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Abstract: Tree topologies, which construct spatial graphs with
large characteristic path lengths and small clustering coefficients,
are ubiquitous in deployments of wireless sensor networks. Small
worlds are investigated in tree-based networks. Due to link ad-
ditions, characteristic path lengths reduce rapidly and clustering
coefficients increase greatly. A tree abstract, Cayley tree, is con-
sidered for the study of the navigation algorithm, which runs auto-
matically in the small worlds of tree-based networks. In the further
study, epidemics in the small worlds of tree-based wireless sen-
sor networks on the large scale are studied, and the percolation
threshold is calculated, at which the outbreak of the epidemic takes
place. Compared with Cayley tree, there is a smaller percolation
threshold suffering from the epidemic.

Keywords: epidemic, navigation algorithm, small world, tree
topology.

DOI: 10.1109/JSEE.2012.00040

1. Introduction

In recent years, it is seen that the deployments of wire-
less sensor networks (WSNs) exist in a variety of applica-
tions including habitat and environmental monitoring [1],
precision agriculture, security surveillance [2], etc. More
and more efficient ways of sensor deployments rise into
view. The tree topology is a kind of architecture used fre-
quently, which is ubiquitous in the deployment of wireless
sensor nodes. Some routing protocols, topology control al-
gorithms and aggregation schedules of WSNs are helpful
to construct tree topologies.

Distributed quad-tree (DQT) is an in-network tree
framework, which achieves the distance sensitivity and re-
siliency for event-based querying, as well as greatly re-
duces the cost of complex range querying [3]. The hy-
brid address assignment (HAA) scheme uses a tree address
structure to make the proposed scheme less susceptible to
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physical distribution of WSN devices [4]. Semantic/spatial
correlation-aware tree (SCT) is a simple, scalable and dis-
tributed tree structure that addresses the practical chal-
lenges in the context of aggregation in WSNs [5]. With this
structure, the total cost of the aggregation tree can be mini-
mized. The localized energy-efficient multicast algorithm
(LEMA) uses a function to locally estimate the energy-
efficient paths to multiple destinations [6]. It is able to deal
with the inherent errors of WSNs. Several tree topology
protocols based on minimal spanning tree (MST) [7] have
attracted much attention recently. The base-station con-
trolled dynamic clustering protocol (BCDCP) introduces
an MST to connect cluster-heads and adopts iterative clus-
ter splitting algorithms to choose cluster-heads or form
clusters [8]. It distributes energy dissipation evenly among
all sensor nodes to improve the network lifetime and aver-
age energy saving. The cluster-based and tree-based power
efficient data collection and aggregation (CTPEDCA) pro-
tocol is based on the clustering and MST routing strategy
for cluster heads, which uses the MST to improve the trans-
mission routing mechanism between cluster heads so that
only one cluster head communicates directly with the far-
away base station in each round [9]. Most of the tree topol-
ogy protocols are multi-hop protocols, which are famous
for energy saving in data gathering and transferring.

In the work of tree-based networks, random link ad-
ditions among nodes take place inevitably for the use of
omnidirectional antennae. Obstacles, adjustments of radio
energy, joins of new members and errors of the location
precision all incur link additions. Our researches and con-
tributions focus on studying small world phenomena [10]
existing in tree-based WSNs. It is complex to consider dy-
namics in the small worlds. A tree abstract, Cayley tree, is
considered, and the navigation algorithm, which runs au-
tomatically for searching short paths in the small worlds of
tree-based networks, is studied. Due to shortcuts, the epi-
demic propagation becomes much drastic in the network.
If the distribution of infected nodes is random, the prob-
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lem when an epidemic takes place becomes equivalent to
a standard percolation problem [11]. In this paper, the per-
colation threshold, at which the outbreak of the epidemic
takes place in the small worlds of tree-based networks, is
calculated.

The rest of the paper is organized as follows. Section
2 outlines the related work. Our small-world model and
basic ideas are described in Section 3. The navigation al-
gorithm which runs automatically in the proposed small
world is studied in Section 4. The epidemic threshold and
mathematical calculation are given in Section 5. Numer-
ical simulations and analyses are presented in Section 6.
The paper concludes in Section 7.

2. Related work

Small world phenomena were first investigated in sociol-
ogy that individuals are often linked by a short chain of
acquaintances. M. Stanley and his group conducted a se-
ries of mail delivery experiments and found that an aver-
age of “six degrees of separation” exists between senders
and receivers [10]. J. W. Duncan and H. S. Steven pro-
posed an alternative model for small world phenomena by
using the graph theory [12]. Recent researches show that
small world phenomena are ubiquitous in nature, society
and technology. Small worlds were also observed in wire-
less networks [13]. Random link additions among nodes
take place inevitably for the use of omnidirectional anten-
nae of sensors. The α-model [12], which is used in the
category of sociology, cannot be directly used to analyze
the small world characteristics of WSNs. In our research,
link additions are conducted on tree topologies to observe
small world phenomena.

The varieties of the length characteristic and the clus-
tering characteristic affect message transmissions in small
worlds. K. Jon proposed an infinite family of network
models in [14]. A decentralized algorithm, which achieved
a rapid delivery time, was proposed. M. R. Roberson and
B. A. Daniel studied the navigation by the greedy algo-
rithm on fractal small world networks with random long-
range connections taken from a power-law distribution
[15]. S. A. Hill and D. Braha presented a dynamic pref-
erential attachment mechanism to explain real-world dy-
namic networks and qualitatively reproduce these dynamic
centrality phenomena [16]. However, the above models
are not suitable for small worlds of tree-based WSNs. Our
work focuses on the navigation algorithm, which runs au-
tomatically in small worlds of tree-based networks.

Compared with regular computer systems, it is even eas-
ier for sensors to be compromised by virus attacks. Sen-
sor nodes do not have the complicated hardware archi-
tecture or operating system to protect program safety due

to the cost and resource constraints. Nodes in the same
network are homogeneous in both hardware and software.
Y. Yang et al. studied the worm propagation in the WSNs
and considered the propagation as a random process in a
random network [17]. P. De et al. investigated the po-
tential disastrous threat of node compromise spreading in
the WSNs. They focused on the possible epidemic break-
out based on the random network [18]. Considering rout-
ing protocols, topology control algorithms and aggregation
schedules, random graphs cannot completely indicate the
structure characteristics of WSNs. For the existence of
small world phenomena in wireless networks, we analyze
dynamics and epidemics in the small world of tree-based
WSNs. Some researches were conducted in dynamics of
epidemic propagations on small world networks. M. E.
J. Newman and J. W. Duncan proposed a simple model for
the disease propagation on an infinite small world in which
the communication of the disease takes place with 100%
efficiency [19]. R. Pastor-Satorras and A. Vespignani stud-
ied a dynamical model for the spread of epidemics in com-
plex networks by analytical methods and large-scale sim-
ulations [20]. They made use of the susceptible-infected-
susceptible (SIS) model [21] and studied analytically the
prevalence and the persistence of infected individuals on
complex networks. M. M. Telo da Gama and A. Nunes
studied the effect of the network structure on immuniza-
tion models for life diseases and found that in addition to
the reduction of the effective transmission rate, through the
screening of infectives, spatial correlations might strongly
enhance the stochastic fluctuations [22]. E. S. Thomas et
al. studied the relative effects of vaccinations and avoid-
ance of the infected individuals in a susceptible-infected-
recovered (SIR) epidemic model on a dynamic small world
network [23].

3. Network model and basic idea

We consider a network composed of N nodes distributed
in the network. The following properties of the WSN are
supposed:

(i) nodes are not moveable after they are randomly dis-
tributed in the network,

(ii) all nodes are symmetric and have similar character-
istics (e.g., range of radio coverage, energy of batteries,
etc.),

(iii) there is only one root, from which only one tree is
constructed in the sensor network.

An abstract small-world model for tree-based networks
is needed for the study of dynamics. We choose Cayley
tree to construct the underlying lattice of tree-based net-
works. Random link additions are conducted on it. Cayley
tree is such an abstract with one root node and K children
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nodes for each parent node, K � 2. After the root node is
selected out randomly, it broadcasts its location informa-
tion to other nodes in the field. K neighbor nodes, which
are nearest to the root node, are connected to the root node.
Then the K nodes broadcast their location information to
other nodes which are not connected and each is connected
with K−1 nearest neighbor nodes. This process continues
until all nodes are included in the tree. Random link ad-
ditions are conducted on the tree model. The small-world
model neglects the actual distance information between the
nodes. If two nodes are connected with each other, the
logical distance between them is 1. It simplifies extremely
the problem and represents a spatial graph model. Fig. 1
shows the small world of a tree-based network and our pro-
posed model. The small world of an SCT [5] is shown in
Fig. 1(a). Circles denote nodes. The black line denotes the
link between two nodes. Dashed lines denote link addi-
tions of the small world. The actual distance information is
neglected, and only logical links of the SCT are described.
Cayley tree with link additions is shown in Fig. 1(b). In
this figure, each node has three neighbors on the underly-
ing topology with K = 3, and dashed lines denote link
additions.

Fig. 1 Small worlds of a tree-based network and our proposed
model

4. Navigation algorithm

When small world phenomena occur, the length character-

istic of the network varies greatly. The choice of transmis-
sion paths is of vital importance for the normal transmis-
sion of messages in small worlds. The navigation algo-
rithm, which runs automatically in the small worlds of tree
topologies, is studied.

In tree-based networks, the existence of small world
phenomena does not mean that the nodes, which are not as
smart as humans, can find short paths automatically. Ac-
cording to the theories of the random graph and regular
graph, no mechanism tells us how to construct such short
paths although they really exist in the small world. Small
world networks are rich in local connections, with a few
long-distance connections (shortcuts). Because the logical
distance between two nodes is defined to be 1 if they are
connected directly with each other, the logical distance be-
tween every two nodes is clear and unique. Every node has
K local connections and a few long-distance connections.

The message holder u in a given step has the following
knowledge:

(i) the set of local contacts among all nodes;
(ii) the location information, on the tree-based network,

of the target t;
(iii) the locations and long-distance contacts of all nodes

that have come in contact with the message.
The expected delivery time of a decentralized algorithm

is the expected number of steps taken by the algorithm to
deliver messages. We suppose that the ith directed edge
from u has endpoint v with probability proportional to
[(K − 1)d(u,v)]−r with K � 2, r is the clustering expo-
nent and d(u, v) is the lattice distance between two nodes
u and v. The quantity is divided by the appropriate nor-
malizing constant

∑
v

[(K − 1)d(u,v)]−r to get a probability

distribution.
The normalization term can be obtained by

∑
v �=u

[(K−1)d(u,v)]−r =
M ′∑
i=1

K(K−1)i−1[(K−1)i]−r =

K

K − 1

M ′∑
i=1

(K − 1)(1−r)i =

K

K − 1

M ′∑
i=1

[(K − 1)1−r]i (1)

where M ′ is the depth of the tree. With r = 1, (K −
1)1−r = 1, and

∑
v �=u

[(K − 1)d(u,v)]−r =
KM ′

K − 1
. (2)
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For 0 < r < 1, (K − 1)1−r > 1, and

∑
v �=u

[(K − 1)d(u,v)]−r =

K

K − 1
(K − 1)(1−r)(M ′+1) − (K − 1)1−r

(K − 1)1−r − 1
. (3)

For r > 1, 0 < (K − 1)1−r < 1, and

∑
v �=u

[(K − 1)d(u,v)]−r =

K

K − 1
(K − 1)1−r − (K − 1)(1−r)(M ′+1)

1 − (K − 1)1−r
. (4)

With r = 1, j shells of radius R, j − 1 < R < j, sur-
round the target node t, where j = 1, 2, . . .. We suppose
that the message holder is in shell j. The probability that
the holder is connected to a long-distance link to a node in
shell j − 1 can be calculated as follows:

P1 =
j∑

i=j−1

K(K − 1)i−1[(K − 1)i]−1

KM ′

K − 1

=

j∑
i=j−1

1
M ′ =

1
M ′ . (5)

Let X1 denote the total number of steps spent in the pro-
cess, EX1 can be obtained through the following relation

EX1 =
∞∑

i=1

iP1(1 − P1)i−1 = P1

∞∑
i=1

i(1 − P1)i−1 =

1
P1

= M ′. (6)

Since we get the largest shell with j = M ′, the number of
shells between the source and the target is of the order of
M ′. Thus, EX ∼ (M ′)2, where EX is the expected total
number of steps required to reach the target.

For 0 < r < 1, a circle of radius l, 0 < l < M ′, sur-
rounds the target node t. The probability that i connects to
any node in the circle can be given by

P2 =

[(K − 1)1−r − 1]
l∑

i=1

[(K − 1)1−r]i

[(K − 1)(1−r)(M ′+1) − (K − 1)1−r]
=

(K − 1)(1−r)(l+1) − (K − 1)1−r

(K − 1)(1−r)(M ′+1) − (K − 1)1−r
. (7)

For 0 < l < M ′, the source node lies almost outside of the
circle. When the source chooses a long-distance link in the

circle to transfer messages, the expected number of steps
spent in the process can be calculated through the relation

EX2 =
∞∑

i=1

iP2(1 − P2)i−1 =
1
P2

=

(K − 1)(1−r)(M ′+1) − (K − 1)1−r

(K − 1)(1−r)(l+1) − (K − 1)1−r
. (8)

Any l-step path between the source and the target must
contain at least one long-distance link in the circle. If EX

is the total steps for the transmission, EX � EX2 + l.
With EX2+l = 1, lmin can be gotten. EX � EX2+lmin.
For (K − 1)M ′ ∼ N , EX ∼ N (1−r), where N is the total
number of nodes in the network and N → ∞.

For r > 1, the probability that a node has a long-
distance link longer than ε, 0 < ε < M ′, can be calculated.
Then,

P3 =

[1 − (K − 1)1−r]
∞∑

i=ε

[(K − 1)1−r]i

(K − 1)1−r − (K − 1)(1−r)(M ′+1)
=

(K − 1)(1−r)ε

(K − 1)1−r − (K − 1)(1−r)(M ′+1)
. (9)

When the message holder chooses a long-distance link
longer than ε to transfer messages, the expected number
of steps spent in the process can be given as follows:

EX3 =
∞∑

i=1

iP3(1 − P3)i−1 =
1
P3

=

(K − 1)1−r − (K − 1)(1−r)(M ′+1)

(K − 1)(1−r)ε
. (10)

The number of steps spent in the process to jump a dis-
tance larger than ε within γ steps can be calculated by
EX = γEX3, where εγ ∼ M ′ and N → ∞. With
γmin = 1, ε ∼ M ′. EX ∼ N (r−1).

The results show that the most efficient navigation is
achieved when the power exponent, r, for the random con-
nection is 1 with N → ∞.

With r = 0, the abstract tree model has the uniform dis-
tribution over long-distance contacts, which is used in the
basic small-world model of J. W. Duncan and H. S. Steven,
because the long-distance connections are independent of
their position information in the model of J. W. Duncan
and H. S. Steven.

5. Epidemics on small worlds

If we ignore the artificial interventions and consider the
natural propagation of messages on tree-based networks,
the WSN is vulnerable to computer viruses. The high-
density deployment of wireless sensors implies that any
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virus can be highly contagious. Sensor nodes are severely
resource constrained, and lack sophisticated defense mech-
anisms to fight virus attacks. In view of the wide occur-
rence of small worlds in tree-based networks, it becomes
an interesting issue to inspect the characteristics of net-
works on dynamics of the epidemic propagation.

Due to shortcuts in small worlds, the epidemic propa-
gation becomes much drastic in sensor networks. In our
small-world model, we start with Cayley tree and add
shortcuts between pairs of nodes chosen uniformly at ran-
dom. More than one bond (link) between any two nodes, or
a bond which connects a node to itself, is allowed. A cer-
tain fraction h of nodes of tree topologies is assumed to be
susceptible to the disease, and the bonds between them rep-
resent the physical contacts by which a disease can spread.
In this part, we assume that each node could be connected
with any other node in the network. The epidemic propa-
gation begins with a single infected node. The nodes will
be occupied or not depend on whether they are susceptible
to the disease. If the distribution of occupied nodes is ran-
dom, the problem when an epidemic takes place becomes
equivalent to a standard percolation problem on the small
worlds of tree-based networks. The node is denoted by a
site. The percolation probability hc, at which the outbreak
of epidemic takes place, can be calculated. In this paper,
the site percolation is only considered.

Some characteristics of Cayley tree have been analyzed
in [11], the percolation probability hc can be calculated by

hc =
1

K − 1
. (11)

In a large-scale network, Cayley tree reflects different
characteristics with the ring understratum introduced by J.
W. Duncan and H. S. Steven. In the proposed small-world
model, the probability that two randomly chosen sites have
a shortcut between them is calculated as

θ = 1 − (1 − 2
N2

)p(N−1) ≈

2p(N − 1)
N2

≈ 2p

N
(12)

where the parameter p is defined as the average number
of shortcuts per bond on the underlying topology with
r = 0. Occupied sites connected together will construct
local clusters in the small world, and they can be connected
together by shortcuts. The average number of local clusters
of size i in the network can be derived by

X ′
i = hi(1 − h)2+(K−2)iN. (13)

In order to construct a so-called “giant component” as
in the random graph [24], we start with one particular local

cluster, and add all other local clusters to it, which can be
reached by traveling along a single shortcut. Then all other
local clusters are added to the new ones. This process con-
tinues until the connected cluster, the giant component, is
constructed.

For calculating the percolation probability hc, a vector
V is defined at each step in this process, whose compo-
nent vi is the probability that a local cluster of size i is
added to the overall connected cluster. We define another
vector V ′, whose component v′i can be gotten in terms of
the value of V at the previous step. At or below the per-
colation threshold the component vi is small and we can
calculate the vector V ′ using a transition matrix M . The
following formula reflects the relationship between V and
V ′:

v′i =
∑

j

Mijvj (14)

where
Mij = X ′

i[1 − (1 − θ)ij ] (15)

in which X ′
i is the number of local clusters of size i as be-

fore, [1 − (1 − θ)ij ] is the probability of a shortcut, which
connects a local cluster of size i with one of size j, and
there are ij possible pairs of sites by which these can be
connected.

The largest eigenvalue λ of the transition matrix M is
considered. For λ < 1, the vector V tends to 0 according
to (14). The rate at which new local clusters are added falls
off exponentially and the connected clusters are finite with
an exponential size distribution. Conversely, for λ > 1,
V keeps growing until the size of the connected cluster
becomes limited by the size of the whole system. The per-
colation threshold occurs at the point λ = 1.

It is difficult to find the largest eigenvalue of the transi-
tion matrix M for finite N. If p is a constant, θ tends to 0
with N → ∞. Equation (15) can be simplified by

Mij = ijθX ′
i. (16)

If we set v′i = λvi , (14) is rewritten as

λvi = iθX ′
i

∑
j

jvj . (17)

And vi can be calculated by

vi = C′λ−1iθX ′
i (18)

where C′ =
∑
j

jvj is a constant. From (18) we know

∑
i

vi = C′λ−1θ
∑

i

iX ′
i

∑
i

ivi = C′λ−1θ
∑

i

i2X ′
i
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C′ = C′λ−1θ
∑

i

i2X ′
i

λ = θ
∑

i

i2X ′
i. (19)

With K = 2,

X ′
i = hi(1 − h)2N. (20)

This formula is the same as that of the ring understratum
proposed by J. W. Duncan and H. S. Steven. In this state,
λ can be derived by

λ = θNh
1 + h

1 − h
= 2ph

1 + h

1 − h
. (21)

We set λ = 1 to get the value of p at the percolation thresh-
old hc,

p =
1 − hc

2hc(1 + hc)
. (22)

This special topology with K = 2 are found in WSNs.
PEGASIS is a well-known network protocol, which con-
structs a chain in the network [25]. In this chain, each node
has two neighbors with K = 2. If the end and the head
of the chain are connected, it becomes a ring. F. L. Tang
et al. proposed a routing algorithm named chain-cluster-
based mixed (CCM) routing, which divided a WSN into a
few chains and caused a longer delay for data transmission
[26]. S. Pal et al. introduced a chain structure among the
sensor nodes in every cluster. Cluster heads got accumu-
lated data from this chain and sent them to the nearest base
station [27].

With K = 3, (13) can be rewritten as

X ′
i = hi(1 − h)2+iN = (1 − h)2[h(1 − h)]iN. (23)

λ can be calculated by

λ = θN(1 − h)2
g(1 + g)
(1 − g)3

(24)

where g = h(1 − h). Then λ can be calculated as

λ = θN(1 − h)2
h(1 − h)[1 + h(1 − h)]

[1 − h(1 − h)]3
=

θN
h(1 − h)3[1 + h(1 − h)]

[1 − h(1 − h)]3
. (25)

We set λ = 1 to get the value of p at the percolation thresh-
old hc,

p =
[1 − hc(1 − hc)]3

2hc(1 + hc)3[1 + hc(1 − hc)]
. (26)

For general K, the average number of local clusters of
size i in the network can be given as follows:

X ′
i = hi(1 − h)2+(K−2)iN = (1 − h)2[h(1 − h)k−2]iN.

(27)

λ can be calculated by

λ = θN(1 − h)2
g′(1 + g′)
(1 − g′)3

(28)

where g′ = h(1 − h)K−2. Then λ can be derived as

λ = θN(1 − h)2
h(1 − h)K−2[1 + h(1 − h)K−2]

[1 − h(1 − h)K−2]3
. (29)

We set λ = 1 to get the value of p at the percolation thresh-
old hc,

p =
[1 − hc(1 − hc)K−2]3

2hc(1 − hc)K [1 + hc(1 − hc)K−2]
. (30)

p is a constant in our study, and the percolation threshold
hc for general K can be calculated using (30).

With the vectors and the transition matrix, the percola-
tion threshold hc is obtained. The largest eigenvalue λ of
the transition matrix is considered, and hc occurs at the
point λ = 1. We can get the same result if we focus on the
distribution of local clusters. The quantity P (n) is defined
as the probability that a randomly chosen site belongs to a
connected cluster of n sites. Then we define

H(z) =
∞∑

n=0

P (n)zn. (31)

With h < hc, the distribution of clusters falls off expo-
nentially with cluster size. In this state, the probability of
two shortcuts connecting the same pair of clusters can be
neglected. H(z) satisfies the Dyson equation-like iterative
condition. Equation (31) is calculated by

H(z) =
∞∑

n=0

P0(n)zn
∞∑

n=0

P (m/n)[H(z)]m (32)

where m is the number of shortcuts, which connects to
other clusters. P0(n) is the probability that a randomly
chosen site belonging to a local cluster of size n. We know

P0(n) =
{

1 − h, n = 0
nhn(1 − h)2+(K−2)n, n � 1

. (33)

P (m/n) is the probability which exactly has m short-
cuts emerging from a local cluster of size n. There are
2p(N − 1) ends of shortcuts in the network, P (m/n) can
be given as

P (m/n)=
(

2p(N − 1)
m

)[ n

N

]m[
1− n

N

]2p(N−1)−m

.

(34)
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When N is large enough, (32) is rewritten as

H(z) =
∞∑

n=0

P0(n)zn[1 + (H(z) − 1)
n

N
]2p(N−1) =

∞∑
n=0

P0(n)[ze
2(N−1)p[H(z)−1]

N ]n ≈
∞∑

n=0

P0(n)[ze2p[H(z)−1]]n. (35)

H0(z) is defined as

H0(z) =
∞∑

n=0

P0(n)zn. (36)

Compared (35) with (36), H(z) can be calculated as fol-
lows:

H(z) = H0(ze2p[H(z)−1]). (37)

From (31), the mean outbreak size can be gotten by the
first derivative of H , and

< n >= H ′(1). (38)

From (37), H ′(z) is calculated as

H ′(z) = H ′
0(ze2p[H(z)−1])(ze2p[H(z)−1])′ =

e2p[H(z)−1]H ′
0(ze2p[H(z)−1])[1 + 2pzH ′(z)]. (39)

We know from (31) that H(1) = 1, and H ′(1) can be de-
rived by

< n >= H ′(1) =
H ′

0(1)
1 − 2pH ′

0(1)
. (40)

From (34) and (36), H0(z) can be obtained as

H0(z) = 1 − h +
h(1 − h)Kz

[1 − h(1 − h)K−2z]2
. (41)

The first derivative of H0(z) is calculated by

H ′
0(z) =

h(1 − h)K [1 + h(1 − h)K−2z]
[1 − h(1 − h)K−2z]3

. (42)

With z = 1, H ′
0(1) is given as

H ′
0(1) =

h(1 − h)K [1 + h(1 − h)K−2]
[1 − h(1 − h)K−2]3

. (43)

The value of < n > can be derived by

< n >=
H ′

0(1)
1 − 2pH ′

0(1)
=

h(1 − h)K [1 + h(1 − h)K−2]
[1 − h(1 − h)K−2]3 − 2ph(1 − h)K [1 + h(1 − h)K−2]

.

(44)

The mean outbreak size diverges at the percolation thresh-
old hc. This threshold marks the onset of epidemic behav-
ior and occurs at the zero of the denominator of (44). The
value of p at the percolation threshold hc can be obtained.
We have

p =
[1 − hc(1 − hc)K−2]3

2hc(1 − hc)K [1 + hc(1 − hc)K−2]
(45)

which agrees with (30).
Now we consider h > hc, and there is a giant compo-

nent of connected nodes with a large number of smaller
clusters whose distribution falls off exponentially with
cluster size. P (n) is redefined to be the probability that
a randomly chosen site belongs to a cluster of size n which
is not part of the giant components. The volume of the gi-
ant component is x = 1 − H(1), and P (n) sums not to 1
now. From (37), x is derived by

x = 1 − H0(e−2px). (46)

The derivatives of both sides is calculated as

1 = 2pH ′
0(e

−2px)e−2px. (47)

From (42), (47) can be calculated by

1 = 2pe−2px h(1 − h)K [1 + h(1 − h)K−2e−2px]
[1 − h(1 − h)K−2e−2px]3

. (48)

With x = 0, all the values of h are suitable. For x < 0, it
is unphysical. The threshold is gotten with x = 0. From
(48), the value of p at the percolation threshold hc can be
derived. We have

p =
[1 − hc(1 − hc)K−2]3

2hc(1 − hc)K [1 + hc(1 − hc)K−2]
. (49)

The result agrees with (30) and (45).
Above analyses present the mathematical method to cal-

culate the percolation threshold in our small-world model
relaying on the percolation theory, although real network
characteristics are complex. The percolation threshold pro-
vides a standard for our judgment to protect tree-based
WSNs. If the infection probability is larger than the perco-
lation threshold, the epidemic has an exponential increase
with time, which spreads rapidly in the WSN with no suit-
able immunization strategies similar with the development
of fads. In fact, this infection is a susceptible-infected (SI)
process until all nodes are infected in the WSN.

6. Experiments and simulations

The percolation probability, at which the outbreak of the
epidemic takes place, is observed. We know that the perco-
lation threshold of Cayley tree is 1 without shortcuts [11].
If the random link addition probability p increases from 0
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to 1, hc =

√
(2p + 1)2 + 8p− (2p + 1)

4p
, when the tree

topology transforms into a chain structure with K = 2.
As shown in Fig. 2, the percolation threshold hc keeps de-
creasing when the random link addition probability p in-
creases. hc = 0.67 with p = 0.15, hc = 0.61 with
p = 0.2, hc = 0.52 with p = 0.3, and hc = 0.41 with
p = 0.5.

This result coincides with the reality. In a regular tree
topology, the epidemic propagates along the regular bonds
with a large percolation threshold. Due to shortcuts in
small worlds, the epidemic propagation becomes much
drastic in sensor networks when the random link addition
probability p increases from 0. The percolation threshold
decreases at the same time. In an entire random network,
the percolation threshold is small and viruses easily attack
the network from one side to another. For K > 2, it is
more difficult to solve (49), but the variety is similar with
that with K = 2. When the random link addition prob-
ability p increases, the percolation threshold hc keeps de-
creasing. At p = 1, there exists the smallest percolation
threshold.

Fig. 2 Percolation threshold hc with K = 2

In the following simulations, epidemiological processes
are observed in Figs. 3–5 when small world phenomena
occur with h > hc. Fig. 3 shows the time evolution of the
infected number in the epidemiological process on a small
world of the SCT. There is one infected node in the initial
stage. Say that the node i is susceptible, and it has ki neigh-
bors, of which kinf are infected. Then, i will become in-
fected with probability kinf/ki. In the simulation, some pa-
rameters are set with p = 0.3 and N = 2 000. For the theo-
retical parameters based on [5] are used in Fig. 3, the infec-
tion extends exponentially in most time on the small world
of the SCT. In the late stage of the epidemic, the exponen-
tial evolution process experiences a decline for the reduc-
tion of remaining susceptible nodes in the network. The in-
fected number keeps increasing until all nodes are infected
in the network. Fig. 4–5 show epidemiological processes

on the proposed small world of Cayley tree according to
the mathematical analyses. The simulations show that the
infection extends exponentially although different propa-
gations occur on the underlying tree-based topology, which
coincides with the real epidemic on the small world of the
SCT.

Fig. 3 Epidemic on the small world of the SCT

Fig. 4 Epidemic process with a certain number of infected nodes

Fig. 5 Epidemic process with all infected children nodes

In the following simulation, a certain number of nodes,
CK , are infected on Cayley tree in each time unit. Certain
parameters are set with p = 0.3, h = 0.8 and CK = 3.
Fig. 4 shows the time evolution of the infected number in
the epidemiological process with N = 500, 2 000 and ∞.
Each time unit includes 10 s.

When the infected parent node attacks almost all its chil-
dren nodes in each time unit, the epidemic spreads drasti-
cally in the network. Fig. 5 shows the time evolution of
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the infected number in the epidemiological process with
N = 100, 2 000 and ∞. Certain parameters are set with
p = 0.3, h = 0.8, and K = 3 in the simulation. Each time
unit includes 10 s.

Above simulations show that the infection extends ex-
ponentially with time t on the small world of Cayley tree.
Fig. 4 and Fig. 5 describe ideal propagations of viruses,
which coincide with the epidemic propagation in the small
world of the SCT. The simulations reflect the basic preva-
lence characteristics of epidemics in the small worlds of
tree-based WSNs. From the figures we can see that the
prevalence is so drastic that immunizations attract much
attention for protecting the networks from attacks.

7. Conclusion and future work

For small world phenomena in wireless networks, dynam-
ics become much more complex in tree-based WSNs. An
abstract tree model, Cayley tree, is considered, and the ran-
dom link additions are conducted on it to construct a small-
world model. A common decentralized navigation algo-
rithm is considered, which runs automatically for search-
ing short paths in the small worlds of tree-based WSNs.
The expected delivery time of a decentralized algorithm is
defined to be the expected number of steps taken by the
algorithm to deliver messages over a small world network.
The most efficient navigation is achieved when the power
exponent, r, is 1 for the random connection. In the further
study, the epidemic on the small worlds of tree topologies
on large scales will be studied and the percolation proba-
bility, at which the outbreak of the epidemic takes place,
will be calculated. Compared with Cayley tree, the small
world has a smaller percolation threshold suffering from
the epidemic. In the future, we will pay attention to the
immunization of tree-based WSNs.

References
[1] C. Alippi, R. Camplani, C. Galperti, et al. A robust, adap-

tive, solar-powered WSN framework for aquatic environmental
monitoring. IEEE Sensors Journal, 2011, 11(1): 45–55.

[2] X. Wang, S. Wang, D. W. Bi. Distributed visual-target-
surveillance system in wireless sensor networks. IEEE Trans.
on Systems, Man, and Cybernetics–Part B: Cybernetics, 2009,
39(5): 1134–1146.

[3] M. Demirbas, X. M. Lu, P. Singla. An in-network querying
framework for wireless sensor networks. IEEE Trans. on Par-
allel and Distributed Systems, 2009, 20(8): 1202–1215.

[4] Y. C. Wong, J. T. Wang, N. H. Chang, et al. Hybrid address
configuration for tree-based wireless sensor networks. IEEE
Communications Letters, 2008, 12(6): 414–416.

[5] Y. J. Zhu, R. Vedantham, S. J. Park, et al. A scalable correla-
tion aware aggregation strategy for wireless sensor networks.
Information Fusion, 2008, 9(3): 354–369.

[6] J. A. Sanchez, P. M. Ruiz. Energy-efficient geographic multi-
cast routing for error-prone wireless sensor networks. Wireless

Communications and Mobile Computing, 2009, 9(3): 395–404.
[7] H. Shen. Finding the k most vital edges with respect to mini-

mum spanning tree. Proc. of the IEEE National Aerospace and
Electronics Conference, 1997: 255–262.

[8] S. D. Muruganathan, D. C. F. Ma, R. I. Bhasin, et al. A central-
ized energy-efficient routing protocol for wireless sensor net-
works. IEEE Communication Magazine, 2005, 43(3): S8–13.

[9] W. Wang, B. W. Wang, Z. Liu, et at. A cluster-based and tree-
based power efficient data collection and aggregation protocol
for wireless sensor networks. Information Technology Journal,
2011, 10(3): 557–564.

[10] M. Stanley. The small world problem. Psychology Today,
1967, 1(1): 60–67.

[11] S. Dietrich, A. Ammon. Introduction to percolation theory.
Boca Raton: CRC Press, 1992.

[12] J. W. Duncan. Small worlds, the dynamics of networks be-
tween order and randomness. New Jersey: Princeton Univer-
sity Press, 1999.

[13] A. Helmy. Small worlds in wireless networks. IEEE Commu-
nications Letters, 2003, 7: 490–492.

[14] K. Jon. Navigation in a small world. Nature, 2000, 406: 845.
[15] M. R. Roberson, B. A. Daniel. Kleinberg navigation in frac-

tal small-world networks. Physical Review E, 2006, 74(1):
017101-1–3.

[16] S. A. Hill, D. Braha. Dynamic model of time-dependent com-
plex networks. Physical Review E, 2010, 8(4): 046105-1–7.

[17] Y. Yang, S. C. Zhu, G. H. Cao. Improving sensor network
immunity under worm attack: a software diversity approach.
Proc. of the 9th ACM international symposium on Mobile Ad
Hoc Networking and Computing, 2008: 149–158.

[18] P. De, Y. Liu, S. K. Das. Modeling node compromise spread
in wireless sensor networks using epidemic theory. Proc. of
the International Symposium on World of Wireless, Mobile and
Multimedia Networks, 2006: 237–243.

[19] M. E. J. Newman, J. W. Duncan. Scaling and percolation in the
small-world network model. Physical Review E, 1999, 60(6):
7332–7342.

[20] R. Pastor-Satorras, A. Vespignani. Epidemic dynamics and en-
demic states in complex networks. Physical Review E, 2001,
63(6): 066117-1–8.

[21] T. J. Norman. The mathematical theory of infectious diseases.
New York: Hafner Press, 1975.

[22] M. M. Telo da Gama, A. Nunes. Epidemics in small world
networks. The European Physical Journal B, 2006, 50(112):
205–208.

[23] E. S. Thomas, M. J. Matthew, R. M. Susan. Comparative ef-
fects of avoidance and vaccination in disease spread on a dy-
namic small-world network. Physica A: Statistical Mechanics
and its Applications, 2010, 389(23): 5515–5520.

[24] N. Alon, J. H. Spencer. The probabilistic method. 2nd ed.
Hoboken, NJ: Wiley, 2000.

[25] S. Lindsey, C. Raqhavendra, K. M. Sivalinqam. Data gather-
ing algorithms in sensor networks using energy metrics. IEEE
Trans. on Parallel and Distributed Systems, 2002, 13(9): 924–
935.

[26] F. L. Tang, L. You, S. Guo, et al. A chain-cluster based routing
algorithm for wireless sensor networks. Journal of Intelligent
Manufacturing, 2010: 10.1007/s10845-010-0413-4.

[27] S. Pal, B. Debnath, T. H. Kim. Chain based hierarchical rout-
ing protocol for wireless sensor networks. Communications in
Computer and Information Science, 2010, 78: 482–492.



334 Journal of Systems Engineering and Electronics Vol. 23, No. 3, June 2012

Biographies

Qiao Li was born in 1980. He is now a lecturer of
the Artillery Academy of the PLA. He joined the
System Engineering Laboratory of Beijing Insti-
tute of Technology to pursue the M.S. degree in
2006. And he is pursuing the Ph.D. degree in
the School of Automation from Beijing Institute
of Technology, Beijing, China. He partly takes
on researches of the Chinese Defence Advance

Research Program of Science and Technology and the Pre-Research
Foundation of Chinese Ordnance Industry Group from 2009. His re-
search interests include theories and applications of wireless sensor
networks, particularly in issues on epidemic dynamics, routing pro-
tocols, and topology control algorithms.
E-mail: liqq007@gmail.com

Baihai Zhang received his B.S., M.S., and Ph.D.
degrees from Harbin Institute of Technology,
China, in 1988, 1991 and 1994, respectively.
From November 1994 to May 1997, he was a
post-doctoral research fellow in Beijing Institute
of Technology, China. From April 2001 to Octo-
ber 2001, he studied mechatronic systems mod-
eling by bond graphs as a visiting scholar at the

Department of Mechanical Engineering, Michigan State University.
From January 2006 to April 2006, he studied systems identication
as a visiting scholar at the Faculty of Computing, Engineering and
Mathematical Sciences (CEMS), University of the West of England.
He is now a professor in the School of Automation, Beijing Institute
of Technology. His research interests include theories and applica-
tions of systems engineering, evolutionary computation, and wireless
sensor networks.
E-mail: smczhang@bit.edu.cn

Zhun Fan received his B.S. degree (control en-
gineering) in 1995 and M.S. degree (control en-
gineering) in 2000 from Huazhong University of
Science and Technology, China. He received the
Ph.D. (electrical and computer engineering) in
2004 from the Michigan State University. From
2004 to 2007, he was an assistant professor in
the Department of Mechanical Engineering at

the Technical University of Denmark. He is currently an associate
professor in the Department of Management Engineering at the Tech-
nical University of Denmark. His research interests include applying
evolutionary computation and computational intelligence in design
automation and optimization of MEMS, mechatronics, and robotic
systems, and intelligent communication, transportation and power
system.
E-mail: zhfa@man.dtu.dk

Athanasios V. Vasilakos is currently a professor
at the Department of Computer and Telecom-
munications Engineering, University of West-
ern Macedonia, Greece and visiting profes-
sor at the Graduate Programme of the Depart-
ment of Electrical and Computer Engineering,
National Technical University of Athens (NTUA),
Greece. His research interests include com-

puter networks, mobile computing, wireless communications,
game theory, artificial ubtekkugebte, bioinformatics, digital arts.
He is coauthor of the books Computational Intelligence in
Telecommunications Networks, Ambient Intelligence, Wireless Net-
working, Ubiquitous Computing, Autonomic Communications,
Digital Arts, Delay Tolerant Networks: Protocols and Ap-
plications. He has published more than 200 publications in
top international journals (i.e., IEEE/ACM Transactions on
Networking, IEEE T-Information Theory, IEEE JSAC, IEEE
Transactions on Communications, IEEE Transactions on Wire-
less Communications, IEEE Transactions on Mobile Computing,
ACM Transactions on Autonomous and Adaptive Systems, IEEE
Transactions on Neural Networks, IEEE Transactions on Systems,
Man, and Cybernetics, IEEE T-ITB, etc) and conferences in the
area of computer networks, mobile computing, wireless network-
ing, game theory, evolutionary game theory, bioinformatics, wire-
less healtcare, digital and internet arts. He is the editor-in-chief
of the inderscience publishers journals: International Journal of
Adaptive and Autonomous Communications Systems, International
Journal of Arts and Technology. He was or he is at the edito-
rial board of several international journals: IEEE Communications
Magazine, IEEE Transactions on Systems, Man and Cybernetics,
IEEE Transactions on Information Theory in Biomedicine, IEEE
Transactions on Wireless Communications, ACM/Springer Wire-
less Networks, Wireless Communications and Mobile Comput-
ing, EURASIP journal on Wireless and Communications Net-
woks (WCN), Computer Communications, International Jour-
nal of Ad Hoc and Ubiquitous Computing, ACM Comput-
ers in Entertainment, International Journal of Mobile Commu-
nications, International Journal of Internet Protocol Technol-
ogy, Cluster Computing, Security and Communications Journal,
Journal of Sensors, Journal of Supercomputing, Telecommuni-
cations Journal, etc. He is chairman of the Telecommunica-
tions Task Force of the Intelligent Systems Applications Techni-
cal Committee (ISATC) of the IEEE Computational Intelligence
Society (CIS).
E-mail: vasilako@ath.forthnet.gr


