

max(φ(k))
: k ∈ 1, 2, 3 (6)

Again, looking at the worst case proved to be the best approach
to push the search algorithm to reach the desired target.

2) Genetic algorithm implementation: The evolution is
setup in the exact same way as the two-tanks system, as
described in section II-A.3. However, this time the evolved
bit string is 246 bits long.

B. The lookahead controller

Again, a single step lookahead controller was implemented
for the DC-DC converter. The controller is defined in the exact
same way as the two-tanks systems, as described in section II-
B.

C. Results

The state variables evolution under the control of the
evolved FSA and the lookahead controller for the single-input
double-output DC-DC converter are shown in Figure 9.

As we can see, the system shows much more ripples using
an evolved FSA controller than using a lookahead one. This
can mostly be due to the fact that the FSA is limited by the
set of input symbols defined by the designer. Therefore, the
controller can only react when a defined surface in the state
space is crossed. So, if these surfaces are suboptimal or even
wrong at representing the meaningful dynamics for the control
task, the controllability of the system is jeopardized. Therefore,
the division of the state space is a crucial step in the design
of a FSA based controller. It’s not surprising that previous
work attempts to develop some methodology to divide the state
space in an optimal way by looking at the control invariance
of the system [12].

On the other hand, the lookahead controller is able to
minimize the ripples on the output in an optimal way. It’s
able to achieve such performance by having direct access to
the state variables to make the next control action. However,
the design of the lookahead controller requires a steady state
analysis of the circuit to establish the current target. Without
such analysis, the desired target can be unreachable and
therefore makes the lookahead controller fail to control the
system.
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Fig. 9. State trajectories of the single-input double-output DC-DC converter.
On the left, the best evolved FSA controller. On the right, the one step
lookahead controller.

IV. CONCLUSION

As we can see from the experiments with the two study
cases presented, neither of the two controller strategies work
perfectly in both cases. However, each of them represent a
successful approach to control a certain type of system. For
instance, the FSA based controller provides a better approach
when the system to control presents a vector field that is not
flowing in a direction close to the target. In this case, the
controller could make an efficient use of prior knowledge
about the vector field of the system. On the other hand, if
the system presents a favourable vector field, the lookahead
controller can exploit the knowledge on the future evolution
of the state variables at every time step. The controller doesn’t
need to wait before the system reaches a predefined frontier in
the state space to react. This type of controller can be much
more responsive than the FSA based one.

The weakness of the two approaches should also be con-
sidered in further research. For instance, the input symbols of
the FSA generated by the interface should be better defined.
They are still too intuitively defined by the designer. They
would be better defined if a more rigorous approach was
used. However, the automated techniques for analysing the
vector field of a hybrid system in order to establish the better



transition time still need some development. For instance,
in [26] a method to partition the state space to create a state-
feedback FSA controller is proposed, but the computational
time required for a single target is too important. On the
other hand, the usability of a lookahead controller is limited
by the amount of simulation needed at runtime to establish
the correct control decision. This gets more restrictive when
dealing with systems presenting a small time constant. The
accuracy of the lookahead prediction can also be increased
by allowing a deeper simulation tree. However, the simulation
time required grow exponentially with the lookahead time.
Hence, the domain of application of a lookahead controller is
confined to system having slow dynamics.

With the objective in mind of generating hybrid bond graph
design within an evolutionary framework, there is a need for
a method to automatically generate switch controllers that can
be used to correctly evaluate the generated bond graph design.
One approach could be to exploit the fact that the lookahead
controller doesn’t need to be tuned to work well in most
situation. Therefore, the lookahead controller can rapidly be
used to assess the performance of a new hybrid system design
without wasting too much time on tuning a controller for a
poor design. Also, the design of the hybrid system could take
into account the limitations of the controller by optimizing
the vector field such that the limitations of the lookahead
controller are avoided. Another approach, could be to develop
an evolutionary system that would include both the FSA based
controller and the simple lookahead one in a single controller
population that would be co-evolved with the hybrid bond
graph population.
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