
  

 

Abstract—In this paper, we design a three wheels 
Omni-directional mobile robot (TOMR) and propose a 
method of simultaneous construction of 2D and 3D maps 
based on the mobile robot. To be more specific, we use 
information from a laser and a kinect to build 2D grid maps 
and 3D environment, respectively. The particle filter 
algorithm is used to achieve the pose of the robot, together 
with the OctoMap which is generated from a 3D point cloud 
map, to construct the 2D and 3D maps. An asymmetric 
environment is employed to test our proposed method and 
some state-of-the-art methods like RGB-D SLAM and 
ORB-SLAM. The experimental results show that the 
proposed method is efficient for synchronized 2D and 3D 
mapping and has better performance than other compared 
algorithms. 

I. INTRODUCTION 

An omnidirectional mobile robot has some advantages, 
such as simple structures, strong mobility, simple 
controlling and precisely positioning. Thus, it is widely used 
in control tasks with limited space and high mobility 
requirements.  

To realize autonomous navigation of the robot, 
localization and mapping based on an unfamiliar 
environment are major challenges for SLAM problems, 
which become hot issues in the field of robotics [1]. The 
building maps of visual-based and the laser-based are main 
types in the SLAM field. As we know, methods based on 
Extended Kalman Filter (EKF) and particle filter SLAM 
have become the most widely used algorithms in recent 
years. Rao-Blackwellized particle filter [2] and FastSLAM 
[3][4] are the popular particle filter SLAM algorithm. In 
visual-based SLAM methods, ORB-SLAM [5] and Direct 
Sparse Odometry [6] are two popular solutions. The main 
functions of the 2D and 3D maps can provide different 
environmental and structural information [7]. A laser range 
sensor is able to obtain the accurate distance according to 
the laser sensor reflection information, but has not the 
capacity to get 3D environmental information. Due to the 
lack of the 3D environmental information, which may affect 
the accuracy of the robot’s trajectory when executing tasks. 
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Fig.1.  The prototype of the three wheels Omni-directional mobile robot. 

Thus, building 3D maps is essential for the mobile robot 
platform. RGBD-SLAM[8][9] is probably the most 
prominent method of 3D Mapping, which can generate 3D 
sparse map. The main function of OctoMap is used to 
distinguish the grid space which is occupied or free [10]. 

Here, the Rao-Blackwellized Particle Filters (RBPF) [11] 
is used to build a 2D map and localize based on indoor 
environment. We implement a SLAM application based on 
the Omni-directional mobile robot designed by our lab as 
shown in Fig.1. The mobile platform equips with a lidar 
range sensor, a kinect sensor, and an inertial measurement 
unit. The computer operating system is ROS Indigo 14.04 
operated on the Linux operating system. The experimental 
results are shown by using the RVIZ (ROS visualization 
tools). The open source Gmapping package is used to build 
2D map, and obtaining 3D point cloud map based on the 
robot’s pose transformation matrix, and also make a 
comparison with the previously studied methods [12][13] 
and the popular open source methods such as RGB-D and 
ORB-SLAM algorithm [14]. According to the experimental 
results, our method is efficient and better for synchronized 
2D and 3D mapping. 

The remainder of this paper is organized as follows. The 
system design of the Omni-directional mobile robot is 
presented in Section II. In Section III, we introduce the 
kinematic model of the Omni-directional mobile robot and 
present the method of synchronized 2D SLAM and 3D 
mapping. In Section IV, a set of experiments is carried out to 
demonstrate the superiority of our proposed method. Finally, 
conclusions are made in Section V. 

II. SYSTEM DESIGN OF THE MOBILE PLATFORM 

The robot system includes two parts, including a robot 
platform and a server. The block diagram of the control 
system of mobile robot platform is shown in Fig.2. The 
robot platform includes driving module, positioning module, 
chip module and industrial computer module. The server 
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includes human machine interface module, data processing 
module and path planning module. 

Each module of the mobile robot can be regarded as a 
small subsystem, and the connection of each component of 
the mobile platform is shown in Fig.3. 
 

 
Fig.2.  Block diagram of the mobile robot platform. 

 

 
Fig.3.  The connection of the subsystems. 

The driving module is composed of three groups which 
drive the omnidirectional wheels and distribute 
equidistantly along the circumferential direction at the 
bottom of the robot platform. The driving module is 
composed of motor, omnidirectional wheel, support shaft 
and synchronous belt drive mechanism. The 
omnidirectional wheel is fixed and sleeved with the support 
shaft. The synchronous belt drive mechanism includes a 
driven wheel fixed at one end of the support shaft and a 
coaxial connection with the motor shaft. The driving wheel 
and the driven wheel are connected by synchronous belt. 
This structure can realize the Omni-directional motion of the 
robot platform and has flexible planar mobility. 

The chip module receives control instructions from the 
industrial computer module, and feeds the speed of the chip 
module receives control instructions from the industrial 
computer module, and feeds the speed of omnidirectional 
wheel back to its data processing module to realize 
information communication. 

The positioning module includes lidar, odometer and 
inertial navigation system. The color images and depth 
images of the surrounding environment is captured by 
kinect sensor, the effective distance of the depth image 
obtained by kinect is approximately 0.7m to 6m, and the 

measurement results have high accuracy at 0.7m to 4.0m. 
RGB images and depth images obtained by kinect are 
shown in Fig.4. 

 

Fig.4.  Color images and depth images obtained by kinect. 

III. METHOD 

In this section, we will introduce the kinematics model 
of the three-wheeled omnidirectional autonomous mobile 
robot platform and the method of synchronized construction 
of 2D SLAM and 3D maps. Kinematics model analysis 
mainly includes the establishment of kinematics model and 
state description of the robot. The synchronized construction 
method of 2D SLAM and 3D maps is realized by RBPF 
algorithm and 3D point cloud registration, finally generates 
3D grid map construction based on octree. 

A. Kinematics modeling 

First we define a global coordinate system [x, y], 
showing in the moving environment, and the robot’s pose  
can be defined as	P ൌ ሾݔ, ,ݕ  ሿ. The global velocity of theߠ
robot can be written as 	 ሶܲ ൌ ሾXሶ , Yሶ , θሶ ሿ. Where	 ሶܲ ൌ ሾXሶ , Yሶ , θሶ ሿ is 
defined as the velocity of the robot in the global coordinate 
system. Meanwhile, robot coordinate system is shown by 
[x1, y1]. The center of robot coordinate system coincides 
with the center of gravity of the robot. The three Omni 
wheels are located at an angle αi (i = 1, 2, 3) relative to the 
robot coordinate system. The three angles have a same 
degree that is 120°. 

 
Fig.5.  Kinematic diagram of the robot 

Hence, we can obtained the relationship between the ݒ 
(i=1, 2, 3) and ݑ, which are defined as the angular velocities 
value of robot’s wheel and the global velocity vector, 
respectively: 

൭
ଵݒ
ଶݒ
ଷݒ
൱ ൌ ൭

ሺα/2ሻ݊݅ݏ ሺα/2ሻݏܿ ܮ
െ݊݅ݏሺα/2ሻ ሺα/2ሻݏܿ ܮ

0 െ1 ܮ
൱ቆ

ݒ
ݒ
ω
ቇ        (1) 



  

The transformation relationship between global 
coordinate system and robot coordinate system can be 
shown with the following equation: 
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According to (1) and (2) leads to: 
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Equation (3) implies that any velocity vector of the robot 
platform can be realized by using a set of unique 
omnidirectional wheel linear velocity output. Therefore, the 
overall motion control of the robot platform can be realized 
by controlling the speed of three omnidirectional wheels. 

B. The method of Construction of 2D maps 

In this work, the open source Gmapping package is used 
to to build our 2D indoor environmental map based on the 
Robot Operation System (ROS, 14.04 version) [11][15][16], 
which is a reliable and mature algorithm based on RBPF 
method and has stable effect. 

From the view of probability, SLAM problem can be 
transformed into solving the joint posterior probability for 
the path of the mobile robot ݔଵ:௧ ൌ ,ଵݔ ⋯,ଶݔ , ௧ݔ  and the 
map ݉௧  based on the observation data ݖଵ:௧ ൌ ,ଵݖ ⋯,ଶݖ ,  ௧ݖ
from lidar and the wheeled odometry measurements 
ଵ:௧ݑ ൌ ,ଵݑ ⋯,ଶݑ ,  ௧ݑ

while the initial position of the robot is 
specified. 

Rao-Blackwellized particle filters (RBPF) is able to 
show the better performance to solve the SLAM problem for 
building 2D map [17]. Hence, the RBPF algorithm is used to 
to construct the 2D map based on the robot’s odometry and 
Rplidar sensor information. The main function of the RBPF 
method is that we can obtain the joint posterior 
,ଵ:௧ݖ|݉,ଵ:௧ݔሺ  ଵ:௧  andݖ ଵ:௧ିଵሻ base on the observation dataݑ
wheeled odometry measurements ୲ݑ , this method 
decomposes the state space of Bayesian filter as follow: 

,ଵ:௧ݖ|݉,ଵ:௧ݔሺ ଵ:௧ିଵሻݑ ൌ 

,ଵ:௧ݔ|ሺ݉ ଵ:௧ሻݖ ∙ ,ଵ:௧ݖ|ଵ:௧ݔሺ                    (4)	ଵ:௧ିଵሻݑ

Thus the path of the robot can be estimated by the 
probability ሺݔଵ:௧|ݖଵ:௧, ,ଵ:௧ݔ|ሺ݉ ଵ:௧ିଵሻ, then the mapݑ  ଵ:௧ሻݖ
can be built with the observation model. 

C. 3D map building based on 2D map 

In this work, the robot maps the environment in both 2D 
and 3D while simultaneously localizing itself relative to the 
map. We use the RBPF algorithm with wheeled odometry 
and lidar range to obtain ݑଵ:௧  and ݖ௧	to locate the robot’s 
pose in process of building the 2D map. Meanwhile, in the 
step of 3D map building, the kinect camera is used to obtain 
images information for the color and depth, and the pose of 
the kinect is replaced by the pose of the robot while 
constructing the 2D map to apply for building 3D mapping. 

As the robot moves, ݔ௧  is defined as the robot’s pose 
during the process of building 2D map at current time t. in 
order to build local 3D point cloud map, the pose 

transformation matrix is used to perform point cloud 
registration. According to the pose at adjacent moments, the 
pose transformation matrix can be obtained with following 
equation: 

௧ݔ ൌ ܴ ∙ ௧ିଵݔ   (5)                             ݐ
The symbols of rotation matrix and translation vector are 

defined as R and t, respectively. After that, the following 
equations can be used for showing generating process of the 
3D point cloud based on 2D images: 

ݖ ൌ ݀ ൗݏ                                   (6) 
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௫݂
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where ܿ௫  , 	ܿ௬  , 	 ௫݂  , 	 ௬݂  are the internal parameters of 
kinect[18]. We use the symbol d to show depth information 
of images collected by kinect sensor and the scaling factor is 
shown with s. The coordinate system of the image pixels 
based on 2D image is defined as u and v. Meanwhile, 
according to the above equations, we can obtain the 
coordinate system of the 3D point cloud, which is defined as 
x, y, z. when we obtain the 3D point clouds at adjacent 
moments based on 2D images, we can perform point cloud 
registration based on pose transformation matrix, showing 
with the following equation: 

ܶ ൌ ቀோయൈయ ௧యൈయ
భൈయ ଵ ቁ 			 ∈ ܴସൈସ                (9) 

It is inevitable that point clouds consume a large amount 
of storage and memory spaces, which can cause enormous 
waste of resources. To overcome this problem, researchers 
proposed a variety of methods for 3D map representation. 

The octotree map (OctoMap)[10] is one of the most 
commonly used 3D maps among these models, which is not 
only to reduce storage and memory space for the point 
clouds, but also to set the map resolution according to the 
size of the environment, more space-saving compared to the 
points cloud representations, and able to expand the map 
efficiently for newly inserted data[19][20]. 

A typical hierarchical data structure that we used is 
defined as an octree, which is applied for spatial subdivision 
in 3D map. The voxel is defined as a node, which 
demonstrates the space contained. The cubic volume is 
shown in Fig. 6. 

 
Fig.6.  An example of an octree voxel structure and occupied (black) cells. 



  

IV. RESULTS AND COMPARISON 

A.  Experiments and results 

To test the effect of the approach, this work has 
conducted experiments on the robot (TOMR) developed by 
our lab. The experiment took place in the Science and 
technology building, 3th floor, Shantou University, where a 
corridor is approximately 30m in length and about 2m in 
width. The Fig.7 shows the experimental place information. 

    
(a)                                                          (b) 

Fig.7.  Guangdong Key Laboratory of Digital Signal and Image Processing, 
Science and technology building, 3rd floor, Shantou University 

The resulting 2D occupancy grid maps is generated by 
RBPF algorithm with the lidar range data and the wheeled 
odometry measurements, and realized in Gmapping. The 
constructed 2D map and experiment result is shown in Fig.8. 

 

Fig.8.   The 2D map generated by RBPF algorithm. 

The mobile robot builds the 2D and 3D maps 
simultaneously, we obtained the robot’s pose in real-time 
when the constructing 2D maps by subscribing the relative 
topic in ROS, and use robot’s pose to replace the pose of the 
kinect to realize the localization function, then get the pose 
transformation matrix at the adjacent moment, together with 
the images at different moments from kinect to construct the 
3D point cloud maps and converted into a 3D OctoMap.  

 

Fig.9.  The 3D map synchronized mapping with 2D map by three wheels 
Omni-directional mobile robot. 

The 3D point cloud map synchronized mapping with 2D 
map is shown in Fig.9, and the 3D OctoMap is shown in 
Fig.10. As can be find in the result, the position and the 
height of the wall can be seen clearly according to the color 
of the 3D OctoMap. 

     

Fig. 10.  The 3D OctoMap synchronized mapping with 2D map. 

B.  Comparisons 

We also make comparisons with the popular algorithms 
such as RGB-D SLAM and ORB-SLAM and the previously 
studied methods of the hybrid mapping of 2D and 3D 
[12][13]. Figure 11 shows the experimental result of 3D 
point cloud maps based on RGB-D SLAM, the algorithm is 
prone to mismatch and cumulative errors in the similar 
scenes, which lead to a distorted image of the map. Figure 
12 represents the experimental result of the ORB-SLAM, 
the method only get the sparse point cloud map, which is not 
available for observing the entire environment.  

 
Fig.11.  RGBD-SLAM: 3D map 

 

Fig.12.  ORB-SLAM: 3D map 

Figure 13 gives the result of 3D point cloud map builds 
with Monte Carlo Localization in 2D map [12], which needs 
to finish 2D SLAM before 3D mapping, yet the constructed 
3D point cloud map require a large amount of storage and 
cannot be used for 3D navigation. Figure 14 is the result of 



  

simultaneous construction of 2D and 3D maps [13], but 
many 3D occupancy grids are scattered and cannot detect 
low obstacles above the ground precisely, which will affects 
the navigation of the robot. 

According to the comparison of experimental results, 
our method builds the 2D and 3D maps simultaneously, 
while the 3D OctoMap is more accurate with less data 
storage, available for 3D navigation, and is obviously better 
for synchronized 2D and 3D mapping than the preceding 
methods. 

 
Fig.13.  3D map based on Monte Carlo localization in 2D map 

 
Fig.14.  Simultaneous construction of 2D grid map and OctoMap 

V. CONCLUSION 

In this paper, we designed a mobile robot and implement 
the synchronized 2D SLAM and 3D mapping method on 
the mobile platform. The 2D map obtained by 
Rao-Blackwellized particle filter and the 3D map generated 
by octotree are merged for the synchronized construction of 
2D and 3D maps. We use the pose obtained in 2D map to 
replace the pose of the kinect, and then build the 3D map 
based on the point cloud registration and converted into a 
3D OctoMap. Some experiments show the proposed 
approach with the mobile robot in long corridor has a better 
performance than other compared algorithms. 
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