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Abstract— Collaboration between heterogeneous robots
promises increased robustness and efficiency of tasks with
great potential in applications, such as manufacturing, search
and rescue. In this paper, we present a collaboration system
based on an edge computing framework, a mobile robot
named “StellaX” and a manipulator. The robot StellaX
is assembled by a three-wheel omnidirectional platform,
a LIDAR scanner for indoor autonomous navigation, and
a stereo camera which can capture objects’ images. The
information of objects, which can be used for grasping, is
stored and shared with the manipulator through the edge
computing framework with Docker and ROS. Finally, we test
the collaboration system by conducting an object recognition
experiment and a navigation experiment. The experimental
results demonstrate the system effectiveness and prove that
the system yields better real-time performance and reduces
total task execution time than a cloud computing-based
scenario.

I. INTRODUCTION

Robotics collaboration such as cooperative transport [1],
search and rescue [2], collaborative SLAM [3][4][5] can
integrate the capabilities of different robots to accomplish
complex tasks or achieve higher efficiency. The basis of
robotics collaboration is to ensure that different robots
can communicate with each other so that they can share
information and assign tasks.

In 2009, the RobotEarth project was announced [6].
It envisioned “a World Wide Web for robots”. On this
basis, the RoboEarth research team developed a series of
system architectures such as Davinci [7], KnowRob [8]
and C2TAM [9]. In 2010, James Kuffner [10] proposed the
term “cloud robotics” and described a number of potential
benefits of “Cloud Robotics”. The RoboEarth project in-
cludes a cloud computing platform called Rapyuta [11],
which is a platform as a service (PaaS) framework for
offloading computing tasks of robots from the local into the
cloud. Wen et al. [12] proposed a micROS cloud platform,
which allowed general ROS applications migration to the
cloud environment. ROS applications can be changed from
serving a single robot to serving multi-robot result from the
container-based isolation mechanism.

Since the cloud robotics solves the problem that the stan-
dard robot has the insufficient computing power and low
intelligence. Cloud robotics has its disadvantages, such as
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high network latency and limited bandwidth. Furthermore,
heterogeneous robots have different systems, platforms,
interfaces or communication protocols, which means they
form a heterogeneous environment that has challenges in
sharing information and interacting with different types of
physical robots.

In this context, edge computing [13] can be used as
a supplement to cloud robotics to extend its limitations.
The “edge” in edge computing refers to any computing
or network resource that is closer to the data source
on network topology. The benefit of an edge computing
system is that it can offload a portion of computational
tasks to the edge node rather than the distant cloud center.
Data processing at the edge of the network reduces network
latency and makes it more efficient. Moreover, the edge
node can be used as an intermediate layer to integrate the
devices’ interfaces of the heterogeneous robots and then
communicate with the cloud center. Recently, edge com-
puting has been well studied by the researchers in many
different usage scenarios like video analytics [14][15][16]
and firefighting [17]. Youdong Chen et al. [18] proposed
a cloud-edge hybrid system framework and applied the
system on the robotic welding of the membrane wall cell.
However, few efforts have been made to study collaborative
robot systems based on edge computing.

The contributions of this paper are listed as follows:

1) Design and implement a collaboration system which
consists of two heterogeneous robots, the mobile robot
StellaX and a six-degree-of-freedom(DoF) manipula-
tor, as shown in figure 1 and figure 7.

2) An edge computing-based system named Docker
Edge Robotics Framework (DERF), as shown in
figure 6 is proposed for communication and task
assignment between heterogeneous robots.

3) The experimental results proved that in the tasks of
object detection, indoor autonomous navigation, the
edge computing-based framework has lower latency
and faster response than the cloud computing-based
framework.

The remainder of this paper is organized as follows. The
design and implementation of the mobile robot StellaX
and the manipulator are presented in Section II. Section
III introduces the Docker Edge Robotics Framework, in
Section IV the experimental scenario is described and
our experimental results are presented and analyzed. We
summarize our works in Section V.



Fig. 1. The physical diagram of two heterogeneous robots. (a) The mobile robot StellaX (b) The 6-DoF manipulator.

Fig. 2. The overall framework of the collaboration system.

II. ROBOT SYSTEM DESIGN

Figure 1 and figure 2 shows the physical diagram and
system framework of the collaboration system respectively.
The detail of each robot design and its basic function is
introduced in the following subsection.

A. Mobile Robot

The mobile robot StellaX is composed of a three-layer
architecture with a three-wheel omnidirectional mobile
robot(TOMR) [19][20] at the bottom layer. TOMR is
considered here due to its versatility and flexibility. In
contrast to differential drive wheeled mobile robot, TOMR
can move in an arbitrary direction and with arbitrary
orientation, since they move using three independent motor

actuators. The key performance parameters of StellaX are
listed as table I.

B. Manipulator

The manipulator is a six-degree-of-freedom (DoF) robot.
Each joint of the robot is equipped with a photoelectric
sensor for performing a zero return operation after the
robot restarts. The Yaskawa motor SGM7J and the driver
SGD7S are used for motion, the control card MP2100M
and a personal computer (PC) installed with software
MPE720 form a control platform. Based on that, the
posture of the manipulator can be programmed by the
PC and transmitted to the driver, which generates motion
signals to control motor motion. The key performance



TABLE I
KEY PERFORMANCE PARAMETERS OF STELLAX.

Total weight 28kg
Robot height 585mm
Wheel diameter 127mm
Battery life 4h
Max. diameter of the robot 528mm
Max. payload of the robot 60kg
Max. velocity of the robot 1.2m/s
Communication Interface RS232
SLAM method LiDAR− based

TABLE II
KEY PERFORMANCE PARAMETERS OF THE MANIPULATOR.

Total length of the manipulator 850mm
Max. active angle of each joint 270◦

Max. working speed 180◦/s
Repeatability ±0.1mm
Max. payload of the manipulator 5kg

parameters of the manipulator are listed as table II.

C. Indoor Navigation

In order to accomplish the transport task, the mobile
robot StellaX needs to navigate autonomously indoors. In
this work, we built a ROS-based indoor SLAM system, the
system interface is shown in Figure 3. We use the wheel
odometer and LIDAR data as input to map the environment
and locate the robot’s position. Rao-Blackwellized particle
filter algorithm and amcl package are used here for local-
ization, while the gmapping package is used to create the
two-dimensional occupancy grid map. Based on the grip
map, the trajectory between the origin and the destination
is solved by the Dijkstra algorithm and movebase package.
When the robot encounters an obstacle during the motion,
the Dynamic Window Approach (DWA) algorithm will re-
plan a new path.

D. Object Detection and Grasping

Object detection plays an important role for robot grasp-
ing since automated grasping requires both knowing what
the object is and where the object is. In this context,
we use the method [21] that we have proposed before to
accomplish the detection and grasping task. The difference
between these two works lies mainly in the method of ob-
ject detection. In this paper, we use deep learning method
instead of a feature-based approach. More precisely, our
method based on Faster R-CNN [22] and SSD model [23].
A batch of labeled data was provided to the SSD model for
training as a training set. After the training is completed,
RGB images provided by Kinect were input into the
model and the bounding box of the target object can be
obtained, which means the two-dimensional coordinate of
the target object on the image can be calculated. Using this
coordinate to perform depth extraction on the depth image,
the three-dimensional coordinate in the camera coordinate
system can be obtained. After coordinate transformation

Fig. 3. The diagram of the StellaX navigate autonomously indoors.

Fig. 4. The overview of the manipulator grasping system.

and inverse kinematics solution, the manipulator can per-
form the grasping task. The overview of the manipulator
grasping system is shown in figure 4.

III. DOCKER EDGE ROBOTICS FRAMEWORK

A. Edge Computing

One of the cores of cloud robotics is cloud computing.
Since cloud computing was introduced in 2005, it has
gradually changed the way we live, work and study. The
services provided by Alipay, Twitter, Wechat and other
software that have been widely used in our daily life are
typical representatives of software as a service (SaaS),
which is a kind of cloud computing. But cloud computing
is facing some challenging problems in cloud robotics:

1) The cloud center has the powerful computing power
and can handle massive data. But how to deal with
the transmission of massive data is a knotty problem
which means the performance of cloud computing
models is limited by network bandwidth. The time
of data transmission and data processing is not to
meet the real-time requirements of robots.

2) The role of terminal devices has changed. In tradi-
tional cloud computing, phones and PC play data
consumers most of the time, such as making re-
quests for services like payment or video. But in
cloud robotics, robots generate data in addition to
consume data. This means that the number of data
generation nodes will increase, and this data cannot
be processed in time in a traditional cloud computing
model.

In order to solve the above problem, we try to apply
the idea of edge computing in the cloud robotics. Edge
computing refers to the analysis of data processing at
the edge nodes of the network. In this context, an edge
node refers to any node with computing power or network



Fig. 5. The difference between cloud computing and edge computing.
(a) Traditional cloud computing model. (b) Edge computing model.

resources between the data source and the cloud center.
For example, our phones, PC, and routers can be regarded
as edge nodes. The difference between cloud computing
and edge computing is shown in Figure 5. The advantage
of edge computing is that massive data does not need to be
transferred over long distances, which can reduce network
traffic and significantly improve the response speed.

B. Docker

Heterogeneous robots usually have different operating
systems, interfaces and communication protocols, which
mean their applications do not have a unified operating
environment. Setting a fixed operating environment in the
cloud center would be detrimental to application deploy-
ment and computing resource scheduling. In this work,
we use the idea of Docker to deploy robots’ application in
the cloud center. Docker is a container engine technology
based on Linux container (LXC), which has the advantage
of rapid and efficient deployment, high resource utilization
and simple management [24]. With these properties of
Docker, developers can ignore the operating environment
of the cloud center and be focused on the interfaces and
protocols of the corresponding robot. Furthermore, the
containers are non-interacting, and the resources of each
container can be allocated as needed before instantiation.
That means running Docker in the cloud center or edge
node not only ensures independence and security between
different applications but also enables flexible allocation
of computing resources.

C. Docker Edge Robotics Framework

Based on the two techniques mentioned above, Edge
computing and Docker, we designed a Docker Edge
Robotic Framework (DERF) to connect heterogeneous
robots, so they can collaborate on specific tasks. The
diagram of DERF is shown in Figure 6.

The DERF consists of five parts. In detail, they are
service provider, service requester, cloud center, edge node,
and physical layer. The service provider is mainly for
developers. When the developer develops a corresponding
application according to the interface and protocol of the
robot, the application will be packaged into a Docker
container image and registered with the cloud center via
the registration module as an optional service. The user

Fig. 6. The diagram of DERF(Docker Edge Robotics Framework).

can initiate a robot service request through the network
as the requester. After receiving the service request, the
management module in the cloud center first performs
a service query in the image repertory to confirm that
the service exists and the robot is in idle, and then the
image is instantiated to form a functional application which
will send a task instruction to the physical layer via the
edge node. During the process of task execution, the
environment information will be collected and the robot
will generate massive data as a data source. These data will
be pre-processed on the edge device, such as compression,
filtering and then sent to the cloud center for calculation.
For some simple processing, the edge device will return
the result directly. The DERF realizes the design concept
of robot as a service (RaaS) and has the advantages of
heterogeneous robot information sharing, low latency and
low local computing resource requirements.

IV. EXPERIMENT
In order to verify the collaboration system, as shown

in Figure 7. We conduct object detection experiments
and indoor navigation experiments under local computing,
cloud computing, and edge computing respectively. Figure
8 shows the diagram of the experimental network topology,
here we use the method mentioned by Sami Salama
et al.[25] to connect the different ROS applications in
different network environments.

In this experiment, Aliyun cloud center configuration
is 2 vCPU(Intel Xeon E5-2682v4), 4G memory and 10M
bandwidth. The mobile robot StellaX is equipped with a
Raspberry Pi 3B+. The edge device here is a spare Intel
NUC5I7RYH with dual-core CPU i7-5557U, 8G memory,
and 250G SSD.



Fig. 7. Experimental environment: StellaX observes the position of the
object and shares the information with the manipulator through the Intel
NUC. After the manipulator performs the grasping task and places the
object on the top of StellaX, autonomous navigation application will be
execution.

Fig. 8. The diagram of the experimental network topology.

A. Object Detection Experiment

In the grasping experiment, the manipulator needs the
position information of objects before grasping. In order
to ensure the effectiveness of the task, the manipulator
movement program is run locally in all experiments. The
only difference is that the object detection program runs
on different devices. As shown in Figure 9 (a) and (b), the
object detection program is run on the Aliyun server in
the cloud computing experiment. In contrast, the object
recognition program is run on Intel NUC in the edge
computing experiment.

We placed the objects to be detected at a different
position on the base to form five sets of experiments,
each of which will be repeated 20 times. Figure 10 shows
the comparison of total execution time spent on object
detection experiments in different network environments.
The average total execution time in local computing, cloud
computing, and edge computing is 7.43s, 2.61s, and 1.43s.
Compared to local computing, both cloud computing and
edge computing reduce the total execution time effectively,
with percentage reductions of 64.86% and 81.91% respec-
tively. In addition, the time in edge computing is reduced
by 48.53% compared to cloud computing.

Fig. 9. The flow chart of the object recognition experiment and
the navigation experimental. (a) Object detection experiment in cloud
computing. (b) Object detection experiment in edge computing. (c)
Indoor navigation experiment in cloud computing. (d) Indoor navigation
experiment in edge computing.

Figure 11 shows the time spent on data uploading in
cloud computing and edge computing experiment. The
edge computing takes less time to upload data compared to
cloud computing in all experiments. The average percent-
age reduction is 57.56%. This is because the edge device
NUC is closer to the data source Raspberry Pi 3B+ than
the Aliyun server in Shenzhen, which reduces the number
of jumps required for data uploading, resulting in a faster
response and lower latency for the entire object detection
task.

In the object detection experiment, the average execu-
tion time of cloud computing is 2.6117s, and the edge
calculation is 1.3441s, which is 1.2676s less than cloud
computing. In the process of uploading the original data,
the average time of cloud computing is 2.0868s, and the
edge calculation is 1.1528s, which is 0.934s less than
cloud computing. 73.68% of the total time saved for task
execution is reflected in the time saved for data upload.
On the task that the data uploading takes more time than
the data processing, edge computing obviously has better
performance than cloud computing, which is reflected in
its low latency and Quick response.

Figure 12 shows the average computing resource oc-
cupancy of the Raspberry Pi in different experiments. In
cloud computing and edge computing, the neural network
for object detection runs on Aliyun servers or edge devices,
resulting in CPU and Memory usage can be reduced effec-



Fig. 10. Comparison of task execution time in object detection
experiments.

Fig. 11. Comparison of data upload time in object detection experiments.

tively compared to local computing. In cloud computing,
the average CPU usage of the Raspberry Pi is 22.91%, and
the average memory usage is 32.84%, which is 59.12%
and 42.02% lower compared to local computing. In edge
computing, the average CPU usage of the Raspberry Pi is
23.49%, and the average memory usage is 30.27%, which
is 58.09% and 46.56% lower compared to local computing.
The results prove that both cloud computing and edge
computing can offload tasks from local and reduce the
consumption of onboard computing resources effectively.

B. Indoor Navigation Experiment

In the navigation experiment, we set eleven target points
indoors, and the coordinates and access order of the target
points are fixed. The mobile robot StellaX will start from
the starting point and navigate to these target in proper
order. This experiment will be repeated five times in
different network environments and the time using between
every two points will be recorded. Figure 9 (c) and (d)
shows the different process in cloud computing and edge
computing. The amcl and movebase package are run on
different device like Aliyun server or Intel NUC. Figure
13 shows the total time spent on navigation in a different
experiment. The results show that the shortest using time
is edge computing, followed by cloud computing, and the
longest using time is local computing. The corresponding
average time used is 121.86s, 186.41s, and 228.71s.

Local computing runs the amcl and the movebase in

Fig. 12. Comparison of computing resource occupancy in object
detection experiments.

Fig. 13. Comparison of task execution time in indoor navigation
experiments.

ROS with limited computing resources. When the robot
drifts due to the odometer error during navigation, it needs
to be rotated to relocation itself. This process actually relies
on environmental information input by LIDAR or camera
to recalculate the probability of robot appearing in different
locations in the environment. This is a computationally
intensive task which takes a long time to calculate when
computing resources are limited, resulting in the longest
time spent on the entire navigation task.

In cloud computing, data processing has the hysteresis
quality due to the high latency between the Raspberry Pi
and the Aliyun server. The robot is prone to an emergency
stop or a circle during the navigation. This is because the
robot keeps the current speed until new commands are
received. When the new command is delayed, the robot
will continue to move in the current direction, causing it
to pass the target or deviate from the original path. The
robot needs to re-correct its current location constantly,
resulting in a longer navigation process.

In edge computing, the Raspberry Pi and the edge device
NUC are in the same LAN with lower latency. In addition,
NUC has more computing resources than the Raspberry
Pi, which means that the robot can calculate its location
in real time and received correct commands to complete
the navigation task in the shortest time. The results show
that in tasks with real-time requirements, such as SLAM,



navigation, etc., running on the edge device can control
the delay in a lower range and improve the response speed
of tasks.

V. CONCLUSION

In this paper, we design and implement two heteroge-
neous robots which are a mobile robot “StellaX” and a six-
degree-of-freedom (DoF) manipulator. We also proposed
a system based on Docker and edge computing called
Docker Edge Robotic Framework (DERF). The system
DERF includes Docker container isolation ideas and the
idea of offloading computational tasks to edge nodes in
edge computing. The collaboration system with DERF
and the two heterogeneous robots has the advantages of
information sharing, low latency, easy deployment, and
low local computing resource requirements. Finally, we
demonstrated the effectiveness of the collaboration system
through an experiment. StellaX transported the object to a
specific location after the manipulator grasped the bottle
and placed it on the top of StellaX. We also designed two
experiments to verify the feasibility of edge computing
in the DERF. The robot performs object detection and
autonomous navigation tasks in local computing, cloud
computing, and edge computing. The results show that
edge computing in the DERF can offload local computing
tasks to the edge devices, reduce the consumption of
local computing resources. Compared to cloud computing,
edge computing in DERF reduce network latency, improve
response speed and reduce total task execution time.

In our future work, we will combine the advantages of
cloud computing and edge computing with an edge-cloud
hybrid framework to test the performance of heterogeneous
robots. Simply put, we will put computationally intensive
tasks in the cloud for calculations. For tasks with high
real-time requirements, we will perform calculations at
the edges. For computationally intensive tasks that require
high real-time performance, such as 3D reconstruction,
outdoor autonomous navigation, behavioral analysis, and
more. They will be pre-processed in the edge first and
then transferred to the cloud for calculations. The method
of preprocessing will depend on the tasks to be performed
by the heterogeneous robots system.
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