
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319912334

Optimization of the Modified T Vacation Policy for a Discrete-Time

$$\mathrm {Geom}^{[X]}/\mathrm {G}/1$$ Queueing System with Startup

Conference Paper  in  Advances in Intelligent Systems and Computing · September 2018

DOI: 10.1007/978-3-319-66514-6_41

CITATIONS

0
READS

27

4 authors, including:

Some of the authors of this publication are also working on these related projects:

stochastic partial differential equation View project

retrial queue View project

Caimin Wei

Shantou University

43 PUBLICATIONS   277 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Caimin Wei on 02 February 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/319912334_Optimization_of_the_Modified_T_Vacation_Policy_for_a_Discrete-Time_mathrm_GeomXmathrm_G1_Queueing_System_with_Startup?enrichId=rgreq-932fc553ba218a36fc0a92a2294b993e-XXX&enrichSource=Y292ZXJQYWdlOzMxOTkxMjMzNDtBUzo1ODk0MDUwODEzMDkxODRAMTUxNzUzNjUzMDA1NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/319912334_Optimization_of_the_Modified_T_Vacation_Policy_for_a_Discrete-Time_mathrm_GeomXmathrm_G1_Queueing_System_with_Startup?enrichId=rgreq-932fc553ba218a36fc0a92a2294b993e-XXX&enrichSource=Y292ZXJQYWdlOzMxOTkxMjMzNDtBUzo1ODk0MDUwODEzMDkxODRAMTUxNzUzNjUzMDA1NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/stochastic-partial-differential-equation?enrichId=rgreq-932fc553ba218a36fc0a92a2294b993e-XXX&enrichSource=Y292ZXJQYWdlOzMxOTkxMjMzNDtBUzo1ODk0MDUwODEzMDkxODRAMTUxNzUzNjUzMDA1NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/retrial-queue?enrichId=rgreq-932fc553ba218a36fc0a92a2294b993e-XXX&enrichSource=Y292ZXJQYWdlOzMxOTkxMjMzNDtBUzo1ODk0MDUwODEzMDkxODRAMTUxNzUzNjUzMDA1NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-932fc553ba218a36fc0a92a2294b993e-XXX&enrichSource=Y292ZXJQYWdlOzMxOTkxMjMzNDtBUzo1ODk0MDUwODEzMDkxODRAMTUxNzUzNjUzMDA1NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Caimin_Wei?enrichId=rgreq-932fc553ba218a36fc0a92a2294b993e-XXX&enrichSource=Y292ZXJQYWdlOzMxOTkxMjMzNDtBUzo1ODk0MDUwODEzMDkxODRAMTUxNzUzNjUzMDA1NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Caimin_Wei?enrichId=rgreq-932fc553ba218a36fc0a92a2294b993e-XXX&enrichSource=Y292ZXJQYWdlOzMxOTkxMjMzNDtBUzo1ODk0MDUwODEzMDkxODRAMTUxNzUzNjUzMDA1NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Shantou_University?enrichId=rgreq-932fc553ba218a36fc0a92a2294b993e-XXX&enrichSource=Y292ZXJQYWdlOzMxOTkxMjMzNDtBUzo1ODk0MDUwODEzMDkxODRAMTUxNzUzNjUzMDA1NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Caimin_Wei?enrichId=rgreq-932fc553ba218a36fc0a92a2294b993e-XXX&enrichSource=Y292ZXJQYWdlOzMxOTkxMjMzNDtBUzo1ODk0MDUwODEzMDkxODRAMTUxNzUzNjUzMDA1NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Caimin_Wei?enrichId=rgreq-932fc553ba218a36fc0a92a2294b993e-XXX&enrichSource=Y292ZXJQYWdlOzMxOTkxMjMzNDtBUzo1ODk0MDUwODEzMDkxODRAMTUxNzUzNjUzMDA1NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Advances in Intelligent Systems and Computing 646

Bing-Yuan Cao    Editor 

Fuzzy 
Information and 
Engineering and 
Decision



Contents

Part I: Mathematics and Fuzziness

Bipolar Fuzzy BRK-ideals in BRK-algebras . . . . . . . . . . . . . . . . . . . . . . . 3
Khizar Hayat, Xiao-Chu Liu, and Bing-Yuan Cao

A New Approach for Solving Fuzzy Supplier Selection Problems
Under Volume Discount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
S.H. Nasseri and S. Chitgar

The Lattice of L-fuzzy Filters in a Given R0-algebra . . . . . . . . . . . . . . . . 26
Chun-hui Liu

Intuitionistic Fuzzy Rough Set Based on the Cut Sets
of Intuitionistic Fuzzy Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Le-tao Wu and Xue-hai Yuan

Applications and Mathematical Modeling in Operations Research . . . . . 46
Peter Lohmander

Covering Topology Countability Based on a Subbasis . . . . . . . . . . . . . . . 54
Yi-chun Huang, Zhi-wen Mo, and Xian-yong Zhang

A New Type of Soft Subincline of Incline . . . . . . . . . . . . . . . . . . . . . . . . . 64
Liu-hong Chen, Zu-hua Liao, Zhen-yu Liao, Yong Li, Xiao-ying Zhu,
and Wei Song

Bidirectional Quantum Teleportation with 5-Qubit States . . . . . . . . . . . . 74
Jinwei Wang and Jing Jiang

Infinitely Small Quantity and Infinitely Large Quantity of Fuzzy
Valued Functions for Linear Generation of Structural Elements . . . . . . 82
Tian-jun Shu and Zhi-wen Mo

xi

cylxq331@126.com



Part II: Decision and Fuzziness

Hesitant Fuzzy Group Decision Making Under Incomplete
Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Jin-hui Lv and Si-zong Guo

Signed Total Domination and Mycielski Structure in Graphs . . . . . . . . . 102
Arezoo. N. Ghameshlou and Athena Shaminezhad

An Arbitrated Quantum Signature Scheme Based on W States . . . . . . . 107
Yu-ting Jiang and Zhi-wen Mo

Optimal Stochastic Dynamic Control of Spatially Distributed
Interdependent Production Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Peter Lohmander

Analysis for the Presence of Quantum Noise on the Teleportation . . . . . 123
Yun-chao Li, Zhi-wen Mo, and Shu-qin Sun

Design of An Active Control Method for Complete Stabilization
of Unknown Fractional-Order Non-autonomous Systems . . . . . . . . . . . . 131
Majid Roohi, Hamidreza Hadian, Mohammad Pourmahmood Aghababa,
and Seyedeh Maedeh Mirmohseni Amiri

Three Uncertainty Measures in Neighborhood Systems . . . . . . . . . . . . . . 143
Yan-hong Zhou, Zhi-wen Mo, and Xian-yong Zhang

An Approach in Solving Data Envelopment Analysis
with Stochastic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Amir Hossein Nafei, Seyed Mohammad Esmaeil Pourmohammad Azizi,
and Rajab Ali Ghasempour

Why Do Young People Hate on the Internet?. . . . . . . . . . . . . . . . . . . . . . 163
Marta R. Jablonska and Zdzislaw Polkowski

Part III: Fuzzy Geometric Programming and Optimization

Properties of Fuzzy Relation Inequalities
with Addition-Min Composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Bing-Yuan Cao, Xiao-Peng Yang, and Xue-Gang Zhou

Geometric Programming with Intuitionistic Fuzzy Coefficient. . . . . . . . . 186
Ji-hui Yang, Xue-gang Zhou, and Pei-hua Wang

A New Method for Solving Fully Fuzzy Monomial Geometric
Programming with Trapezoidal Fuzzy Parameters . . . . . . . . . . . . . . . . . 196
Armita Khorsandi, Xiao-Chu Liu, and Bing-Yuan Cao

Note on Max-Łukasiewicz Bipolar Fuzzy Relation Equation . . . . . . . . . . 210
Xiao-Peng Yang, Khizar Hayat, Pei-hua Wang, and Xue-Gang Zhou

xii Contents

cylxq331@126.com



Multi-level Linear Programming Subject to Max-product
Fuzzy Relation Equalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Ze-jian Qin, Xiao-cou Liu, and Bingyuan Cao

Quadratic Programming with Max-product Fuzzy Relation
Inequality Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Xue-Gang Zhou, Xiao-Peng Yang, and Pei-Hua Wang

A New Algorithm to Shortest Path Problem with Fuzzy
Arc Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Armita Khorsandi, Xiao-Chu Liu, and Bing-Yuan Cao

Application Research of Improved Classification Recognition
Algorithm Based on Causality Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Yu-bin Zhong, Zi-feng Lyu, and Xiu-ting Kuang

On Intuitionistic Fuzzy Filters of Filteristic Soft BE-algebras . . . . . . . . . 260
Khizar Hayat, Xiao-Chu Liu, and Bing-Yuan Cao

Part IV: Fuzzy Systems and Operations Research and Management

Extremal Graphs of Chemical Trees with Minimal Atom-Bond
Connectivity Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Fu-yi Wei, Zi-yang Xie, Qu-Wei, Guo-bin Zhang, Wei-peng Ye,
and Yan-li Zhu

A Soft Approach to Evaluate the Customer Satisfaction
in E-retailing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Chuan Yue and Zhongliang Yue

An M/G/1 Queue with Second Optional Service and General
Randomized Vacation Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Yan Chen, Xian-Wei Lin, Cai-Min Wei, and Zhun Fan

The Matrix Representation of Fuzzy Error Logic Conjunction
and Applied Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Guo Qiwei, Zeng Liting, and Du Juan

Variational Iteration Method for Solving an Inverse
Parabolic Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
De-jian Huang and Yan-qing Li

Using Coloring Function to Partition Vertices in a Fuzzy Graph . . . . . . 328
Yan-cai Zhao, Xiao-xuan Liu, and Zu-hua Liao

A New Approach in Geometric Brownian Motion Model . . . . . . . . . . . . 336
Seyed Mohammad Esmaeil Pour Mohammad Azizi and Abdolsadeh Neisy

A Study on Comprehensive Traffic Capacity of Urban Roads . . . . . . . . 343
Duan Yuan, Zhang Geng, and Yi-cen Mao

Contents xiii

cylxq331@126.com



Solving First Order Fuzzy Initial Value Problem by Fourth
Order Runge-Kutta Method Based on Different Means . . . . . . . . . . . . . . 356
Maryam Asghari Hemmat Abadi and Bing Yuan Cao

Part V: Others

Non-traveling Wave Exact Solutions of (3+1)-Dimensional
Yu-Toda-Sasa-Fukuyama Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Najva Aminakbari, Guo-qiang Dang, Yong-yi Gu, and Wen-jun Yuan

Research of Solvability and Application of Fuzzy Errors Set
Matrix 1 Equation of Type II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Guo Qiwei and Xiaobing Zhang

The Relation Between Mathematical Constant and Stock
Market Crash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
Qing-can Xiao and Xiao-wen Zhou

The Impact of Online Information to the Internet Reservations
of Hotels in Guangzhou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Li Xiang and Wu Nan

Optimization of the Modified T Vacation Policy
for a Discrete-Time Geom½X�=G=1 Queueing System with Startup . . . . . . 414
Xian-Wei Lin, Yan Chen, Cai-Min Wei, and Zhun Fan

Application of Fuzzy Comprehensive Evaluation Model in Mentality
Adaptive Research of College Freshmen . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Yu-bin Zhong, Yue-peng Liu, Ming-shuo Xu, Jia-xi Wu,
and Long-zhang Lin

Assessing Holistic Tourism Resources Based on Fuzzy Evaluation
Method: A Case Study of Hainan Tourism Island . . . . . . . . . . . . . . . . . . 434
Jing Ma, Gen-nian Sun, and Sheng-quan Ma

Analysis of Flight Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Zhang Geng and Duan Yuan

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

xiv Contents

cylxq331@126.com
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Abstract. In this paper, we discuss a discrete-time Geom[X]/G/1
queueing system with modified T vacation policy and startup time. We
derive the generating functions and the mean values for the steady state
system size and the waiting time, and also get those of the busy period,
the vacation period and the vacation cycle by using embedded Markov
chain. Finally, we determine the optimal (T ∗, J∗) to minimize the cost
function with fixed cost elements by constructing a cost function.

Keywords: Queueing system model · Startup time · Stochastic decom-
position · Modified T vacations policy · Embedded markov chain method

1 Introduction

The server leaves for a vacation with fixed length T slots when the system is
empty. After a vacation, the server returns to the system. The server immedi-
ately begins to serve if there is at least one customer waiting for service in the
system; otherwise, the server takes another vacation and so on until at least one
customer waits for service. This vacation policy is called T vacation policy and
was firstly studied by Levy and Yechiali [1] and Heyman [2]. Sen and Gupta [3]
analyzed a time dependent M/M/1 queueing with T policy via a lattice path
combinatoric technique. In recent years, some authors began to study the mod-
ified T policy queueing systems. Ke [4] considered modified T vacation policy
M/G/1 with an unreliable server and startup, and obtained the expected num-
ber of customers, the expected waiting time and other performances. It followed
that Ke [5] studied a batch arrival queueing system under modified T vacation

c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 41
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policy with startup and closedown, and determined the optimal (T ∗, J∗) by con-
structing a cost function. In addition, there are many other queueing models
concerned T policy which have been studied in recent years, details of which
may be seen [6–15].

In this paper, we consider a discrete time batch arrival queueing with mod-
ified T policy and startup, and derive the generating functions and the mean
values for the steady state system size and the waiting time, and also get the
generating functions and the expected values of the busy period, the vacation
period and the vacation cycle. In addition, by constructing an cost function,
we determine the optimal (T ∗, J∗) to minimize the cost function. In fact, the
modified T vacation policy is applied to many fields now. Take manufacturing
systems for example, a machine will process a subproduct with fixed T slots
after all ordinary products have been processed. And after finishing a processed
subproduct while no ordinary products wait in queue, the machine continues
to process another subproduct. This pattern continues cycle until at least one
new ordinary product waits in the queue, otherwise it the server has already
processed J subproducts. After that the machine stops to wait for arrival of the
new ordinary products.

The remainder of this paper is organized as follows. A full description of the
model and an embedded Markov chain are given in the Sect. 2. In Sect. 3, we
obtain stochastic decomposition of the queue size and the expected values of
waiting time. In Sect. 4, the expected values length of the vacation cycle, the
vacation period and the busy period are obtained. We construct a cost function
to introduce the optimal policy in Sect. 5. Finally in Sect. 6, we present some
numerical results to illustrate the effect of λ on the expected queue size and
the waiting time in the system, and obtain the optimal (T ∗, J∗) with fixed cost
elements.

2 Describing Model and Embedded Markov Chain

In the classical Geom[X]/G/1 queueing system, we introduce the following vaca-
tion strategy: as soon as the system is empty, the server deactivates to take a
vacation with fixed length of T . If no customers are found in the system when
a vacation is finished, while the server takes another vacation with the same
length T . This pattern continues cycle until a vacation is finished, the server
finds at least one customer waiting in the queue or he will be already taken J
vacations. If no customers are found at the end of the J-th vacation, the server
stops in the system to wait for the arrival of one customer. If there is at least
one customer waiting for service in the system when a vacation is finished or the
server is idle in the system, he is immediately reactivated. But, the server will
be need a startup time before supplying service for the waiting customers. As
soon as the startup is finished, the server starts supplying service for the waiting
customers until the system becomes empty again.

In the Geom[X]/G/1 queueing model with T policy and startup time, we
denote by Λ the number of customers who arrive in a single slot. The Λ is

cylxq331@126.com



416 X.-W. Lin et al.

assumed to be an integral multiple, and its probability distribution and proba-
bility generating function of Λ are given by, respectively, λ(k) = p(Λ = k), k =
0, 1, 2, · · · ;Λ(z) =

∑∞
k=0 λ(k)zk, |z| ≤ 1.

In addition, we denote by λ and λ(i) the mean and the i-th factorial moment
of Λ, respectively, λ = E[Λ], λ(i) = E[Λ(Λ − 1) · · · (Λ − i + 1)], i = 2, 3, · · · .

Let X be the service time of one customer and the length of the service time
be an integral multiple of a slot duration, then its probability distribution and
probability generating function are given by, respectively, b(l) = p(X = l), l =
1, 2, · · · ;B(z) =

∑∞
l=1 b(l)zl, |z| ≤ 1.

Let b and b(i) be the mean and the i-th moment of the service time distrib-
ution, respectively, b = E[X]; b(l) = E[X l], i = 2, 3, · · · .

Let S be the startup time and the length of the startup time be an inte-
gral multiple of a slot duration, then its probability distribution and probabil-
ity generating are given by, respectively, s(l) = p(S = l), l = 1, 2, · · · ;S(z) =∑∞

l=1 s(l)zl, |z| ≤ 1.
Let s and s(i) be the mean and the ith factorial moment of the startup time

distribution, respectively: s = E[S]; s(i) = E[S(S−1) · · · (S−i+1)], i = 2, 3, · · · .
Now we consider a Markov chain {Ln;n = 1, 2, · · · }, where Ln denotes the

number of customers present in the system after the server has completed service
for the n-th customer. And suppose that An is the number of arriving customers
during the n-th customer’s service and α is that of present customers in the
system at the end of the startup time, thus we have

Ln+1 =
{

Ln + An+1 − 1, Ln ≥ 1,
α + An+1 − 1, Ln = 0

Let A(z) be the PGF for An, and α(z) for α. For the system, we imagine
a Geom[X]/G/1 queueing system with a vacation period that may terminate in
one of the following two situations.

Case 1. If there is at least one customer waiting in the system at the end of
the j-th vacation (1 ≤ j ≤ J), the server immediately operates a startup. In
this case, at the end of the startup time the PGF for the number of customers
waiting in the system is given by [1−λJT (0)][ΛT (z)−λT (0)][1−λT (0)]−1S[Λ(z)].

Case 2. If there is no customer waiting in the system at the end of the J-th
vacation, the server stays idle in the system. Once a customer arrives, the server
immediately operates a startup. Thus, in this case, at the end of the startup
time the PGF for the number of customers found of in the system is given by
λJT (0)[Λ(z) − λ(0)][1 − λ(0)]−1S[Λ(z)].

From the two cases above, at the end of the startup time the PGF α(z) for
the number of customers waiting in the system is given by

α(z) = [1 − λJT (0)]
ΛT (z) − λT (0)

1 − λT (0)
S[Λ(z)] + λJT (0)

Λ(z) − λ(0)
1 − λ(0)

S[Λ(z)] (1)

If we denote by {kj , j = 0, 1, 2, · · · } and {bj , j = 0, 1, 2, · · · } the probability
distributions for An and α + An − 1, respectively, then the PGFs for them are
given by A(z) =

∑∞
j=0 kjzj = B[Λ(z)], ξ(z) =

∑∞
j=0 bjzj = α(z)B[Λ(z)]

z .
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Therefore, the transition probability matrix of Markov chain {Ln, n =
1, 2, · · · } is given by

P̃ =

⎡
⎢⎢⎣

b0 b1 b2 b3 · · ·
k0 k1 k2 k3 · · ·

k0 k1 k2 · · ·
k0 k1 · · ·

.

.

.
.
.
.

⎤
⎥⎥⎦ .

By the Foster rule, we can prove that the Markov chain {Ln, n = 1, 2, · · · } is
positive recurrence if and only if ρ = λb < 1.

3 Stochastic Decomposition of Queue Size and Expected
Waiting Times in System

In the section, we will obtain the PGFs for the steady-state system size and the
waiting time.

Theorem 1. If ρ < 1, the steady-state system size L can be decomposed into the
sum of two stochastic independent variables, i.e., L = LGeom[X]/G/1 + Ld, where
LGeom[X]/G/1 denotes the steady-state system size of classical Geom[X]/G/1
model which generating function and expected value have been given in [15].
Then

Ld(z) =
λ[1 − α(z)]

E[α][1 − Λ(z)]

is the generating function of additional system Ld.

Proof. We assume that a steady-state distribution exists for the Markov chain
{Ln;n = 1, 2, · · · } and that it is denoted by πk = limn→∞ p(Ln = k), k =
0, 1, 2, · · · .

Because the steady-state {πk, k ≥ 0} satisfies ΠP̃ = Π, we have

πj = π0bj +
j+1∑
i=1

πikj+1−i, j ≥ 0

where Π = (π0, π1, π2, · · · ).
Taking generating function, we obtain

L(z) =
∑∞

j=0 πjz
j = π0

∑∞
j=0 bjz

j +
∑∞

j=0

∑j+1
i=1 πikj+1−iz

j

= π0
α(z)B[Λ(z)]

z + 1
z B[Λ(z)][L(z) − π0]

(2)

Substituting Eq.(1) into Eq.(2), we get

L(z) =
π0B[Λ(z)][α(z) − 1]

z − B[Λ(z)]

By the normalization L(1) = 1 and the L’Hospital rule, we obtain

π0 =
1 − ρ

E[α]

cylxq331@126.com
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where

E[α] = [1 − λJT (0)]
Tλ + sλ[1 − λT (0)]

1 − λT (0)
+ λJT (0)

λ + sλ[1 − λ(0)]
1 − λ(0)

is the mean number customers at the end of the startup time.
Substituting π0 into Eq.(2), we obtain

L(z) =
(1 − ρ)B[Λ(z)][α(z) − 1]

E[α]{z − B[Λ(z)]} = LGeom[X]/G/1 · λ[1 − α(z)]
E[α][1 − Λ(z)]

(3)

Thus, it yields

Ld(z) =
λ[1 − α(z)]

E[α][1 − Λ(z)]

The proof is complete.

In addition, from the Theorem 1, we obtain the mean queue size in system
given by

E[L] = E[LGeom[X]/G/1]+E[Ld] = E[LGeom[X]/G/1]+
2λE[α(α − 1)] − λ(2)E[α]

2λE[α]

where

E[α(α − 1)] =
1−λJT (0)
1−λT (0)

{T (T − 1)λ2 + Tλ(2) + 2Tsλ2 + [1 − λT (0)](λ2s(2) + λ(2)s)}
+

λJT (0)
1−λ(0) {2λ2s + λ(2) + [1 − λ(0)](λ2s(2) + λ(2)s)}

Theorem 2. If ρ < 1, the steady-state waiting time W can be decomposed into
the sum of two stochastic independent variables, i.e., W = WGeom[X]/G/1 +
Wd, where WGeom[X]/G/1 denotes the steady-state waiting time of classical
Geom[X]/G/1 model which generating function and expected value have been
given in [15]. Then

Wd(z) =
[1 − λ(0)][1 − β(z)]

E(α)(1 − z)

is the generating function of additional system Wd.

Proof. We consider the waiting time of an arbitrary customer in FCFS systems
and give explicit expressions for the PGF W (z) of the waiting time for FCFS
systems. The distribution of the waiting time can be easily obtained by assuming
that a group of customers arrive in the same slot and they constitute one super-
customer in a Geom/G/1 system. That is, the PGF Λg(z) and the mean λg for
the number of the super-customers who arrive in a slot in the Geom/G/1 system
are given by, respectively,

Λg(z) = λ(0) + [1 − λ(0)]z (4)

λg = 1 − λ(0) (5)
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The PGF Bg(z) for the service time of a super-customer is given by

Bg(z) = Λ̃[B(z)] =
Λ[B(z)] − λ(0)

1 − λ(0)
(6)

Therefore, the PGF for the number of present super-customer in the corre-
sponding Geo[X]/G/1 system at the end of super-customer’s service is given by

Lg(z) =
(1 − ρ)Bg[Λg(z)][αg(z) − 1]

E[α]{z − Bg[Λg(z)]} (7)

where

αg(z) = [1 − λJT (0)]
ΛT

g (z) − λT (0)
1 − λT (0)

S[Λg(z)] + λJT (0)
Λg(z) − λ(0)

1 − λ(0)
S[Λg(z)]

Let β[Λg(z)] = αg(z), then we obtain

β(z) = [1 − λJT (0)]
zT − λT (0)
1 − λT (0)

S(z) + λJT (0)
z − λ(0)
1 − λ(0)

S(z)

Since the number of present super-customer in the system at the end of super-
customer’s service equals just that arriving super-customer in the time interval
that they have been in the system, by Wg(z) denoting the PGF for the waiting
time of the super-customer, we have the following expression

Lg(z) = Wg[Λg(z)]B[Λg(z)] (8)

Note that the traffic intensity ρ is the same in classic Geom/G/1 and
Geom[X]/G/1 queue systems. Substituting Eqs.(4)–(7) into Eq.(8), we get the
PGF Wg(z) for the waiting time Wg of a supercustomer in an FCFS system as

Wg(z) =
(1 − ρ)[1 − λ(0)][1 − β(z)]

E[α]{Λ[B(z)] − z} (9)

The waiting time W of an arbitrary customer consists of two independent
components. One is the waiting time Wg of a super-customer to who the arbitrary
customer belongs; the other, denoted by J , is the sum of the service time for
those customers within the same super-customer who are served in front of the
arbitrary customer. Note that these components are independent. If J(z) denotes
the PGF for J , we have

W (z) = Wg(z)J(z) (10)

In order to get the J(u), we know that the number of customers within the
super-customer that are served in front of the arbitrary customer is equivalent to
the forward recurrence time in a discrete-time renewal process when the interre-
newal time is given by the number of customers included in the super-customer.
Hence we have

J(z) =
1 − Λ[B(z)]
λ[1 − B(z)]

(11)
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Substituting Eqs. (9) and (11) into Eq.(10), we get

W (z) = (1−ρ)[1−λ(0)][1−β(z)]{1−Λ[B(z)]}
λE[α][1−B(z)]{Λ[B(z)]−z} = WGeo[x]/G/1(z)Wd(z)

Thus, it yields

Wd(z) =
[1 − λ(0)][1 − β(z)]

E(α)(1 − z)

The proof is complete.

In addition, from the Theorem 2, we obtain the mean waiting time in system
given by

E[W ] = E[WGeo[x]/G/1] + E[Wd] = E[WGeo[x]/G/1] +
E[β(β − 1)][1 − λ(0)]

2E(α)

where

E[β(β−1)] =
1 − λJT (0)

1 − λT (0)
{T (T−1)+2Ts+[1−λT (0)]s(2)}+

λJT (0)

1 − λ(0)
{2s+[1−λ(0)]s(2)}

4 Expected Length of the Vacation Cycle, the Vacation
Period and the Busy Period

We define a time interval as a vacation period that starts at the busy period and
terminates at the beginning of the startup time, and denote it by Iv. It consists
of a vacation and an idle period. Then we can obtain the probabilities and the
PGF, respectively,{

P (Iv = kT ) = [1 − λ(0)]λ(k−1)T (0)
∑T−1

j=0 λj(0), 1 ≤ k ≤ J,
P (Iv = JT + i) = λJT+i−1(0)[1 − λ(0)], i ≥ 1

and

Iv(z) =
∑∞

j=1 P (Iv = j)zj

= [1 − λ(0)]{∑J
k=1 λ(k−1)T (0)

∑T−1
j=0 λj(0)zkT +

∑∞
i=1 λJT+i−1(0)zJT+i}

= [1−λ(0)][1−λJT (0)zJT ]zT

1−λT (0)zT + λJT (0)[1−λ(0)]zJT+1

1−λ(0)z

Thus, it leads to the mean vacation period length

E(Iv) =
−JTλJT (0)[1 − λ(0)] + T [1 − λJT (0)]

1 − λT (0)
+

λJT (0){(JT + 1)[1 − λ(0)] + λ(0)}
1 − λ(0)

(12)

We denote by Θv a busy period defined as a time interval from the end of
the startup time to the beginning of the next vacation. Since α is the number of
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customers in the system at the beginning of a busy period, the PGF Θv(z) and
the mean E(Θv) for the length Θv of a busy period are given by

Θv(z) = α[Θ(z)]

= [1 − λJT (0)]ΛT (Θ(z))−λT (0)

1−λT (0)
S[Λ(Θ(z))] + λJT (0)Λ(Θ(z))−λ(0)

1−λ(0)
S[Λ(Θ(z))]

and

E(Θv) = E(Θ)[1−λJT (0)]
1−λT (0)

{λT + sλ[1 − λT (0)]} + λE(Θ)λJT (0){1+s[1−λ(0)]}
1−λ(0)

= ρ[1−λJT (0)]
(1−ρ)[1−λT (0)]

{T + s[1 − λT (0)]} + ρλJT (0){1+s[1−λ(0)]}
(1−ρ)[1−λ(0)]

(13)

where Θ is the length of a busy period caused by the service time of a sin-
gle customer in the system, Θ(z) and E(Θ) are the PGF and the mean of Θ,
respectively.

A vacation cycle consists of a vacation period, startup time and the follow
busy period. The PGF Cv(z) and the mean E[Cv] for the length Cv of the
vacation cycle are given by

Cv(z) = Iv(z) · S(z) · Θv(z)
= S(z) × S[Λ(Θ(z))] × { [1−λT (0)][1−λJT (0)zJT ]zT

1−λT (0)zT + λJT (0)[1−λ(0)]zJT+1

1−λ(0)z }
×{[1 − λJT (0)]ΛT (Θ(z))−λT (0)

1−λT (0)
+ λJT (0)Λ(Θ(z))−λ(0)

1−λ(0) }

and

E[Cv] = E(Iv) + s + E(Θv)
= s + −JTλJT (0)[1−λT (0)]+T [1−λJT (0)]

1−λT (0)
+ λJT (0){(JT+1)[1−λ(0)]+λ(0)}

1−λ(0)

+ ρ[1−λJT (0)]
(1−ρ)[1−λT (0)]

{T + s[1 − λT (0)]} + ρλJT (0){1+s[1−λ(0)]}
(1−ρ)[1−λ(0)]

(14)

5 Optimal Policy

In this section, we will construct a total long-run average cost function per
customer per unit time for the system, in which T and J are all decision variables.
Our purpose is to determine the optimal T and J to minimize this cost function.
The following cost elements are considered: ch is the holding cost per unit time
for each present customer in the system; cs is the setup cost for per busy cycle;
ci is the cost per unit time for keeping the server off; cu is the startup cost per
unit time for the preparatory work of the server before starting the service.

Employing the definition of each cost element and its corresponding system
characteristics, the total long-run average cost per unit time is given by

F (J, T ) = chE[L] + cs
1

E[Cv] + ci
E[Iv]
E[Cv] + cu

s
E[Cv]

= chE[LGeo[X]/G/1] + ch{2λE[α(α−1)]−λ(2)E[α]}
2λE[α] + cs(1−ρ)(1−λ(0))[1−λT (0)]

A

+ ci(1−ρ)(1−λ(0))[1−λT (0)]E[Iv]
A + css(1−ρ)(1−λ(0))[1−λT (0)]

A
(15)
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where
E[LGeo[x]/G/1] = ρ +

λ2b(2) − λρ + bλ(2)

2(1 − ρ)

A = s(1 − ρ)[1 − λ(0)][1 − λT (0)] + (1 − ρ)[1 − λ(0)]{−JTλJT (0)[1 − λJT (0)]}
+T [1 − λJT (0)] + (1 − ρ)λJT (0)[1 − λT (0)]{(JT + 1)[1 − λ(0)] + λ(0)}
+ρ[1 − λ(0)][1 − λJT (0)]{T + s[1 − λT (0)]} + ρλJT (0)[1 − λJT (0)]{1 + s[1 − λ(0)]}

We consider the model with a minimum cost function. For fixed cs, ch, ci

and cu, the optimization problem is described as follows:

min F (J, T ) = chE[L] + cs
1

E[Cv] + ci
E[Iv]
E[Cv]

+ cu
s

E[Cv] ,

s.t. T ≥ 1, J ≥ 1, T, J ∈ N+, and (ch, cs ci, cu > 0)
(16)

We denote the solution by (J∗, T ∗) that minimizes the cost function F (J, T ).

6 Numerical Illustration

In the section, the first purpose is to study the effects of some parameters on
the expected values of the customers’ number and waiting time in the system.
We assume that the number of customers Λ in a single slot follows a poisson
distribution with a parameter λ, and that service time X of a customer and setup
time S follow geometric distributions with the parameters p1 and p2, respectively.

For convenience, we choose T = 1, 10, 20, J = 5, p1 = 0.8 and p2 = 0.8, vary
the value of λ from 0.3 to 0.7.
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Fig. 1. The expected system size
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Fig. 2. The expected waiting time

Figures 1 and 2 show that the expected system size and the expected waiting
time are all functions of the arrival rate λ. We find that whenever λ increases,
the expected system size and the expected waiting time increase at a higher
level. Meanwhile, the both increase faster with T increasing.
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Fig. 3. Mean waiting time E[Wv] versus traffic intensity ρ.

The second purpose is to study the effects of some parameters on the cost
function. We assume that the number of customers Λ in a single slot follows a
poisson distribution with a parameter λ, and that service time X of a customer
and setup time S follow geometric distributions with parameters p1 and p2,
respectively. We choose λ = 0.15, p1 = 0.3, p2 = 0.5, ch = 2, cs = 20, ci = 3 and
cu = 10, vary the values of T and J from 1 to 10 and 1 to 30, respectively.

Figure 3 shows that the minimum cost value per unit time of 5.5731 is
obtained at (T ∗, J∗) = (1, 3).

7 Conclusion

The paper introduces the optimal modified T vacation policy for the discrete-
time Geom[X]/G/1 queueing with startup. By using the embedded Markov chain
method, we obtain the PGFs and the expected values for the steady state system
size, waiting time, busy period and vacation cycle. Additionally, By constructing
a cost function, we determine the optimal values of T and J to minimize the
cost function. We will further try to study the N policy for the Geom[X]/G/1
queueing system.
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