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Abstract—Big data time series in the Intensive Care Unit 

(ICU) is now touted as a solution to help clinicians to diagnose 
the case of the physiological disorder and select proper treatment 
based on this diagnosis. Acute Hypotensive Episodes (AHE) is 
one of the hemodynamic instabilities with high mortality rate 
that is frequent among many groups of patients. This study 
presented a methodology to predict AHE for ICU patients based 
on big data time series. Empirical Mode Decomposition (EMD) 
was used to calculate patient’s Mean Arterial Pressure (MAP) 
time series and some features, which are bandwidth of the 
amplitude modulation, frequency modulation and power of 
Intrinsic Mode Function (IMF) were extracted. Then, the Genetic 
Programming (GP) is used to build the classification model for 
detection of AHE. The methodology was applied in the datasets of 
the 10th PhysioNet and Computers Cardiology Challenge in 2009 
and Multi-parameter Intelligent Monitoring for Intensive Care 
(MIMIC-II). We achieve the accuracy of 83.33% in the training 
set and 91.89% in the testing set of the 2009 challenge’s dataset; 
and the 83.37% in the training set and 80.64% in the testing set 
of the MIMIC-II dataset. 

Keywords—acute hypotensive episodes; empirical mode 
decomposition; genetic programming; classification 

I.  INTRODUCTION 
Acute Hypotensive Episodes (AHE) is the common 

phenomenon in the Intensive Care Unit (ICU), which may 
result in irreversible organ damage and eventually death. As a 
result, the prognoses of AHE are of fundamental importance 
in the management of critical ill patients. The most obvious 
characteristic of AHE is the Mean Artery Pressure (MAP) 
signal, which is defined for an hour at any time of 30 minutes 
or more during which at least 90% of the MAP measurements 
are at or below 60mmHg. Therefore, the early detection of 
AHE will give professionals much more precious time to 
determine a proper treatment for patients. Bassale J [1] 
proposed to generate the statistical summaries of Arterial 
Blood Pressure (ABP) signals to predict hypotension before 
hypotension episodes, including the mean, standard deviation, 
variance, skewness and the quantile-quantile. MA Frolich [2] 
discovered that the higher baseline heart rate, which possibly 
reflects a higher sympathetic tone, might be a useful parameter 

to predict hypotension. Saeed M introduced a temporal 
similarity metric, which applied a wavelet decomposition to 
characterize time series dynamics at multiple time scales to 
utilize classical information retrieval algorithms based on a 
vector-space model. This algorithm was used to identify 
similar physiologic patterns in hemodynamic time series from 
ICU patients by the detection of imminent hemodynamic 
deterioration [3]. A Ghaffari aimed to detect AHE and MAP 
dropping regimes using ECG signal and ABP waveforms[4], 
the proposed method calculated the shock occurrence 
probability with a adaptive network fuzzy inference system 
which incorporates the influences of heart rate, systolic blood 
pressure, diastolic blood pressure, age, gender, weight and 
some miscellaneous factors. Rocha T [5] used the neural 
network multi-models to calculate the MAP signal in the 
forecast window of 1 hour and then predicted the AHE. The 
2009 challenge was the tenth in the annual series of open 
challenges hosted by PhysioNet in cooperation with 
Computers in Cardiology Conference. The goal of this 
challenge was to predict the AHE in ICU, and some valid 
approaches were proposed in that contest [6-7]. 

This paper demonstrates how AHE can be predicted in the 
next 1 hour forecast window. In order to achieve this aim, the 
analytic signals are obtained from MAP with Hilbert-Huang 
method, and then several features are absorbed in the analytic 
signals. Genetic programming (GP) is an effective method to 
select features and constructs a classifier simultaneously [8-
10]. In this work, GP is used to classify the AHE and no AHE 
patients (In particular, AHE means there is an episode of acute 
hypotension beginning within the forecast window). The 
validation sets consist of two datasets, A and B. The Set A is 
comprised of 110 records [11], while the Set B is comprised of  
2866 records which are obtained from MIMIC-II database 
[12]. The experimental shows that our method achieved 
accuracy 83.33% and 91.89% in the training and testing sets 
of Set A respectively, and 83.37% and 80.64% in Set B.  

In the following section the database and methods of the 
application are described in detail. In section II, the 
methodology is introduced, including empirical mode 
decomposition (EMD), features extraction method and GP 
classification method. The experiment verification and 
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discussion are given in section III. The last section gives 
conclusions. 

II. METHODLOGY 
An overview of the methodology of this work is proposed 

in Fig1. Firstly, the MAP signal before T0 in is 
decomposed by EMD method in  The analytic signals are 
calculated by the IMF signals using the Hilbert transform in 

 After that, in  and , several features are extracted 
from the analytic signals. The Amplitude Modulation 
Bandwidth (AMB) and Frequency Modulation Bandwidth 
(FMB) in are the features of the high frequency 
components of the IMF, and power of the last IMF is the 
feature of the low frequency components. Finally, the features 
are imported into GP to train a classification model in , and 
the model is used to distinguish status of the unlabeled MAP 
signals in

 
Fig.1.  The Methodology of detecting AHE 

A. Empirical Mode Decomposition 
Hilbert-Huang Transform (HHT) is an adaptive method for 

time series signal analysis, which is proposed by N.E. Huang 
[13]. HHT is composed of EMD method and Hilbert spectrum 
analysis (HSA) method. The HHT is used in many 
applications, such as gravitational wave, biomedicine, 
nonlinear system, etc. In this work, the EMD method is 
applied to data decomposition of patients’ MAP signals.  

The sifting process of EMD can decompose the complex 
signal into a finite number of IMFs adaptively, according to 
the local characteristic time scale of the source signal/data. As 
a consequence, each IMF component contains the local 
characteristics of original signals in different time scales. Each 
IMF must satisfy the following conditions: 

1) In the whole data sequence, the number of extreme values 
and the number of zero crossing points must be same or not 
more than one at most. 

2) At any time, the envelope mean, defined by the signal of 
local maximum and minimum, is zeros. 

For a fixed length time series signal x(t) (for MAP time 
series ,the length of time series is 2 hours), the EMD process 
can be summarized as follows: 

Step 1: Finding out all the local maximums and minimums 
of the signal xi (t), and getting the upper envelopes (emax(t)) 
and lower envelopes (emin(t)) by connecting the maximums 
and minimums respectively with cubic spline. Then, the 
average curve of envelopes (m(t)) can be calculated by:  

max min( ) ( )( )
2

e t e tm t +=               (1) 

Step 2: Defining the intermediate variable h(t) = xi (t) - m(t), 
and detecting whether the h(t) is an IMF or not on above 
conditions (1) (2). 

Step 3: When h(t) is an IMF, assigning the ci (t) to be an 
basic IMF by ci (t) = h(t). 

Step 4: Repeat the process with the residual signal x(i+1)(t) = 
xi (t) - h(t), and the Step 1-3,  until residual signal x(i+1) can’t be 
decomposed.  

At the end of the decomposition, the original signal x(t) is 
defined as the sum of N IMFs and residual term r(t) = x(i+1) :  

1

( ) ( ) ( )
N

i
t

x t c t r t
=
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B. Feature Extraction Method 
Hilbert spectrum expresses the Time-Frequency-Energy 

distribution in the source signal. Each of IMF signal means the 
local information of source signal, meanwhile the HSA can 
obtain instantaneous significance from the IMF. In a MAP 
time series, the instantaneous parameters, including the 
instantaneous amplitude, instantaneous frequency and 
instantaneous power, are significant for the features extraction 
through the EMD and HSA (Further information about Hilbert 
spectrum representation of the non-stationary data can be 
found in reference [13]). For each IMF signal, the Hilbert 
transform is defined as follows: 
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τ τ
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−∞
= ∗ =
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The ( )ic t�  is the Hilbert transform of the ith IMF signal ci (t).  
The analytic signal of source signal x(t) is defined as: 

( )( ) ( ) ( ) ( ) ij t
ii i iz t c t jc t a t e θ= + =�       (4) 

The zi(t) is the analytic signal of the IMF signal ci(t). The ith 
IMF signal of the instantaneous amplitude ai(t) and 
instantaneous phase �i(t) are defined as follows: 

22( ) ( ) ( )ii ia t c t c t= + �          (5) 
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The polar form of analytic signal reflects the physical 
meaning of the Hilbert transform, which obtains the local 
optimal approximation through a sinusoidal frequency and 
amplitude modulation. Therefore, considering the definition of 
the instantaneous frequency, the instantaneous frequency fi (t) 
of ith IMF signal can be defined as: 

( )1( )
2

i
i

d tf t
dt

θ
π

=               (7) 

In order to measure the instantaneous amplitude ai(t) and 
the instantaneous frequency fi (t), reference [14] developed the 
concept of instantaneous bandwidth, which is an indication of 
the frequency spread at a given time. The bandwidth of a 
signal can be broken up into amplitude modulation and 
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frequency modulation, which are named as AMB and FMB. 
The AMB and FMB can be exactly given  as follows:  

2
2( )( ) ( )

( )
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a tAMB a t dt
a t

+∞

−∞

′
= �         (8) 

2 2( ( ) ) ( )i i iFMB w t w a t dt
+∞

−∞
= −� (9) 

Where <wi> is the global mean frequency, and the 
<wi> can be defined as follows: 

21
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Where E is the energy of analytic signal zi(t). The energy 
and the power of zi(t) , P can be given as follows: 

  lim
2a

EP
a→∞

=                              (12) 

In this work, we select the first three IMFs signals of AMB 
and FMB respectively and the last IMF’s power as the seven 
features for classification. Because energy changes more 
rapidly in the first three AMBs than it does in the other AMBs, 
and coincidentally, the first three FMBs have more significant 
changes than the other three ones. Morevoer, the last IMF’s 
power can express the patient’s blood pressure level. 

C. Genetic Programming Classifier 
Based on the Hilbert spectrum method, we have extracted 

seven classification features. These features can express the 
AHE signals in both time domain and frequency domain. 
After that, training the best classifier assists us to predict 
whether the patients suffered from AHE. 

GP is an automatic programming technique for evolving 
computer programs, which is able to solve problems in a wider 
range of disciplines (may be more powerful than neural 
networks and other machine learning techniques)[8]. GP is 
applied in the classifiers design and feature selection 
frequently [9]. In this work, binary classifier algorithm based 
on GP [9-10] is used for classifier and the fitness function is 
defined as follows: 

( )*exp 1fitness consig compl= −  (13) 
                      *p P P Nconsig

p n P N N
� � += −� �+ +� 	

          

 pcompl
P

=                  

Where, P and N are respectively the total numbers of 
“AHE” and “no AHE” class. The p and n is the correct number 
of P and N in the obtained classifier function. 

III. RESULT AND DISCUSSION 
Because of some data are missed in Set A, only 48 records 

and 37 records are selected as training set and testing set. Set 
B is a big data set which contains 2866 records, we selected 
1533 records randomly as training set, and the remaining is 
testing set, which has 1333 records.  For all records used in 
the dataset A and B, the sampling frequency is 1Hz. In 
addition, a T0 point on time for each patient’s MAP signal is 
marked (like in Fig.1). The following one hour of T0 point is 
the forecast window. If the record contains AHE, the T0 is 

always set at the beginning of the first AHE; if the record has 
no AHE, the T0 is set casually in the case of sufficient data. 

For clarity, one source signal, no AHE patient (No. 
3831217nm) is randomly selected to describe the methodology 
presented in this paper (Fig.2). 

 
Fig.2. Source Signal of No. 3831217nm 

As mentioned before, the EMD method provides an 
approach to decompose the source signal of patients into a set 
of IMFs. The IMFs (C1(t)-C10(t)) of the no AHE sample (No. 
3831217nm) are obtained by EMD and showed in Fig.4.  

Then, in order to explain the changes of frequency and 
amplitude simultaneously, IMFs signals are transformed into 
the analytic signals by Hilbert transform. According to the 
obtained analytic signal, the Instantaneous Amplitude (IA) and 
Instantaneous Frequency (IF) could be calculated and 
displayed in the Fig.4 and Fig.5 respectively. Generally, the 
IA can be interpreted as one patient’s intensity of blood 
pressure, and the IF can be interpreted to be the changing 
speed of blood pressure.  

The extracted features, AMB and FMB, are applied to 
measure the abrupt change of the IA and IF respectively. 
According to our experiments, the magnitude of first three 
components can clearly distinguish the changing of patients. 
Thus, the corresponding values of AMB and FMB are the 
inputs of classifier. TABLE I present a sample of AMB and 
FMB values for no AHE (No. 3831217nm) and AHE (No. 
3061778nm) patients. 

TABLE I. THE AMB AND FMB FOR NO AHE AND AHE PATIENTS 
 a1(t) a2(t) a3(t) f1(t) f2(t) f3(t) 

NO AHE 0.3518 0.1024 0.3518 2.7727 1.9564 1.4410 
AHE 0.1988 0.0684 0.1988 1.8754 1.6444 1.3834 

Furthermore, the amplitude of the last IMF is much higher 
than other components, it could be said that the last IMF 
accumulates the most of the energy of the source signal. The 
experiment shows that the no AHE patients own the higher 
energy than the AHE patients. So the signal power, a 
manifestation of energy, is selected as the measurement 
parameter for distinguishing the AHE and no AHE patients. 

Thus, for GP classifier, the ( )1, 2,3, 4,5,6,7ix i =  represent 
seven features which are the AMBs (a1(t)~a3(t)), FMBs (f1(t) 
~f3(t)) and the power. The GP classifier parameters setting are 
as follows: The function sets are {+, -, *, /, sqrt, exp, ln, x2, x3, 
sin, cos, atan}, the population size is 30,  the mutation and 
crossover rate are 0.15 and 0.8 respectively[10], the stop 
criteria is 1000 generations and the Roulette method is used as 
the selection method. The average result of 10 independents 
trials by GP are summarized in TABLE II. 
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Fig.3. IMFs of No. 3831217nm                                         Fig.4. IA of No. 3831217nm                                      Fig.5. IF of No. 3831217nm 

TABLE II. THE RESULTS OBTAINED BY GP AND SVM 
 Set A Set B 

GP SVM GP SVM 
Training Testing Training Testing Training Testing Training Testing 

Sensitivity 84% 92% 68% 80% 85.88% 83.15% 86.93% 84.98% 
Specificity 82.60% 91.66% 86.96% 83.33% 76.25% 74.81% 69.83% 67.59% 
Accuracy 83.33% 91.89% 77.08% 81.08% 83.37% 80.64% 82.45% 79.74% 

The achieved accuracy of the GP classifier are 83.33% and 
91.89% with the proposed features in the training data and test 
dataset of set A. And, the accuracy of 83.37% and 80.64% 
with the proposed features in the set B’s training data and 
testing data. Furthermore, within the same training and testing 
set, the SVM method with radial basis function kernel 
( 2.4σ = ) is used to compare with GP classification method. 
The results of experiments confirm that the GP method 
improves the prediction of AHE with higher accuracy 
compared with the SVM.  

IV. CONCLUSION 
Time series data is pervasive across almost all human 

endeavors, including medicine, finance, science, and 
entertainment. As such, it is hardly surprising that time series 
data mining has attracted significant attention. As a typical 
medical time series data, MAP signals are analyzed 
tentatively in this work. As a nonlinear and non-stationary 
signal processing tool, EMD method is used to decompose the 
MAP time series into a number of IMFs. The complex and 
unordered MAP data become regular and ordered by the 
decomposition. After features extraction, GP method is used 
to establish the classifier for AHE prediction. The result 
shows that the classification model can provide the medical 
guidance for predicting, which is significant for the care and 
cure of AHE in ICU.   

For future work, as a much potential method, EMD is 
worth to be analyzed and applied with more effort. More 
features can be extracted in the IMFs. After that, we can select 
useful features based on the GP’s ability of feature selection. 
Furthermore, the methodology of this paper could be applied 
into other applications, such as internet of things and mobile 
computing [15-16], etc. 
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