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Abstract— Visual sensing in arc welding has become more
and more important. However, it has remained a challenging
problem due to the harsh environment, especially the inter-
ference of the extremely strong arc light. A typical industrial
solution for seam detection is to use laser scanner which
however still suffers from several limitations. Solutions for weld
pool sensing mostly rely on high speed cameras and powerful
external illuminations and therefore the wide use in industrial
environments is limited. In this paper we present a real-time
passive machine vision system for both seam tracking and
weld pool sensing in robotic arc welding. The system, which
consists of a CCD camera and a carefully-selected narrow-
band pass filter, is capable of extracting the geometrical profile
of the seam that is close to the arc region and the weld pool
boundary simultaneously in real time. This visual information
can be further utilized by the control system to navigate the
welding robot and adjust the welding parameters. Experiments
including several real-time demonstrations have been made and
verified the feasibility of the proposed vision system.

Index Terms— Vision system, visual sensing, active contours,
arc welding automation, weld pool sensing.

I. INTRODUCTION

For decades the need of robotic arc welding has become
more and more intensive. Many researchers and engineers
have devoted their effort to automating the arc welding
process in order to increase the productivity and quality,
decrease the exposure of the human welders to the harmful
environments. However, it still remains a challenging prob-
lem to obtain a closed-loop control of the welding process.
The reasons are twofold. One is the welding process is rather
complex and difficult to be modeled. Design of the control
strategy is therefore challenging. The other is there is still
a lack of proper sensor systems which can extract sufficient
information of the welding process. More specifically, the
system should be able to detect the joint location and geomet-
rical profile and the weld pool information such as shapes.
The former is commonly referred to as "seam detection"
and the latter "weld pool sensing". For years, different kinds
of sensors for seam detection and weld pool sensing were

J. Liu was with the Technical University of Denmark and FORCE
Technology, Denmark. He is now with VisionMetric Ltd, Canterbury, Kent,
UK. liujinchao2000@gmail.com

Z. Fan is with Guangdong Provincial Key Laboratory of Digital Signal
and Image Processing and Department of Electronic Engineering, Shantou
University. 515063, Shantou, China. zfan@stu.edu.cn

S. Olsen is with Department of Computer Science, University Of Copen-
hagen, 2100 Copenhagen, Denmark. ingvor@diku.dk

K. Christensen is with Division of Welding & Production Innovation,
FORCE Technology, DK-2605 Brondby, Denmark. kmc@force.dk

J. Kristensen was with Division of Welding & Production
Innovation, FORCE Technology, DK-2605 Brondby, Denmark.
jens@klaestrup.dk

developed, such as the contact probe, temperature sensors,
through-the-arc sensors, electromagnetic sensors, optical sen-
sors and sound sensors and so on.

Among all these sensors, optical sensors possess the
advantage of receiving the visual information and draw more
and more attention in recent years. For example, a typical
industrial sensor solution for seam tracking is to use laser
scanner. It permits us to have the accurate measurement of
the joint location and geometry[1]. Although laser scanner
has been widely used for seam tracking, it still suffers from
several limitations. First, the laser scanner is still relatively
expensive. Second, it must be placed at a distance to the
molten pool. Third, it may cause problems when dealing with
shiny surfaces. It should be pointed out that laser scanner
solution is typically not able to sense the weld pool.

In [2], Shi et al. proposed an efficient weld seam detection
algorithm which is able to handle most shapes of weld seams
in butt joint welding. The system can only work before
welding. In [3], Shen et al. developed a welding robot system
in square-wave alternating current gas tungsten arc welding
based on the real-time visual measurement. The system
measures the offset of the torch to the seam center and the
width of the seam gap and navigate the torch movement. In
[4], [5], Zhang et al. proposed a vision-based sensing system
for weld pool monitoring. A dot-matrix pattern of laser light
was projected onto the weld pool surface and the reflected
light was captured by an imaging plane. By analyzing the
distortion of the reflected dot-matrix, the surface of the weld
pool could be recovered. However, the proposed methods
are off-line and can not work in real time. In [6], Bae et al.
developed a visual sensing system for automatic gas metal
arc welding of the root pass of a steel pipe. The system is
equipped with a CCD camera and optical lens to capture
weld pool images. By triggering the camera in the short-
circuit moment, the proposed system is able to obtain weld
pool images without any interference of the arc light. This
simplifies the task of extracting weld pool boundary. The
limitation is that the vision system can only work in short-
circuit mode of arc welding.

In this paper, a camera-based sensor system without using
external illuminations for seam detection and the weld pool
sensing is presented. The system consists of a CCD camera
and a narrow bandpass filter selected by maximizing the
signal-to-noise ratio through spectrum analysis. The exposure
time of the camera is also altered on the fly in order to
obtain images for different purposes, i.e., seam detection
or weld pool sensing. Two image analysis algorithms were
also proposed to extract corresponding information. More
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specially, a seam detection algorithm based on RANSAC
and Kalman filter was proposed to extract the four lines
that describe the seam in the case of v-groove. For the
weld pool boundary tracking, we proposed an active contour
model driven by a Bayesian classifier to track and model the
weld pool boundary. These geometrical information can then
be used to realize an adaptive closed-loop control system.
Experiments including several realtime demonstrations were
made and proved the feasibility of the proposed system.

Fig. 1. The configuration of the experiment platform, including an industrial
camera equipped with optical filters, a manipulator and a welding torch.

The rest of the paper is organized as follows. In section
2, the overall architecture of the proposed vision system
is presented. In section 3, the image analysis algorithms
are discussed in detail. Section 4 presents the experiments
of applying the proposed vision system and discusses the
results. In the end we will conclude the paper and discuss
the future work.

II. THE ARCHITECTURE OF THE PROPOSED VISION
SYSTEM

From the hardware side, the proposed vision system con-
sists of a monochrome CCD camera and a carefully-selected
narrow bandpass filter. Fig. 1 shows the experimental setup.
The software system has two major modules, the camera
control module and the image analysis module, as shown in
Fig. 2. Detailed discussion is presented as follows.

Fig. 2. The architecture of the proposed vision system.

(a) Arc light spectrum

(b) Weld pool spectrum

Fig. 3. The spectrums of the light generated during welding. x axis
represents the wavelength, y axis represents the magnitude. (a) Typical
spectrum of the arc light. In this case, the magnitude of the weld pool
light is negligibly small compare to the arc light. (b) Typical spectrum of
the weld pool light.

A. The Selection of Optical Filters

The biggest challenge that one has to face for visual
sensing in arc welding is how to deal with the interference
of the extremely-high intensity arc light. In this paper this
problem is tackled by means of optical filters and advanced
image analysis techniques.

Fig. 3 shows the spectrum of the lights in a weld. It
was captured by a spectrometer during welding using an
exposure time of 100ms. The distance from the optical probe
of the spectrometer to the weld pool is approximately 10mm.
It shows that the region in the spectrum that is mainly
composed of the weld pool light is separate from the region
of the arc light, in spite of that the intensity of the arc
light is very high. This motivates and permits us to use
a narrow bandpass filter to decrease the intensity of the
arc light and meanwhile increase the intensity of the weld
pool light passing into the camera. In order to increase the
signal-to-noise ratio, the center of the bandpass filter should
locate within the interval of around 700nm to 1000nm. In
this proposed system, a narrow bandpass filter with a center
wavelength of 780 ± 10nm was employed. In addition,
a standard protection glass was also used to protect the
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(a)

(b)

Fig. 4. (a) A typical frame captured for seam detection. Four lines that
describe the V-Groove workpiece are marked in green. (b)A typical frame
for weld pool tracking. The weld pool boundary is manually annotated here
and marked in green.

bandpass filter from the spatters produced during welding.

B. The Active Control of the Camera

The camera control module is responsible for controlling
the exposure time of the camera on the fly. The reason is that
seam detection and the weld pool sensing require different
illumination conditions. In the case of seam tracking, we
need some but not too much arc light to illuminate the
seam. On the other hand, weld pool sensing requires that the
arc light should be reduced as much as possible. Changing
the exposure time on the fly, long exposure time for seam
detection and short exposure time for weld pool sensing, can
meet these two conflicted requirements.

III. IMAGE ANALYSIS ALGORITHMS FOR SEAM
DETECTION AND WELD POOL TRACKING

With the hardware system as well as the exposure time
control strategy, proper images can be obtained for the
purpose of seam detection or weld pool tracking. Two typical
frames are shown in Fig. 4. The desired geometrical features
of seam detection and weld pool tracking are manually
annotated in green. In this section, two image analysis
algorithms for extracting these desired geometrical features
are presented.

Fig. 5. An illustration of the seam detection algorithm. Two image ROIs
are calculated by computing the image moments. Candidate points are then
extracted within each ROI by searching the first and the last edge points
along the vertical direction.

A. The Seam Detection Algorithm

As shown in Fig. 4(a), four lines that describe the shape
of V-Groove workpiece are the desired features that should
be extracted from the images in real time. Therefore, we
propose a line detection algorithm based on RANSAC and
Kalman filters for seam detection.

The typical procedure of line detection is to extract the
candidate points first and then fit lines based on these points.
In our application, illuminating the seam only relies on the
arc light since there is no auxiliary light sources. Due to the
dramatically change of the illumination, the candidate points
are not very well defined by local structure and therefore
contain many outliers. RANSAC[7] is a natural choice for
robust line fitting which can tolerate a large portion of
outliers.

The pseudo-code of the proposed seam detection algorithm
can be found in algorithm 1. First, the image ROIs, i.e., two
rectangles are obtained by computing the image moments.
As shown in Fig. 5, ROI1 covers the overall weld pool
area and serves the purpose of extracting two outer lines
of the seam. ROI2 is placed just ahead the weld pool area
for extracting the two inner lines of the seam. Second, edge
points for line fitting are computed via canny edge detector.
As discussed earlier, the candidate points here are not well
defined by for example local gradient but global structure
due to the dramatic change of illumination during welding.
Therefore, we define the candidate points as the first or
last edge points in the scan line which is along the vertical
direction according to our camera setup. This column search
is performed for each column of each ROI and produce a
series of candidate points as shown in Fig. 5. A robust line
fitting based on RANSAC are then carried out based on these
candidate points.

B. The Weld Pool Boundary Tracking Algorithm

In arc welding, the shape of the weld pool and its position
relative to the seam play an important role in navigating the
torch and adjusting welding parameters in order to obtain a
good quality welding. Therefore, the ability of tracking the
weld pool boundary in real time becomes crucial. A typical
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Algorithm 1 : A Seam Detection Algorithm
INPUT : A frame Im×n

OUTPUT : The four lines that describe the V_Groove
workpiece.

1: Compute the image ROIs, i.e., position two rectangles.
2: Compute a binary edge image using canny edge detector

in two different image ROIs.
3: Detect candidate points which are defined as the first or

the last edge points along the line perpendicular to the
seam.

4: Robust line fitting based on the candidate points using
RANSAC.

frame captured by the camera system is displayed in Fig.
4(b) where the weld pool boundary is manually annotated. It
was found in this application that low-level approaches such
as thresholding or edge detection do not yield satisfactory
performance. This is mainly due to the interference of the
varying arc light. Very often the detected edge points do not
form a closed contour or even worse, are completely wrong.
In order to obtain a satisfactory result, global information
or prior knowledge ought to be taken into account. Active
contours, or snakes[8] offer an elegant framework where
prior knowledge can be added. Therefore, in this paper we
propose a visual tracking algorithm for weld pool boundary
tracking based on active contours.

In [9], [10] and [11], the concepts of region-based forces
arising from the statistical modelling of different regions
have been suggested. In [12], the authors proposed an active
contour driven explicitly by supervised binary classifiers,
more specifically a k-nearest neighbourhood, a support vector
machine and a neural network. For each pixel, Haralick
features were computed and used as the input of classifiers.
Inspired by these works, we proposed to use a fast active
contour driven by Bayesian classifiers for weld pool bound-
ary extraction. Assume that the boundary C divides the whole
image into two regions Ωin and Ωout. The class-conditional
probabilities p(I(x)|Ωin) and p(I(x)|Ωout) are modeled us-
ing Gaussian mixture models. The prior probabilities p(Ωin)
and p(Ωout) are calculated according to the area ratio of
the two regions. Thus the posterior probabilities can then be
computed according to Bayes’ theorem:

p(Ω|I(x)) ∼ p(I(x)|Ω) ∗ p(Ω) (1)

where Ω ∈ {Ωin,Ωout}. I(x) denotes the intensity of the
pixel x. A Bayesian classifier B(x) can be formed and drives
the control points of the active contour towards or away from
the boundary. The evolving equation of the active contour
using parametric representation is then given as follows:

∂x
∂t

= −λ · B(x) · ‖dx
ds
‖n̂ (2)

where λ is a weighed factor. n̂ is the normal unit vector
pointing outward. B is a Bayesian classifier and defined as
follows:

Fig. 6. An illustration of oscillating the torch with respect to the four seam
lines. The torch follows the path A → B → C → ....

B(x) =


−1 if x ∈ Ωin or p(Ωin|I(x)) > p(Ωout|I(x))

1 if x ∈ Ωout or p(Ωin|I(x)) < p(Ωout|I(x))

0 if x ∈ C or p(Ωin|I(x)) = p(Ωout|I(x))

IV. EXPERIMENTS AND DISCUSSION

Experiments including several real time demonstrations
have been made to evaluate the proposed vision system.
The welding process employed in our application is MAG
welding. V-Groove structure steel workpieces were used. The
width of the seam is rather wide and not constant. Torch
oscillation therefore became necessary in the experiments.
The difficulty of seam detection and weld pools tracking
is increased. The reason is twofold. One is the weld pool
shape changes more dramatically during welding due to the
torch oscillation . The other is in our setup the camera was
mounted to the torch. As a consequence, the camera will
then oscillate too. This gives rise to more drastic movement
of the desired objects in the image domain.

Fig. 7 displays the results of seam detection. It can be seen
that the four lines that describe the v-groove workpiece have
successfully extracted. Two upper edges(two outer lines) and
lower edges(two inner lines) of the v-groove are marked by
red and green lines, respectively. For almost all frames, the
extracted lines are rather accurate. It is worth noting that
extracting the four lines are not the final goal, but provide
the geometrical profile of the seam. For instance, for most
cases, we are interested in the width of the upper edges or the
lower edges, and the center line of the seam. A relatively high
frame rate, in our application more than 10 Hz , allows us
to run a filtering algorithm such as Kalman filters afterwards
to further stabilize these features.

Fig. 8 presents the results of the weld pool boundary
tracking in a series of images. The initial contours marked in
red circles were obtained by computing the image moments.
The final contours marked in green captured the weld pool
boundary successfully.

It is worth noting that the exact shape of the weld
pool depends on the welding parameters as well as the
workpiece and therefore do not have a single ground truth.
The evaluation of the proposed vision system including both
seam detection and weld pool tracking was done by welding
experts inspection.
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The algorithm was implemented in C++ and the speed of
seam detection is around 10Hz, weldpool tracking 30Hz on
an ordinary PC.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a real-time passive vision system for
both seam detection and weld pool sensing in arc welding.
The system is capable of extracting the profile of the seam
that is close to the high intensity arc region and the weld pool
boundary in real time simultaneously. The system consists
of a CCD camera and a carefully-selected narrow bandpass
filter to capture frames for seam tracking and weld pool
sensing respectively by changing the exposure time on the
fly. To extract the geometrical profile of the seam, we
proposed a seam detection algorithm based upon RANSAC.
To track the shape of the weld pool, an active contour driven
by a Bayesian classifier was proposed. Experiments of v-
groove welding with torch oscillation were conducted and
verified the feasibility of the proposed vision system. For
future work, a control system will be developed based on
these visual information to navigate the torch and adjust the
welding parameters in real time to achieve automatic arc
welding.
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(a) Frame11 (b) Frame12 (c) Frame13 (d) Frame14

(e) Frame19 (f) Frame20 (g) Frame21 (h) Frame22

Fig. 7. Seam detection using the proposed method. The extracted four lines, two outer lines and two inner lines are marked in red and green respectively.
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Fig. 8. Weld pool boundary extraction in a series of images captured during welding using the proposed method. Red circles indicate the initial positions
of the active contours. The final curves are marked in green. Iterations 200.
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