

MECHATRONIC DESIGN

AUTOMATION - EMERGING

RESEARCH AND
RECENT ADVANCES

MECHATRONIC DESIGN

AUTOMATION - EMERGING

RESEARCH AND
RECENT ADVANCES

Zhun Fan

Nova Science Publishers, Inc.
New York

Copyright © 2010 by Nova Science Publishers, Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system or transmitted in any form or by any means: electronic, electrostatic,
magnetic, tape, mechanical photocopying, recording or otherwise without the
written permission of the Publisher.

For permission to use material from this book please contact us:
Telephone 631-231-7269; Fax 631-231-8175
Web Site: http://www.novapublishers.com

NOTICE TO THE READER
The Publisher has taken reasonable care in the preparation of this book, but makes
no expressed or implied warranty of any kind and assumes no responsibility for
any errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of information contained in this book.
The Publisher shall not be liable for any special, consequential, or exemplary
damages resulting, in whole or in part, from the readers’ use of, or reliance upon,
this material. Any parts of this book based on government reports are so indicated
and copyright is claimed for those parts to the extent applicable to compilations of
such works.

Independent verification should be sought for any data, advice or
recommendations contained in this book. In addition, no responsibility is assumed
by the publisher for any injury and/or damage to persons or property arising from
any methods, products, instructions, ideas or otherwise contained in this
publication.

This publication is designed to provide accurate and authoritative information with
regard to the subject matter covered herein. It is sold with the clear understanding
that the Publisher is not engaged in rendering legal or any other professional
services. If legal or any other expert assistance is required, the services of a
competent person should be sought. FROM A DECLARATION OF
PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE
AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS.

LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA

ISBN 978-1-61668-956-8

Published by Nova Science Publishers, Inc. New York

Preface

This monograph describes an emerging research area of Mechatronic

Design Automation (MDA), and summarizes research results of the author
with a history of about 10 years. The monograph is based on the author’s
doctoral dissertation, and integrates some extended work after the graduation.

The foremost thank goes to Erik Goodman, who led me into the research
area of Mechatronic Design Automation. He is not only an academic advisor,
but also a mentor and good friend. I am also very grateful to Ronald
Rosenberg, Kisung Seo, Jianjun Hu, Jiachuan Wang, Jannis Terpenny, Pan
Wang, Jinchao Liu, and Torben Sørensen, with whom I have co-authored
publications in the area of this book. Close collaboration with them has helped
a lot to push the advancement of the research area. I would also like to thank
Yuan Li and Jean-Francois Dupuis for their reviews of the book.

I am also indebted to National Science Foundation of USA and Danish
Agency for Science, Technology and Innovation, for their financial supports
that have made this work possible.

Last but not the least, many thanks go to my family - my parents, my wife
Bei, and my sister - for their love, encouragement and continuous support.

Kgs. Lyngby Zhun Fan
April 2010

CONTENTS

Zhun Fan

Chapter 1 Introduction 1
Chapter 2 Bond Graph 17
Chapter 3 Evolutionary Design 31
Chapter 4 Case Studies of BG/GP Approach 43
Chapter 5 Evolutionary Synthesis of MEMS 67
Chapter 6 Robust Synthesis of MEMS 105
Chapter 7 Body-Brain Coevolutionary Synthesis of

Mechatronic Systems 133
Chapter 8 Conclusion 165
Appendix A: Causal Constraints 169
Appendix B: State-Space Formulation for Bond Graph Models 173
References 179
Index 189

Chapter 1

INTRODUCTION

Several issues in design currently demand significant attention, including

multi- and mixed-energy-domain systems, automated synthesis, and
topologically open-ended design (Figure 1.1).

First, there is a great demand for improved capabilities to design high-
performance, multi-domain, dynamic systems, particularly in the area of
mechatronics. The inclusion of components from multiple energy domains
(such as electrical, mechanical, hydraulic, thermal and/or magnetic) and
demands for rigorous performance and consideration of cost constraints make
design of these systems very challenging.

Second, the need for automated synthesis is growing ever stronger. Design
of such complex systems is typically an iterative process in a very large
solution space, with multiple objectives. Traditional CAD design processes are
tedious, inefficient and quite time-consuming.

Third, compared to parametric design, topological design is more
challenging because it has a much larger and less well-defined search space. In
order to achieve the desired performance of complex mechatronic systems,
open-ended topological search is required to incorporate enough topological
variations.

Zhun Fan 2

Figure 1.1. Requirements for Automated Design of Mixed-Domain Systems.

1.1. AUTOMATED SYNTHESIS

Computer-aided design (CAD) and computer-aided engineering (CAE)

have been powerful tools that have revolutionized engineering practice and
education since the advent of high-performance computers. The biggest
influence of CAD and CAE is to give engineers the ability to design and test
products on a testbed based on computational simulation before fabricating
them. This ability has profound implications, especially because fabricating a
product or system is time-consuming and costly. With the capability of
numerical simulation in computers, engineers can compare more design
concepts and prototypes, make judgments and tradeoffs, and be much more
sure that the final product will satisfy the design specifications before he or
she starts to fabricate it in the physical domain.

The computer tools we discussed above, including analysis tools that can
simulate and measure the performance of designs, are passive design tools.
Using such tools, the designer is at the center of the design scheme, controlling
all aspects of the design process. The design tools just serve to provide
information that the designers want or need, as feedback about performance of
designs presented to them. Their roles are passive relative to the designer’s, in
the sense that they only “answer” or provide feedback when the designer
“asks” a question and presents a design.

Introduction 3

We describe another type of computer tool as active, rather than passive,
in that it not only “answers” when the designer “asks”, but also “thinks” when
the designer is “thinking.” In other words, such tools not only perform
analysis, but suggest designs, with guidance from the designer only at a more
abstract level. As a result, they not only gather and evaluate, but also to
analyze and process information, make decisions, foster design insights and
guide the design process.

 While computers are definitely faster and more accurate in calculation
than human beings, it is generally believed that they lack the cognitive
capability humans use to make creative designs and true inventions. This is not
challenged in this work. It is also argued that in order to automate any phase of
the design process, one must first understand the cognitive theory of how
humans design; were this true, active computer tools could hardly be
successful, because establishment of such a cognitive theory of human design
is still an extremely distant goal. This argument sounds reasonable to many,
but has one assumption that people should attend to carefully – that is, it is
assumed in this argument that the human designer offers the only example of a
successful design system. However, other successful design systems do exist.
Nature is one of them. Even before the history of human beings, nature
invented many wonderful designs of species that far exceed any human
designs in terms of complexity, without any intervention of humans. Although
nature spends a prohibitively long period of time (for a human designer) to
“evolve” its designs, the ever-increasing speed and capacity of current
computer technology provides a possible answer to shorten the time
consumption to an acceptable range, for a design system that draws on
principles of design from nature.

Over the past two decades, computational algorithms based on the
principles of evolution first formulated by Charles Darwin have developed
from academic curiosities into practical and effective tools for scientists and
engineers. Evolutionary computation refers to a class of general-purpose
search algorithms based on (admittedly very incomplete) abstraction of
principles of biological evolution and natural selection. These algorithms
implement biologically inspired computations that manipulate a population of
candidate solutions (the “parents”) to generate new variations (the
“offspring”). At each step (or “generation”) in the computation, some of the
less promising candidates in the population are discarded and replaced by new
candidates (“survival of the fittest”). The process continues until a satisfactory
solution to the problem has been found. In this research, genetic programming
(GP), a special form of evolutionary computation, is taken as the essential

Zhun Fan 4

mechanism for design automation. While basing a system on evolutionary
principles is certainly no guarantee that it can create new and innovative
designs, neither can one reject out-of-hand the possibility that such a system
could do so without duplicating, or even emulating, the process performed by
humans.

Genetic programming is an extension of the genetic algorithm, and it uses
evolution to optimize actual computer programs or algorithms to solve some
task (Holland [1975], Goldberg [1989]), typically involving a graph-type (or
other variable-length) representation. Differences between GP and GA are
summarized in Table 1.1. The most common form of genetic programming is
due to John Koza [1992, 1994, 1999a], and uses trees to represent the entities
to be evolved. Because GP (genetic programming) can manipulate variable-
sized strings, it is especially useful for representing developmental processes.
Most design methods require a preliminary design, which is a solution with
enough components and a valid configuration, even if it is not a complete
solution, in order to define the desired properties of a good solution. A
developmental design process does not require a preliminary design, but only a
design embryo, which need not contain all of the necessary components, or the
necessary number of components, or a valid configuration, but only enough
information to allow specifying the behaviors desired of the system (defining
objectives and variables constrained, for example).

Table 1.1. Comparisons between GP and 'classical' GA

Properties GA GP

genome representation:
genome size:
operators:

String
Fixed length
Representation-blind

Tree
Variable length
Representation-specific

It is important to point out that when using passive design tools, designers'

decision-making is biased by both the capabilities of simulation tools and the
designer’s experience and intuition. It is hard for the designer to make an
“imaginative jump or creative leap” from one design candidate to another. But
active design tools can free designers from this kind of “design fixation” and
the limitations of conventional wisdom, allowing them to explore a huge
number of possible candidates for a design problem, and increasingly, the
probability to discover novel designs uncharted before by human exploration.

Introduction 5

1.2. REPRESENTATION OF MULTIDISCIPLINARY

MECHATRONIC SYSTEMS

It is a remarkable fact that models based on apparently diverse branches of

engineering science can be expressed using the notation of bond graph, based
on energy and information flow. Using the language of the bond graph, one
may construct models of electrical, mechanical, magnetic, hydraulic,
pneumatic, thermal, and other systems using only a rather small set of ideal
elements as building blocks.

The bond graph is a modeling tool that provides a unified approach to the
modeling and analysis for physically-based dynamic systems. Bond graph
models can describe the dynamic behavior of physical systems by the
connection of idealized lumped-parameter elements based on the principle of
conservation of power. Bond graph consist of elements and bonds. There are
several types of elements, each of which performs analogous roles across
energy domains. The first type -- C, I, and R elements -- are , in their simplest
forms, passive one-port elements that contain no sources of power, and
represent capacitors, inductors, and resistors (in the electrical domain). A
second type, Se and Sf, are active one-port elements that are sources of power
and/or boundary conditions, and that represent effort sources and flow sources,
respectively (for example, sources of specified voltage or current, respectively,
in the electrical domain). A third type, TF and GY, are two-port elements in
their simplest forms, and represent transformers and gyrators, respectively.
Power is conserved in these elements. A fourth type, denoted as 0 and 1 on
bond graph, represents junctions, which are three-port (or more) power
conserving elements. They serve to interconnect other elements into
subsystems or system models. Other types of multiport elements may be
defined, but will not be used here.

Some example bond graph models are shown below. Figure 1.2 consists
of a mechanical system at the left, an electrical system at the right, and a bond
graph representation at the center. The bond graph representation includes a Se
, 1-junction, C, I, and R elements, and that same bond graph represents either a
mechanical mass, spring and damper system, or an RLC electric circuit. Se

corresponds with force in the mechanical system and voltage in electrical
system. The 1-junction implies a common velocity for 1) the end of the spring,
2) the end of the damper, and 3) the mass in the mechanical system, and
implies that the current in the RLC loop is common in the electrical system.
The R, I, and C represent the damper, inertia (of mass), and spring in the

Zhun Fan 6

mechanical system, or the resistor, inductor, and capacitor in the electrical
circuit.

Figure 1.2. Bond graph representation of mixed-domain systems.

Bond graph have two major advantages for design application – their
efficiency for evaluation of design alternatives and the natural combinatorial
features of bond and node components for generating design alternatives.

The analysis efficiency of the bond graph model results because the causal
relationships and power flow between elements and subsystems reveal certain
system properties and inherent characteristics very efficiently. A set of state
variables is easily determined and the state equations can be generated
systematically. Particular efficiencies are possible in the classification of
models as to whether or not they merit dynamic simulation.

The other characteristic of bond graph as shown in Figure 1.3 is their
graphical (topological) structure, which allows structural manipulation
separate from the equations. This means that any system model can be
generated by a combination of bond and node components, because of their
free composition and unbounded growth capabilities. Therefore it is possible
to span a large search space, refining simple designs discovered initially, by
adding size and complexity as needed to meet complex requirements.

Introduction 7

Figure 1.3. The combinatorial nature of bond graph generation.

1.3. RELATED WORK

1.3.1. Bond graph

Rosenberg and many others have described bond graph methods in detail

in the literature (see, for example, Karnopp, Margolis and Rosenberg [1999],
Rosenberg [1992, 1993a, 1993b, 1996]). Prabhu [1989] presents a set of basic
theorems for using a variant of bond graph in design. They exploit the graph
nature of bond graph for design. A set of graph-rewriting rules to generate
bond graph models that represent feasible physical systems is presented in
Hoover and Rinderle [1989]. An important feature of this work is the
exploration of all the behaviors a component might have. Stein and Louca
[1995] develop a two-level-based Component Modeling Procedure to exploit
the power of several existing model order deduction algorithms. This
procedure is implemented in a computer program, CAMBAS. CAMBAS uses
expandable bond graph models and automatically builds global bond graph of
systems according to the design engineer’s selection of templates. Sharpe and
Bracewell [1995] present the use of bond graph reasoning for the design of
interdisciplinary schemes. They describe how conceptual scheme synthesis
may be assisted and structured by the use of functions-mean trees developed
by the application of bond-graph-inspired rules. Coelingh et al. [1998] present

Zhun Fan 8

a computer-based design tool for conceptual design of mechatronic motion
systems. Youcef-Toumi [1999] introduces an algorithm which identifies
automatically the physical components and/or subsystems that are responsible
for zero dynamics. Redfield [1999] demonstrates the value of using bond
graph as a conceptual or configurational design tool for dynamic systems,
using as an example a continuously variable transmission.

1.3.2. GA/GP

Numerous design-generating tools using GA and GP by members of the

Genetic Algorithms Research and Applications Group (“GARAGe”) are
presented by Goodman and his co-authors (Raymer et al. [1996], Goodman
[1996], Goodman et al. [1997a], Wang et al. [1997b], and Eby et al. [1998]).
(One of the most powerful and widely used GP systems, Lil-gp, was
developed in the GARAGe.) Carlson-Skalak et al. [1998] have developed a
catalog design method using an evolutionary algorithm, applied to a
manufacturing floor piping network. This approach allows for simultaneous
alterations of configurations and components. Koza et al. [1997a, 1997b]
present a single uniform approach using genetic programming for the
automatic synthesis of both the topology and sizing of a suite of various
prototypical analog circuits, including low-pass filters and operational
amplifiers. Koza et al. [1999b] present a general automated method for
synthesizing the design of both the topology and parameter values for
controllers. This method automatically makes decisions concerning the total
number of processing blocks to be employed in the controller, the type of each
block, the topological interconnections between the blocks, the values of all
parameters for the blocks, and the existence, if any, of internal feedback
between the blocks of the overall controller. It has already shown itself to be
extremely promising, having produced a number of patentable designs for
useful artifacts, and is the most closely related approach to that proposed here;
however, it works in a single energy domain. Danielson, Foster and Frincke
[1998] use both bond graph and a genetic algorithm to design a 2-stroke
combustion engine. They start from a preliminary design, find near-optimal
values for 15 physical parameters for a combustion engine, but without
allowing topological variation. Tay, Flowers and Barrus [1998] use a genetic
algorithm to vary bond graph models. This approach adopts a variational
design method, which means they make a complete bond graph model first,
then change the bond graph topologically using a GA, yielding new design

Introduction 9

alternatives. Their goal is to provide a wider range of possible designs, and is
closely related to that presented here, but within a topologically more limited
search space.

1.3.3. Automated Design Theory and Practice

Reich [1995] presents a critical review of General Design Theory (GDT),

a mathematical framework for design. He reviews the assumptions (axioms)
and predictions (theorems) of GDT with respect to design and illustrates them
with simple examples. Gero [1995] investigates evolutionary systems as
computational models of creative design and studies the relationships among
genetic engineering, style emergence, and complex evolution. Kota and Lee
[1993] present a configuration design technique employing a functional
reasoning approach. As in traditional catalog design, a configuration is formed
based on functions, and then components are selected. Chakrabarti and Bligh
[1994, 1996a, 1996b] describe one approach to synthesis of solutions to a class
of mechanical design problems; these involve transmission and transformation
of mechanical forces and motion, and can be described by a set of inputs and
outputs. The approach involves (1) identifying a set of primary functional
elements and rules of combining them, and (2) developing appropriate
representations and reasoning procedures for synthesizing solution concepts
using these elements and their combination rules. Schmidt and Cagan [1996]
have used a grammar-based system for design in which the grammar’s
vocabulary represents functions or subfunctions. Rosen and Peters [1996] seek
to demonstrate the diversity of applications of topology within engineering
design. A complementary goal is to introduce the engineering design
community to topology as a rich, formal, well-established mathematical
discipline that may be of value for wider study. Whitney [1996] describes
fundamental reasons, based on natural phenomena that keep mechanical
design from approaching the ideal of contemporary VLSI design methods.
Campbell et al. [1999] provide an introduction to a new design methodology
known as A-Design, which combines aspects of multi-objective optimization,
multi-agent systems, and automated design synthesis.

Design automation is undoubtedly a very difficult task. However, we have
seen some very successful applications in specific areas. For example,
analog/mixed-signal design is one of the most dynamic and vital research
areas in both academy and industry. In industry, two leading companies in the
area, ADA in Canada and Neolinear in the US, have done much breakthrough

Zhun Fan 10

research and successfully applied their research results in the Electronic
Design Automation (EDA) industry. Both companies, I believe, have a
focused application of computational intelligence techniques in their products.
Take the instance of ADA: the company has gathered many famous
researchers specializing in computational intelligence as well as analog CAD.
Madan M. Gupta, an IEEE fellow and pioneer in fuzzy and neural systems, is
a member of the advisory board. Trent McConaghy, the Chief Scientist of
ADA, is also a renowned specialist on artificial neural networks, fuzzy logic,
evolutionary algorithms, pattern recognition, and classification. Neolinear, on
the other hand, has Rob Rutenbar in its research advisory board. As the
Director of the Center for Electronic Design Automation (CEDA) at CMU,
Rutenbar is leading one of the most influential groups in analog/mixed-signal
CAD. In one of his publications, he explicitly states that he uses Parallel
Recombinative Simulated Annealing (PRSA), an idea originated from
Goldberg’s combining of a genetic algorithm and simulated annealing
optimization. Though striking and quite successful in their first attempts, the
biggest limitation of these industry-oriented approaches is that they only
accept fixed topologies. In academic circles, much research has been done on
design automation of single-domain systems capable of topological
exploration using an evolutionary computation approach. They could be
classified into two categories: GA-based and GP-based. Most GA-based
approaches realize topology optimization via a GA and parameter optimization
with numerical optimization methods (Grimbleby 1995). Some GA
approaches evolve both topology and component parameters; however, they
typically allow only a limited amount of components to be evolved (Lohn
1999). Using netlists as the representation technique for the circuit, and
genetic programming as the evolutionary tool, Koza has developed very
successful approaches to deal with circuit synthesis problems, evolving
topologies and parameters simultaneously (Koza, 1999). Although their work
basically achieves good results in analog circuit design, it is not easily
extendable to interdisciplinary systems like mechatronic systems.

Mechatronic system design differs from conventional design of electronic
circuits, mechanical systems, and fluid power systems in part because of the
need to integrate several types of energy behavior as part of the basic design
(Coelingh [1998]). Multi-domain design is difficult because such systems tend
to be complex and most current simulation tools operate over only a single
domain. In order to automate design of multi-domain systems, such as
mechatronic systems, a new approach is required. The essential goal of the
work reported in this book is to develop an automated procedure capable of

Introduction 11

designing mechatronic systems to meet given performance specifications,
subject to various constraints. The most difficult aspect of the research is to
develop a method that can explore the design space in a topologically open-
ended manner, yet find appropriate configurations efficiently enough to be
useful.

1.3.4. The BG/GP Approach

The goal of this thesis is to develop an integrated design tool for the

purpose of automatic, topologically open-ended synthesis of multi-energy-
domain systems. In order to achieve this goal, a novel approach is needed, to
satisfy the three principal requirements – multi-energy-domain design,
automated synthesis, and topologically open-ended design. To date, most
design approaches have lacked at least one of these characteristics: domain
independence, efficient analysis, or broad search. Some do strong search but
weak analysis, while others do good analysis but weak search. Bond graph are
domain independent and efficient for classification and analysis of models,
allowing rapid determination of various types of acceptability or feasibility of
candidate designs, thereby sharply reducing the time needed for analysis of
designs which are infeasible or otherwise unattractive. Genetic programming
is well recognized as a powerful tool for open-ended search. The combination
of these two powerful methods, called the BG/GP approach, is therefore an
appropriate target for a better system for synthesis of complex mechatronic
systems. Figure 1.4 shows a general flow chart of the BG/GP design process.
Design specifications, including problem descriptions, design objectives,
design constraints, etc., are first defined. After that, bond graph are used to
model and represent dynamic systems to be designed. In the BG/GP approach,
bond graph representations for dynamic systems are used for each design
candidate of the design population of each generation in a genetic
programming run. The genetic programming technique is the combinatorial
basis of the BG/GP approach to realize design automation. It is genetic
programming that possesses the mechanisms to generate a preliminary
population of design candidates, to present each design individual for
evaluation according to a specified fitness function, to reconfigure the
topologies and/or parameters of design candidates (represented by bond graph)
in the population, and to guide the design process to the next generation by
producing a new population of design candidates, typically with better average
performance.

Zhun Fan 12

This loop of design generation, evaluation, reconfiguration and guidance
is typically iterated until at some generation, all design specifications are met
by one design candidate or a group of design candidates. If so, the design
process can be ended and design candidate/candidates satisfying design
specifications can be saved for further analysis and post-processing.

Table 1.2 summarizes the similarities and differences between the
proposed BG/GP approach and several others. In this table, parametric
variation means variation of parameters within a fixed configuration. Limited
topological variation means the configuration can be changed, but only within
limited bounds. Open-ended topological variation means the configuration can
be changed not only topologically, but also by increasing or decreasing the
number of components and altering their interconnections, without fixed
bounds.

Introduction 13

Figure 1.4. General flow chart of the BG/GP design

Zhun Fan 14

Table 1.2. Comparisons of various design approaches

Properties Design with

Bond graph

Design
with
GA

Design
with GP

Design
with Bond
graph &
GA

BG/GP
approach

Multi-domain X X X

Open-ended
Topological variation

 X X

Developmental
Process

 X X

Automated synthesis X X X X

Design
Optimization

 X X X X

Efficient evaluation X X X

Automatic synthesis means that the iterative analysis and design search

process can be performed without a designer’s intervention. Developmental
process means that the designer need only set the embryo design initially
(thereby defining the measurable quantities specifying the problem to be
solved), and it evolves, generating a complete design solution. Efficient
evaluation means that infeasible designs can be rapidly detected without the
need for full simulation of design performance.

1.4. CONTRIBUTIONS OF THE BOOK

With mechatronics emerging as an independent and integrated discipline

of the 21st century, this book is of significance because it is one of the first
endeavors to address the challenging issue of design automation of
mechatronic systems. The main contributions of the book are:

A general framework, the BG/GP approach, for automated conceptual

design of mechatronic systems, is described. The approach combines
search capability of genetic programming to explore open-ended
design space automatically and bond graph to unify representation of
mixed-domain systems across different physical domains in
mechatronic systems.

Introduction 15

The BG/GP approach has been verified in the electrical domain in an
electrical analog filter design problem, and in the mechanical domain
in a mechanical printer redesign problem.

Instructive comparisons between Mechatronic Design Automation (MDA)
and Electronic Design Automation (EDA) have been made and the
promise of MDA has been suggested.

A framework of hierarchical evolutionary synthesis of MEMS has been
recommended and further research directions have been indicated.
System level behavioral synthesis of MEMS has been studied and
implemented using extended BG/GP approach.

Second level robust layout synthesis of MEMS has been studied and
implemented using a novel constrained evolutionary algorithm –
Improved Differential Evolution based on Stochastic Ranking (IDE-
SR).

The important issue of concurrent design of controller (‘brain’) and plant
embodiment (‘body’) of mechatronic systems is studied, and verified
in a case study of vehicle suspension system design.

1.5. ORGANIZATION

The early chapters introduce the background and explain the fundamental

elements of the theory and the later chapters test the theory in various facets
and discuss insights gained through experiments. Chapter 2 discusses
advantages of bond graph as a tool for design representation; some
implementation issues in this research are also addressed. Chapter 3 introduces
fundamentals of genetic programming and explains its functionality in design
generation, evaluation, reconfiguration and guidance. The preparatory steps
needed to apply this technique in the BG/GP approach are also discussed.
Chapter 4 includes case studies of two real-world engineering design
problems. Through experiments of an electrical analog filter design, and a
vibration absorber design for a mechanical printer system design, various
facets of using the BG/GP approach to facilitate and automate the design
process for mixed-domain dynamic systems are studied and several insights
regarding design are gained in the process. While these design cases are
basically in the macro-world, in Chapter 5, we extend the BG/GP approach to
a micro-scale domain and discuss the research of hierarchical evolutionary
synthesis of MEMS. First, we stratify the design process of MEMS into
several levels. At the system level, after integrating severe topological

Zhun Fan 16

constraints imposed by the specific application, we show that the BG/GP
approach can be used to automate system-level design or conceptual design of
a general class of dynamic systems, exemplified by a MEM filter design
problem. Chapter 6 extends the MEMS design in the second level, and studies
robust layout synthesis of MEMS using a novel constrained evolutionary
algorithm – Improved Differential Evolution based on Stochastic Ranking
(IDE-SR). Chapter 7 explores the important issue of concurrent design of
controller (‘brain’) and plant embodiment (‘body’) of mechatronic systems.
The proposed approach utilizes both co-evolutionary technique and bond
graph representation of controller design. The effectiveness of the approach is
verified in a case study of vehicle suspension system design, which
demonstrates that the approach can produce alternative viable concurrent
designs of both controller and plant embodiment to the designer. It is argued
that this approach can support a real mechatronic design philosophy, in
comparison with the sequential design procedure traditionally followed by
mechatronic engineers. Chapter 8 provides conclusion and suggestion for
further research.

Chapter 2

BOND GRAPH

The bond graph is a modeling tool that provides a unified approach to the

modeling and analysis of dynamic systems. Bond graph models can describe
the dynamic behavior of physical systems by the connection of idealized
lumped elements based on the principle of conservation of power. These
models provide very useful insights into the structures of dynamic systems
(Karnopp, Margolis and Rosenberg [2000], Rosenberg [1992, 1993a, 1993b,
1996]). Much recent research has explored bond graph as tools for design
(Sharpe and Bracewell [1995], Tay, et al. [1998], Youcef-Toumi [1999],
Redfield [1999]).

The constitutive equations of the bond graph elements are readily
introduced via examples from the electrical and mechanical domains. The
nature of the constitutive equations imposes demands on the causality of the
connected bonds. Bond graph elements are drawn as letter combinations
(mnemonic codes) indicating the type of element. The bond graph elements
are the following (Broenink [1999]):

C, storage element for a q-type variable, e.g. capacitor (stores charge),

spring (stores displacement).
I, storage element for a p-type variable, e.g. inductor (stores flux linkage),

mass (stores momentum).
R, resistor dissipating free energy, e.g. electric resistor, mechanical

friction.
Se, Sf, sources, e.g. battery (voltage source), gravity (force source), pump

(flow source).
TF, transformer, e.g. an electric transformer, toothed wheels, lever.

Zhun Fan 18

GY gyrator, e.g. electromotor, centrifugal pump.
0, 1, 0– and 1–junctions, for ideal connection of two or more sub-models.

The performance of a dynamic system that is composed of multi-domain

elements is governed by energy conservation laws, which require that power-
in equals power-out, also known as the power-balance equation. Power is the
product of effort and flow variables. Table 2.1 summarizes effort and flow
variables in translational, rotational, electrical and hydraulic domains,
respectively, with their corresponding bond graph representations.

Bond graph 19

Table 2.1. Flow and effort variables for different domains

Zhun Fan 20

2.1. CAUSALITY OF BOND GRAPH

One of the important concepts in bond graph theory is causality. If two

components are bonded together in a bond graph, we can think of one effort as
causing one component to respond with a flow while the flow causes the first
component to respond with an effort. Thus the cause-effect relations for efforts
and flows are represented in opposite directions. A single mark on a bond,
which is called the causal stroke, indicates how effort and flow simultaneously
are determined causally on a bond (Figure 2.1).

Figure 2.1. The meaning of causal stroke.

Causal analysis can give insight into the correctness and competency of
the model. This concept plays a great role in determining the feasibility of a
design very simply at an early stage.

Dependent on the kind of equations of the elements, the element ports can
impose constraints on the connected bonds. There are four different
constraints, which should be treated before a systematic procedure for causal
analysis of bond graph is discussed (the reader unfamiliar with these
constraints is directed to Appendix A for that treatment) (Broenink [1999]).

2.2. BOND GRAPH EVALUATION

To take advantage of the causal analysis that is possible for bond graph, a

two-stage evaluation procedure is executed to evaluate bond graph models.
The first, causal analysis (Karnopp et al. [2000]), allows rapid determination
of feasibility of candidate designs, thereby sharply reducing the time needed
for analysis of designs that are infeasible. Then, for those designs “passing”
the causal analysis, the state model is automatically formulated. The process is
illustrated in Figure 2.2.

Bond graph 21

Figure 2.2. Evaluation flow of bond graph models.

2.2.1. Causality Analysis

The causality assignment procedure is described as follows (quoting from

Broenink [1999]) (refer to Figure 2.3):

 1a. Choose a fixed causality of a source element, assign its causality, and
propagate this assignment through the graph using the causal constraints.
Go on until all sources have their causalities assigned.

1b. Choose a not-yet-causally-assigned port with fixed causality (non-
invertable equations), assign its causality, and propagate this assignment
through the graph using the causal constraints. Go on until all ports with
fixed causality have their causalities assigned.

2. Choose a not-yet-causally-assigned port with preferred causality (storage
elements), assign its causality, and propagate this assignment through the
graph using the causal constraints. Go on until all ports with preferred
causality have their causalities assigned.

3. Choose a not-yet-causally-assigned port with indifferent causality, assign
its causality, and propagate this assignment through the graph using the

Zhun Fan 22

causal constraints. Go on until all ports with indifferent causality have
their causalities assigned.

Often, the bond graph is completely causally determined after step 2,

without any causal conflict (all causal conditions are satisfied). If this is not
the case, then the moment in the procedure where a conflict occurs or where
the graph becomes completely causally determined, can give insight into the
correctness and instantiability of the model.”

Figure 2.3. Example of causality assignment.

2.2.2. Model Insight via Causal Analysis

As Broenink [1999] continues:

“When the bond graph is completely causally determined after step 2,
without any causal conflict, each storage element represents a state variable,
and the set of equations is an explicit set of ordinary differential equations
(not necessarily linear or time invariant).

When the bond graph is completely causally determined after step 1a,
the model does not have any dynamics. The behavior of all variables now is
determined by the fixed causalities of the sources. If a causal conflict arises
at step 1a or at step 1b, then the problem is ill posed. The model must be
changed, by adding some elements. An example of a causal conflict at step 1a

Bond graph 23

is two effort sources connected to one 0-junction. Both sources ‘want’ to
determine the one effort variable.

In case of a conflict at step 1b, a possible adjustment is changing the
model of some fixed–causality element such that its describing equations
become invertible, and thus the fixedness of the constraint disappears. When
a conflict arises at step 2, a storage element receives a non-–preferred
causality. This means that this storage element does not represent a state
variable. The initial value of this storage element cannot be chosen freely.
Such a storage element often is called a dependent storage element. This
indicates that a storage element was not taken into account during modeling,
but it should be there from physical systems viewpoint. It can be deliberately
omitted, or it might have been neglected in the modeling. In a hoisting device
example, the load of the hoist (I-element) is such a dependent storage
element. Elasticity in the cable was not modeled. If it had been modeled, a C-
storage element connected to a 0-junction between the cable drum and load
would have appeared.

When step 3 of the causality algorithm is necessary, a so-called algebraic
loop is present in the graph. This loop causes the resulting set differential
equations to be implicit. Often this is an indication that a storage element that
should be there from a physical systems viewpoint was not modeled.”

2.2.3. State Equation Formulation

For those designs “passing” the causal analysis, the state model may be

automatically formulated. However, as bond graphs are pictorial descriptions
of dynamic systems, to obtain the numerical performance of the dynamic
systems, it is necessary to derive a mathematical model from the pictorial
description. There is a systematic procedure to transform a bond graph
representation of a dynamic system to a state equation (Rosenberg, [1971]) or
transfer function. In our research, we focus on the problem of state equation
formulation. The details of this formulation procedure are provided in
Appendix B.

2.3. SIMPLIFICATION OF BOND GRAPH

Bond graph models can be simplified in some cases. This fact is important

in our research because some seemingly different topologies of bond graph
models are actually the same after simplification. As comparison of topologies

Zhun Fan 24

of designs for dynamic systems (represented by bond graph) is useful in many
applications, it is desirable to develop an algorithm to automatically simplify
bond graph topology, rather than to do it manually. Currently we have
implemented three simplification rules as follows:

1. Rule 1, elimination of redundant junctions. Junctions can be removed

from a graph if the energy flow is not branched at the junction, nor a
signal bond connected to the junction. Please refer to Figure 2.4

Figure 2.4. Elimination of redundant junctions in bond graph.

2. Rule 2, merging of junctions. Two junctions of the same type can be

joined if there is exactly one power bond between the junctions. The
simplification is carried out by removing the bond between the
junctions and transplanting all connections of one junction to the other
junction. The first junction can then be removed. Please refer to
Figure 2.5

Bond graph 25

Figure 2.5. Merging of junctions in bond graph.

3. Rule 3, merging of elements. Elements of the same type connected to

the same junction can be joined. The simplification is carried out by
calculating the expression for the new parameter value of the element,
replacing one of the parameters by the new expression and removing
the other element and its power bond. Please see details in Figure 2.6.

Zhun Fan 26

Figure 2.6. Merging of elements in bond graph.

Bond graph 27

We implemented this algorithm in the Simplification() member function
of the BondGraph class in our code. Applying simplification for a bond graph
is very direct, as shown in the simple illustrative example:

BondGraph A;
A.Simplification();

The pseudo code for the simplification algorithm for bond graph is

listedbelow:

An example showing a bond graph model before and after simplification

is shown in Figure 2.7. This is a result taken from a BG/GP run for the filter
design problem, which is going to be introduced in the Chapter 3 of this book.
The top figure is the bond graph model is taken from generation 96 of a typical
BG/GP run for the filter design problem. It is not simplified at the moment,
with several elements that can be merged highlighted by dashed circles. After
the simplification algorithm, the resulting simplified bond graph model is
shown in the bottom figure. The two bond graph models have identical
dynamic behaviors, but the simplified one has fewer elements and can be
physically realized with fewer physical components. Another purpose of using

Input : Bond graph output generated by GPBG
Output : Simplified bond graph model
Procedure
 begin
 i = 0
 for all junction(i)
 apply Rule 1
 i++
 i = 0
 for all junction(i)
 apply Rule 2
 i++
 j = 0
 for all element(j)
 apply Rule 3
 j++
 end

Zhun Fan 28

simplification methodology is that when comparing two structures, these two
seemingly different topologies are actually the same in terms of dynamic
behavior. Thus we can more easily draw conclusions about the differences
between two bond graph if we compare simplified structures.

Figure 2.7. An example of bond graph simplification.

Bond graph 29

2.4. STRENGTHS OF BOND GRAPH

In summary, bond graph have three embedded strengths for design

applications. First, multi-domain systems (electrical, mechanical, hydraulic,
pneumatic, thermal) can be modeled using a common notation, which is
especially important for design of mechatronic systems. Second, the graphical
(topological) structure characteristic of bond graph allows their generation by
combination of bond and node components, rather than by specification of
equations. This means that any system model can be generated by a
combination of bond and node components, because of their free composition
and unbounded growth capabilities. Therefore it is possible to span a large
search space, refining simple designs discovered initially, by adding size and
complexity as needed to meet complex requirements. Third, in causality
analysis, the causal relationships and power flow among elements and
subsystems can reveal various system properties and inherent characteristics
that can make the model unacceptable, and therefore make dynamic simulation
unnecessary. While the strong typing used in the GP system will not allow the
GP system to formulate “ill-formed” bond graph, even “well-formed” bond
graph can have causal properties that make it undesirable or unnecessary to
derive their state models or to simulate the dynamics of the systems they
represent. Causality analysis is fast, and can rapidly eliminate further cost for
many models that are generated by the genetic programming system, by
performing assignment of effort and flow variables and making checks for
violations of the appropriate constraints. This simple filtering cuts the
evaluation workload dramatically. For systems passing causal analysis, state
equations are easily and systematically derived from bond graph models. Then
various analyses or simulation based on the state model allow computation of
the desired performance measures.

Chapter 3

EVOLUTIONARY DESIGN

As its name implies, evolutionary design uses concepts borrowed from

Darwin’s concept of evolution to ‘breed’ good solutions to design problems.
The potential success of this idea is based on the observation that nature is a
great non-human designer -- without any intervention by humans, nature has
created many varied species that far exceed any man-made designs in terms of
complexity, during the last billion years. However, in design of man-made
artifacts, the engineer cannot afford to wait for the millions of years that the
evolution of organizations in nature has taken. The much-simplified
computational model used in evolutionary design and the ever-increasing
speed and capacity of current computer technology can help to shorten the
time consumption for design of engineered artifacts to an acceptable range.

In this research, we focus on a special type of evolutionary computation
technique, namely genetic programming. Genetic programming is an extension
of the genetic algorithm, using evolution to optimize actual computer
programs or algorithms to solve some task (Holland [1975], Goldberg [1989]),
typically involving a graph-type (or other variable-length) representation. The
most common form of genetic programming is due to John Koza [1992, 1994,
1999], and uses trees to represent the entities to be evolved. Genetic
programming can manipulate variable-size strings and can be used to “grow”
trees that specify increasingly complex bond graph models, as described
below. If the scope and analysis efficiency of the bond graph model can be
successfully integrated with the impressive search capability of genetic
programming when utilized to its full potential, an extremely capable
automated synthesis procedure, without need for user intervention, should
result.

Zhun Fan 32

3.1. EVOLUTIONARY DESIGN WITH BOND GRAPH

3.1.1. Generation of Design Candidates

Unlike most other approaches, genetic programming will generate a

population of design candidates at one time, rather than just one single design.
If we look at designing as a search process for optimized designs, genetic
programming, as a design automation and optimization approach, starts the
search not at one single point, but from a ‘population’ of points scattered in the
search space. Genetic programming takes advantage of the collective
information acquired from the whole population of design candidates, feeds it
back to influence the collective behaviors of the population through fitness
evaluation of each individual, and guides them to search for better
positions/points by imposing a search pressure. In the process, each individual
may reconfigure itself through crossover and mutation operations. This is an
important feature to have the ability to explore a topologically open-ended
search space. In the next section, we will first discuss how to generate an
individual design for a dynamic system represented as a bond graph.

3.1.2. Bond Graph Construction

A typical GP system evolves GP trees, rather than more general graphs.

However, bond graph can contain loops, so we do not represent the bond
graph directly as our GP “chromosomes.” Instead, a GP tree specifies a
construction procedure for a bond graph. Bond graph are “grown” by
executing the sequence of GP functions specified by the tree, using the bond
graph embryo as the starting point.

Defining a proper function set to generate candidates is one of the most
significant steps in preparing a genetic programming run. It may affect both
the search efficiency of genetic programming and validity of evolved results,
and is closely related to the selection of building blocks for the designed
system. We define the GP functions and terminals for bond graph construction
in Table 3.1. There are four types of functions: first, add functions that can be
applied only to a junction and which add a C, I, or R element; second, insert
functions that can be applied only to a bond and which insert a 0-junction or 1-

Evolutionary Design 33

junction into the bond; third, replace functions that can be applied only to a
node and which change the type of element and corresponding parameter
values for C, I, or R elements; and fourth, arithmetic functions that specify
arithmetic operations and are used to determine the numerical values
associated with components.

Table 3.1. Definition of function set

Name #Args Description

add_C
add_I
add_R
insert_J0
insert_J1
replace_C
replace_ I
replace_ R
+
-
enda
endi
endr
erc

4
4
4
3
3
2
2
2
2
2
0
0
0
0

Add a C element to a junction
Add an I element to a junction
Add an R element to a junction
Insert a 0-junction in a bond
Insert a 1-junction in a bond
Replace the current element with a C element
Replace the current element with an I element
Replace the current element with an R element
Add two ERCs
Subtract two ERCs
End terminal for add element
End terminal for insert junction
End terminal for replace element
Ephemeral random constant (ERC)

Some typical operations -- add_R (a 1-port resistor) and insert_J0 (a 0-

junction) -- are explained in detail as follows. In Figure 3.1, the R element is
added to an existing junction by the add_R function. This function adds a node
with a connecting bond. An R element also requires an additional parameter
value (ERC -- ephemeral random constant). Please note that in the GP tree
fragment, a single line is used to denote a node site, which is either a
component or a junction in the bond graph fragment, while a double line is
used to denote a bond site. The insert_J0 function can be applied only at a
bond, and performs insertion of a 0-junction at the given modifiable site (refer
to Figure 3.2). Inserting a 0-junction between node R and a 1-junction yields a
new bond graph (the right side of Figure 3.2 a). As a result, three new
modifiable sites are created in the new bond graph. At each modifiable site,

Zhun Fan 34

various bond growth functions can be applied, in accordance with its type. In
GP terminology, this is a strongly typed GP.

Figure 3.1. Illustration of add_R operator.

Evolutionary Design 35

Figure 3.2. Illustration of insert_J0 operator.

Figure 3.3 shows an example of a GP tree, generated at random from the
embryo root node. There are three modifiable embryo sites, denoted "1" (bond
graph node), "a" (bond), and "2" (bond graph node). Each is denoted by an
edge of the GP tree. Following edge 1 first, shows that an I element (I3 in
Figure 3.4) is added by the add_I to the 1-junction (11) of the bond graph,
together with the I element’s parameter value and a new bond. The result is to
preserve modifiable site "(1)" and to add modifiable sites "(b)" and "(3)". The
next set of operations under add_I in the GP tree shows that all three sites
happen to have been made unmodifiable in the example tree by appending of
end functions.

Turning next to the edge labeled "a", we see that the first function applied
to it is “end.” That bond site is thereby made unmodifiable. On the other hand,
site "(2)" is the locus of additional bond graph growth. A C element, C4 in
Figure 3.4, is added by add_C to the 0-junction (02). In the next operation,
insert_J1, a 1-junction (15) is inserted between the 0-junction (02) and C4.
After the remaining operations, the bond graph of Figure 3.4 is generated from
the GP tree of Figure 3.3.

Zhun Fan 36

3.1.3. Reconfiguration of Designs

Reconfiguration of design candidates is performed mainly through

crossover and mutation operations embedded in the genetic programming
technique (refer to Figure 3.5).

Figure 3.3. An example of a GP tree.

Evolutionary Design 37

Figure 3.4. The bond graph model generated by the GP tree of Figure 3.3.

Figure 3.5. Illustration of crossover operator and mutation operator.

Zhun Fan 38

Figure 3.6. The extensible search capability of GP for an unbounded design space.

Although crossover and mutation operators are both implemented in the
genotype, namely the genetic programming tree, the result of executing the
genotype generates the phenotype, a bond graph representation of a design. As
the tree depths of genetic programming trees are not fixed and theoretically not
limited, the possibilities of the shapes and parameters of resulting bond graph
models (after the genotype-to-phenotype mapping) are actually unbounded. In
this way, the combined capabilities of genetic programming to do efficient
search in topologically unbounded space and bond graph to model and
represent mixed-domain dynamic systems lead to a powerful design synthesis
approach for general open-ended multiport dynamic systems.

Evolutionary Design 39

3.1.4. Fitness Evaluation

Fitness evaluation involves defining an objective or fitness function

against which each individual is tested for suitability for matching the design
specifications under various design constraints. As the algorithm proceeds, we
would expect the individual fitness of the "best" individual, or design
candidate in the particular case of our research, to increase, as should the total
fitness of the population as a whole. An actual definition of fitness function is
quite dependent on problem domain. Each application may have a different
definition of the fitness function. More importantly, as design is the art of
making products for a changing world, and the creation of new products is an
ever-adapting and interactive process of integrating new information, new
technologies and new biases from the marketplace, the fitness function may
therefore be adaptive itself, enabling it to reflect changing design
environments or preferences.

3.1.5. Selection

We need to select individuals from the current population for

reproduction, or in other words, to create another population of design
candidates in the next generation. By comparing the population of design
alternatives, the best ones are selected to propagate to the next iteration while
the remaining ones are discarded to make room for new solutions If we have a
population of size 2N, the selection procedure picks out two parent
individuals, based on their fitness values, which are then used by the crossover
and mutation operators to produce two offspring for the new population. This
selection/crossover/mutation cycle is generally repeated until the new
population contains 2N individuals. A rule of thumb for selection is, the higher
the fitness value, the higher the probability of that individual being selected for
reproduction. This principle of selection pressure is called “survival of the
fittest,” which is the primary motivating factor for finding successful designs.

3.1.6. Premature Convergence

Premature convergence is often a tough problem to be addressed by

practitioners of evolutionary computation. There is no guarantee that, for an
arbitrary function to be optimized, approaches using finite populations and

Zhun Fan 40

search times, based on evolutionary computation (EC), will always find a
globally optimal solution. In fact, in practice, they often do not. Premature
convergence is one underlying reason for this phenomenon. The EC-based
approach may cease to search effectively for better solutions because all
individuals in the population converge to one region of the search space –
offspring tend to be only minor modifications of their parents. In the case of
genetic programming, if the population is converged, simple tuning of
parameters or adjusting of ad-hoc operators is not sufficient to make much
difference, so few new individuals out of crossover and mutation operations
will survive even if mutation rates are increased. As a result, the whole
population tends to get stuck in one place and the evolutionary computations
are not able to do further search in the search space. Many approaches have
been proposed to combat the problem of premature convergence to sustain a
continuing search pressure for better solutions.

A Hierarchical Fair Competition (HFC) model is developed and is the
major topic of another dissertation in our group. It suggests a building block
assembly line structure for continuing evolutionary machines. In this model,
individuals are organized into different levels according to their fitnesses.
Random individuals are continuously incorporated into the lowest fitness
level, while new individuals at any level with fitnesses higher than others in
that level progressively move out to higher levels. This kind of hierarchical
organization of individuals allows new individuals with promising new
building blocks to “grow up” gradually, without the severe competition from
highly developed individuals. The hierarchy of fitness serves as a repository
for different levels of implicit building blocks. As this is the major part of
another parallel research effort, it is not elaborated on further here, but is used
throughout the experimental runs. Interested readers may refer to (Hu, et al.
[2002]).

3.2. OVERALL DESIGN PROCEDURE

Now it is time to summarize our overall design procedure. As with any

fairly general system for design automation, the user must, as part of the
specification of the problem to be solved, indicate the target performance that
is desired and how it is to be evaluated. That generally includes identifying
some input variable(s) or driver(s) and some output(s) which are used to
observe the behaviors. The desired behaviors must be specified. For a system
to be represented as a bond graph, this amounts to specifying an “embryonic”

Evolutionary Design 41

physical model for the target system, which will remain invariant during the
design process. That embryo should include any exogenous inputs, usually
specified as sources of effort or flow (e.g., voltages, currents, forces,
velocities, pressures, etc.). It must include any outputs required to evaluate
fitness (for example, voltages across a given load resistance or flow rates
through pipes). That these components should NOT be allowed to be
changed/eliminated during design evolution is obvious – the problem is not
defined without their presence. When the user has formulated the problem
(i.e., the external boundaries of the physical model with its environment and
the performance measures to be used), the user must specify it as an
embryonic bond graph model and a “fitness” function. The user also specifies
one or more “sites” in the embryo model where modifications/insertions are
allowed. Then an initial population of GP trees is created at random, using that
embryo as a common starting point. For each GP tree (“individual”), the bond
graph is generated and analyzed. This analysis, including both causal analysis
and (under certain conditions) state equation analysis, results in assignment of
fitness to the individual. Then genetic operations – selection, crossover and
mutation – are performed on the evaluated population in the GP tree domain,
generating new individuals (designs) to be evaluated. The loop, including bond
graph analysis and GP operation, is iterated until the termination condition is
satisfied. The result is one or more “best” bond graph that satisfy predefined
specifications and ready for physical realization. There is, of course, no basis
for asserting the global optimality of any solution that arises – it is simply the
best generated, and the procedure is considered successful if the quality of that
design is adequate for the designer’s purposes.

It is also important to point out that it is possible to get an idea of the
design domain from “good” design candidates, not just “the best”. For
example, the designer may notice that a group of “good ” design candidates
share commonality of design topology and most component parameters. The
only difference among those design candidates is the sizing for one particular
component (for example, a C component). Then the designer can get a piece of
heuristic knowledge that this C component may be very vital to the
optimization of the design, and can focus on choosing a “best” parameter for
this C component to further optimize the whole design.

The flow of the complete algorithm described above is shown in Figure
3.7. This loop of bond graph analysis and GP operation is iterated until a
termination condition is satisfied. The final step in instantiating a physical
design would be to realize the highest-fitness bond graph in physical

Zhun Fan 42

components. We are going to illustrate this design procedure in several case
studies in our research.

Figure 3.7. The overall design procedure of BG/GP approach.

Chapter 4

CASE STUDIES OF BG/GP APPROACH

To test the ability of BG/GP approach for topologically open-ended design

automation for mixed-domain dynamic systems, we choose two design
problems mainly belonging to two different physical domains. They are 1). A
passive analog filter design problem that belongs to the electrical domain, and
2) a printer design problem that mainly belongs to the mechanical domain.

4.1. ANALOG FILTER DESIGN PROBLEM

Automatic synthesis of analog circuits is of great significance for

electronic systems design, which involves the determination of the topology of
circuits and sizing/parameterizing of their components. Many techniques have
been used for such problems. Some methods incorporate heuristics; some
predefine the topology, and then let the automated procedure optimize the
parameters of the circuits. Some divide the design into two stages -- topology
optimization via a GA and parameter optimization with numerical
optimization methods (Grimbleby, [1995]). Some genetic algorithm
approaches also evolve both topology and component parameters; however,
they typically allow only a limited amount of components to be evolved
(Lohn, [1999]). Using netlists as the representation technique for the circuit,
and genetic programming as the evolutionary tool, Koza has developed very
successful approaches to deal with circuit synthesis problems, evolving
topologies and parameters simultaneously (Koza, [1999]). However, those
applications are currently confined to the electrical domain, and exhibit very
heavy demand for computing resources.

Zhun Fan 44

4.1.1. BOND GRAPH REPRESENTATION OF CIRCUITS

In the context of circuit design, a bond graph consists of the following

types of elements:

C, I, and R elements, which are passive one-port elements that contain no

sources of power, and represent capacitors, inductors, and resistors.
Power source elements including Se and Sf, which are active one-port

elements representing sources of voltage or current, respectively. In
addition, when the current of a current source is fixed as zero, it can
serve as an ideal voltage gauge. Similarly, when the voltage of a
voltage source is fixed as zero, it can serve as an ideal current gauge

Transformer (TF) and gyrator (GY), which are two-port elements, and
represent transformers and gyrators, respectively. Power is conserved
in these elements.

0-junctions and 1-junctions, which are multi-port elements for
representing series and parallel relationships among elements. They
serve to interconnect elements into subsystem or system models

Bonds, which are used to connect any two elements in the bond graph.

A unique characteristic of bond graph is their use of 0- and 1-junctions to

represent the series and parallel relationships among components in circuits. In
fact, it is this concept that led to the foundation of the bond graph field
(Paynter, [1991]). Junctions transform common circuits into a very clean
structure with few loops, which can otherwise make circuits appear very
complicated. Figure 4.1 shows the comparison of a circuit and a corresponding
bond graph. The evaluation efficiency of the bond graph model is further
improved due to the fact that analysis of causal relationships and power flow
between elements and subsystems can reveal certain system properties and
inherent characteristics. This makes it possible for us to discard infeasible
design candidates even before numerically evaluating them, thus reducing time
of evaluation to a large degree. In addition, as virtually all of the circuit
topologies created is valid, our system does not need to check validity
conditions of individual circuits to avoid singular situations that could
interrupt the running of a program evaluating them.

Case Studies of BG/GP Approach 45

Figure 4.1. Bond graph representation of an electrical circuit.

4.1.2. Problem Definition

Three kinds of filter designs were chosen to verify our approach - high-

pass, low-pass, and band-pass filters. The embryo electric circuit and
corresponding embryo bond graph model used in our filter design are shown in
Figure 4.2. We used converted Matlab routines to evaluate frequency response
of the filters created. As Matlab provides many powerful toolboxes for
engineering computation and simulation, it facilitates development of source
codes for our genetic programming evaluation dramatically. In addition, as all
individual circuits passed to Matlab code for evaluation are causally valid, the
occurrence of singularities is excluded, which enables the program to run
continuously without interruption. The fitness function is defined as follows:
within the frequency range of interest, uniformly sample 100 points; compare
the magnitudes of the frequency response at the sample points with target

Zhun Fan 46

magnitudes; compute their differences and obtain the squared sum of
differences as raw fitness. Then normalized fitness is calculated according to:

)100(
100)(

Error

FilterFitness

The GP parameters used for eigenvalue design were as follows:

Case Studies of BG/GP Approach 47

Figure 4.2. Embryo of electrical circuit and its bond graph model.

4.1.3. Results

To illustrate an intermediate step in the evolution of a high-pass filter with

a target cutoff frequency of 1000Hz, the performance of the best design
evolved at generation 10 is shown in Figure 4.3. It is clear that this design is
far inferior to that evolved by the end of the run (fewer than 100 generations),
as shown in Figure 4.4. Figure 4.5 gives the frequency response of an evolved
low-pass filter with the same cut-off frequency. It shows that this result is also
quite satisfactory. Figure 4.6 gives the frequency response of an evolved band-
pass filter with cutoff frequencies at 10Hz and 1000Hz. Obviously, it is the

Zhun Fan 48

most difficult of the three filter design problems. The evolved high pass filter
circuit and bond graph are shown in Figures 4.7 and 4.8.

The statistical results of 10 runs each for high-, low- and band-pass filters
are shown in Table 4.1. The distance errors between ideal frequency output
and the output obtained, together with fitness values, are summarized. With
the exception of some of the band-pass results, most were quite acceptable.
Figure 4.9 shows the fitness history of a typical high-pass filter run.

Case Studies of BG/GP Approach 49

Figure 4.3. Frequency response of a high-pass filter design with fitness value of 0.917.

Figure 4.4. Frequency response of a high-pass filter design with fitness value of 0.992.

Zhun Fan 50

Figure 4.5. Frequency response of a low-pass filter design with fitness value of 0.980.

Figure 4.6. Frequency response of a band-pass filter design with fitness value of 0.884.

Case Studies of BG/GP Approach 51

Figure 4.7. Evolved bond graph model for high-pass filter.

Zhun Fan 52

FiFigure 4.8. Evolved electrical circuit for high-pass filter design.

Table 4.1. Summary results (errors, fitnesses) for filter designs

Run No.

Low-pass High-pass Band-pass

Error Fitness Error Fitness Error Fitness

1 2.334 0.977 3.349 0.968 9.067 0.917

2 3.428 0.967 2.031 0.98 12.861 0.886

3 2.202 0.978 1.159 0.989 12.698 0.887

4 3.032 0.971 2.337 0.977 12.672 0.888

5 2.162 0.979 0.828 0.992 8.662 0.92

6 3.427 0.967 2.86 0.972 12.864 0.886

7 3.026 0.971 3.287 0.968 13.1 0.884

8 2.951 0.971 0.725 0.993 13.09 0.884

9 2.154 0.979 1.141 0.989 6.003 0.943

10 1.988 0.981 1.917 0.981 13.049 0.885

Best 1.988 0.981 0.725 0.993 6.003 0.943

Worst 3.427 0.967 3.349 0.968 13.1 0.884

Avg 2.67 0.974 1.963 0.981 11.407 0.898

S.D 0.53 0.005 0.936 0.009 2.541 0.021

Case Studies of BG/GP Approach 53

Figure 4.9. Fitness history for a typical high-pass filter run.

4.2. DESIGN OF VIBRATION ABSORBER FOR
MECHANICAL PRINTER

4.2.1. Problem Formulation

The original design problem was presented by C. Denny and W. Oates of

IBM, Lexington, KY, in 1972. Figure 4.10 shows a closed-loop control system
to position a rotational load (inertia) denoted as JL. The system includes
electric voltage source, motor and mechanical parts. Bond graph are used for
modeling the system (please refer to Figure 4.10 and Figure 4.11).

The problem with the design is the position output of the load JL for a step
input in voltage has intense vibrations (see figure 4.12). The design
specification is to reduce the vibration of the load to an acceptable level, given
certain command conditions for rotational position. We want the settling time
to be less than 70ms when the input voltage is stepped from zero to one. Note
that the settling time of the original system is about 2000ms. The time scale in
Figure 4.12 is 4000 ms.

Zhun Fan 54

Figure 4.10. The schematic of the original printer system.

Figure 4.11. Bond graph model for the original printer system.

Case Studies of BG/GP Approach 55

Figure 4.12. Simulation result of the original printer drive subsystem..By analyzing the
model, we conclude that the critical part for the design is a subsystem that involves the
drive shaft and the load (Figure 4.13). The input is the driving torque, Td, generated
through the belt coupling back to the motor.

By analyzing the model, we conclude that the critical part for the design is
a subsystem that involves the drive shaft and the load (Figure 4.13). The input
is the driving torque, Td, generated through the belt coupling back to the
motor.

Zhun Fan 56

Figure 4.13. The critical printer drive subsystem.

This subsystem was deemed a logical place to begin the design problem.
The questions left to the designer now are: 1) at which exact spots of the
subsystem new components should be inserted, 2) which types of components
and how many of them should be inserted, in which manner, and 3) what
should be the values of the parameters for the components to be added? The
approach reported in this paper is able to answer these three questions in one
stroke in an automated manner, once the embryo system has been defined.

4.2.2. Embryo of Design

To search for a new design using the BG/GP design tool, an embryo

model is required. The embryo model is the fixed part of the system and the
starting point for GP to generate candidates of system designs by adding new
components in a developmental manner. The embryo used for this example,
expressed in bond graph language, is shown in Figure 4.14, with the
modifiable sites highlighted. The modifiable sites are places that new
components can be added. The choice of modifiable sites is typically easy for
the designer to decide. Note that modifiable sites are only possible spots for
insertion of new components; the search may not use all of them. In this
particular example, designers need have no idea whether assemblies of new
components will be inserted at modifiable site (1), or at modifiable site (2), at
site (3), or at any combinations of them. Instead, the algorithm will answer
these questions in an automatic way, without intervention by the human
designer.

Case Studies of BG/GP Approach 57

Figure 4.14. The design embryo of printer subsystem.

The parameters for the embryo model are:

For simplicity and without loss of generality, both K and MSe gain are set

to be unit.
A notable difference exists between this design embryo and that of the

filter design problem as discussed in the last session. While the embryo for the
filter design was quite simple, the embryo for the printer redesign is much

Zhun Fan 58

more complex. This is because in the printer redesign problem, most parts of
the printer system are fixed. The designer only wants to insert or reconfigure
components at a few positions in the original system, in an effort to form a
mechanical vibration absorber subsystem. This difference of embryos
manifests the major difference of solving design and redesign problem using
BG/GP approach. In a design problem, the approach should generate and
evolve a design from scratch, so the embryo is left to be simple and trivial.
While for the redesign problem, the major part of the system is required to be
intact. The modifiable part of the system, on the other hand, becomes
relatively minor part of the whole system. As a result, in a redesign problem,
we are more apt to see a nontrivial embryo for the design, which means we are
going to spend more time in analyzing and defining a suitable embryo in a
redesign problem before we start a genetic programming run.

The following cases were run on a single Pentium III 1GHz PC with
256MB RAM. The GP parameters were as shown below.

Three major code modules were created in our work. The algorithm kernel

of HFC-GP was a modified version of an open software package developed in
our research group -- lilgp. A bond graph class was implemented in C++. The
fitness evaluation package is C++ code converted from Matlab code, with
hand-coded functions used to interface with the other modules of the project.
The commercial software package 20Sim was used to verify the dynamic
characteristics of the evolved design.

The GP program obtains satisfactory results on a Pentium-IV 1GHz in
5~15 minutes, which shows the efficiency of our approach in finding good
design candidates.

Number of generations: 100
Population sizes: 200 in each of 15 subpopulations
Initial population: half_and_half
Initial depth: 3-6
Max depth: 17
Selection: Tournament (size=7)
Crossover: 0.9
Mutation: 0.1

Case Studies of BG/GP Approach 59

4.2.3. Results

Ten runs of this problem have been done and most of the runs produced

very good solutions. The fitness history of a typical run is shown in Figure
4.15. Two competing design candidates with different topologies, as well as
their performances, are provided in Figure 4.16 to Figure 4.21 (evolved
components are circled). We can see from the output rotational position
responses that they all satisfy the design specification of settling time less than
70ms. Note that the time scale of the plots is 100 ms.

One of the designs is shown in Figure 4.16. It is generated in only 20
generations with 200 designs in each of 15 subpopulations, and has a very
simple structure. Three elements, one each of 0-junction, C, and R, are added
to modifiable site 1 of the embryo model (Figure 4.16). The performance of
this model is shown in Figure 4.18. The position response for step function
input quickly converges in about 50msec, which was an acceptable timeframe.
Physical realization of the bond graph model is shown in Figure 4.17. A spring
and a damper are added and coupled to the original printer subsystem as
shown in Figure 4.13.

Zhun Fan 60

Figure 4.15. Fitness history for a typical printer drive redesign run.

Figure 4.16. The evolved bond graph model I.

Case Studies of BG/GP Approach 61

Figure 4.17. The physical realization of evolved bond graph model I.

Figure 4.18. Simulation result of evolved bond graph model I.

Zhun Fan 62

Figure 4.19. The evolved bond graph model II.

Figure 4.20. The physical realization of evolved bond graph model II.

Case Studies of BG/GP Approach 63

Figure 4.21. Simulation result of evolved bond graph model II.

Another design is shown in Figure 4.19. Four elements, 0-junction with C,
1-junction with R are added to modifiable site 2 and one R is added to
modifiable site 3. The physical realization of the design is shown in Figure
4.20. Figure 4.21 displays the performance of this model.

Table 4.2 represents the statistical results of 10 runs for the printer drive.

Zhun Fan 64

Table 4.2. Summary results of fitness for printer

Run Fitness of Printer

No. Distance Fitness
1 15.076 0.985

2 15.818 0.984

3 15.188 0.985

4 16.72 0.983

5 15.053 0.985

6 14.085 0.986

7 15.122 0.985

8 15.502 0.985

9 15.132 0.985

10 15.881 0.984

Best 14.085 0.986

Worst 16.72 0.984

Avg 15.358 0.985

S.D 0.6903 0.000669

4.3. DISCUSSION

Two design examples show the feasibility of the proposed BG/GP

approach in various aspects. First, the two design examples belong to different
physical domains. Filter design problem is the design of an electrical system,
while printer redesign problem is basically a design problem for a mechanical
vibration absorber. This fact simply demonstrates the mixed-domain design
capability of BG/GP approach. Second, the result of the passive high-pass
analog filter design demonstrates both effectiveness and efficiency of our
approach combining bond graph and genetic programming. It shows that the
approach is capable of evolving very satisfactory results in a moderate period
of time on a single personal computer. To get the results shown in section 4.1,
a typical program ran in a P-III 1GHz for 44.8 minutes. It took the genetic
programming algorithm 100 generations to evolve it. This result is considered
to be acquired in an efficient manner because for an evolutionary computation
algorithm to evolve designs with similar complexity, it usually takes a much

Case Studies of BG/GP Approach 65

longer time and consumes much more computational resources, such as
clusters of computers (Koza et al. [1997a]). No one single factor stands out as
the sole reason for this efficiency -- we believe several factors contribute.
First, the bond graph representation of dynamic systems has strong topological
expression capability. Second, the genetic operators used promote efficient
generation and reconfiguration of bond graph topologies. Third, causality
analysis of the bond graph model before evaluating design candidates in detail
helps to discard a large volume of improper designs without requiring full
evaluations, thus reducing computation time and resources. In summary, the
printer redesign problem demonstrates the strong topological exploration
ability of BG/GP approach. In a very short period of time, BG/GP approach
successfully identified a variety of design candidates satisfying design
specifications for further analysis and tradeoff by design engineers.

Chapter 5

EVOLUTIONARY SYNTHESIS OF MEMS

Even though the successful case studies discussed in the previous chapter

show that the BG/GP approach can be a useful tool for dynamic systems
design, one is still driven to ask, “Why is mechanical systems design not more
like VLSI design?” As is well known, Electronic Design Automation (EDA)
has achieved tremendous success in both industry and academia. However,
similar success has not been achieved in design automation of mechanical
systems. One fundamental reason for this is that mechanical systems lack
highly modularized components that have clearly specified interfaces among
each other, as VLSI components do. Fortunately, mechatronic systems, which
are increasingly replacing conventional mechanical systems, can transfer
energy and information flows among their components through electric wires,
thus can be modularized far more than mechanical systems. This feature
makes mechatronic systems generally more amenable to design automation
approaches and it is expected that next generation mechatronic systems will
become increasingly modularized. Accordingly, Mechatronic Design
Automation (MDA), as an emerging research area, holds great promise. In
particular, Micro-Electro-Mechanical-Systems (MEMS), actually micro-
mechatronic systems, might be the first type of mechatronic systems to
achieve success comparable to that already attained by EDA, due to its close
affinity with VLSI. MEMS actually evolved from microelectronics and
inherited many fabrication techniques of VLSI.

This chapter starts with an analysis of both the challenges and promises of
MEMS design and synthesis. A structured design automation method is
strongly recommended, by which the design process is deliberately divided
into several levels. Each level has its own design focus and objectives, as well

Zhun Fan 68

as its own design automation and optimization approaches. After following a
top-down design process, a bottom-up verification process is also carried out
to verify that at each level the design specifications are exactly satisfied. The
BG/GP approach discussed in the previous chapters is very suitable to be
extended and applied to the first level, or system-level design for MEMS. The
feasibility of the extended BG/GP approach is demonstrated through an
example of MEMS design in a particular domain of RF MEM devices,
namely, micromechanical bandpass filter design level. Then at the second
level, the physical layout synthesis problem is formulated as a constrained
optimization problem and treated with a special type of constrained genetic
algorithm presented by Deb, [2000]. Finally, some implementation
considerations to extend the approach across various design levels are also
identified and discussed.

5.1. INTRODUCTION TO MEMS DESIGN AND SYNTHESIS

Simply put, MEMS are electromechanical systems built on a very tiny

length scale. Figure 5.1 shows two typical MEMS. The left one shows a gear-
mechanism with a length scale of millimeters, while the right one shows a
combination of parallel comb-driven resonators with a length scale of
micrometers.

The comb driven resonators, which have a length scale of micrometers,
can hardly be seen clearly by the naked eye. Design of systems on such a tiny
scale is very difficult. The following is a paragraph quoted from Professor G.
K. Fedder, a pioneer and specialist in MEMS design and synthesis.

“No rapid design process is available today for MEMS… this is very

expensive… Full verification of designs requires months of effort, and design
optimization is not realistic in all but the simplest of cases.”

–G.K. Fedder et al., 1999

Evolutionary Synthesis of MEMS 69

Figure 5.1. Examples of MEMS.

5.2. PROMISES AND CHALLENGES OF MEMS DESIGN
AND SYNTHESIS

Some people may be surprised that MEMS design and synthesis is so

difficult. Their argument is that MEMS evolved from microelectronics, so
should have similar design tools available. A strong relationship between Very
Large Scale Integrated circuits (VLSI) and MEMS does exist. Actually,
MEMS has borrowed or inherited the fabrication process of VLSI. As is
known, VLSI has such successful and highly structured "toolkits" for design
automation that the whole new industry of Electronic Design Automation
(EDA) has been created based on them. It seems that a similar design
automation approach for MEMS should be very promising.

However, one major difference between VLSI and MEMS makes design
of MEMS much more difficult. MEMS are intrinsically a hybrid system with
both electrical parts and mechanical parts, while VLSI is basically a single-
energy-domain system comprised of only electronic or electrical components.
The mechanical subsystems of MEMS give rise to many difficulties and
design problems. For example, the interface between an electrical subsystem
and a mechanical subsystem is still not well studied and definitely needs
further investigation, because a large portion of design and fabrication
problems arise in the interface zone where signal and energy transitions across

Zhun Fan 70

physical domains occur very frequently. Another example of a difficulty is that
the mechanical subsystem often includes moving parts, like vibrating beams or
shifting combs. These moving parts are usually more fragile than fixed parts
under external pressure loads or environmental changes (e.g. temperature
changes). Design of these moving parts requires considerations not required of
electronic parts, and is more complicated.

Due to the complexity and intricacy involved in MEMS design, designing
MEMS still remains an art in most applications, requiring a large investment
of human resources, time and money. Much of the investment is consumed in
the iterative trial-and-error design process. As a result, we have only seen a
handful of successful commercial MEMS products – those that the market has
demanded in large quantities, including automotive accelerometers and
gyroscopes, pressure sensors, ink-jet print heads and a few others. Prevalence
of design and fabrication of MEMS application-specific integrated circuits
(ASICs) analogous to electronic ASICs is still not seen.

Despite the numerous difficulties presented in automated synthesis of
macro-mechanical systems, MEMS holds the promise of being amenable to
structured automated design due to its similarities with VLSI, provided that the
synthesis is carried out in a properly constrained design domain. However, it
turns out that translating the key insights of the successful silicon evolution
into MEMS technologies is a much more challenging task than most people
had expected. Major research topics to be addressed include:

1. developing a broad base of building blocks in MEMS technologies so

that huge networks of micro-devices can be assembled into arbitrary
architectures with desirable functionalities,

2. abstracting design hierarchies to stratify and conquer design
complexity, thus making the design more amenable to an automated
process,

3. improving models of computation and extending current synthesis
methodologies to facilitate generation of viable design candidates and
smoother transitions from conceptual and embodied designs to
process fabrication, and

4. combining MEMS component layout extraction and lumped-
parameter bond graph (or other multi-domain) simulation and design
synthesis to provide MEMS designers with VLSI-like environments
enabling faster design cycles and improved design productivity.

Evolutionary Synthesis of MEMS 71

This chapter seeks to partially address the above challenges, especially the
first two. The proposed hierarchical and evolutionary design framework for
MEMS aims to eliminate tedious and repetitive design tasks, facilitate
hierarchical problem decomposition, and combine the power of multiple
evolutionary computation algorithms working simultaneously to identify better
product designs and process solutions. In particular, we divide design
representations of MEMS design into two levels, the system-level behavioral
macromodel and the detailed-level physical geometric layout model. At the
system level, we use a combination of genetic programming and bond graph to
automatically generate and search for viable design candidates represented by
behavioral macromodels satisfying high-level design specifications. At the
second detailed (layout) level, constrained genetic algorithms are used to
optimize the geometric parameters that relate the physical device model to the
behavioral macromodel and satisfy more detailed design constraints

5.3. HIERARCHICAL MEMS DESIGN METHODOLOGY

In MEMS, there are a number of levels of designs that need to be

synthesized (Fedder and Jing [1999]). Usually the design process starts with
basic capture of the schematic of the overall system, and then goes on through
layout and construction of a 3-D solid model. So the first design level is the
system level, which includes selection and configuration of a repertoire of
planar devices or subsystems. The second level is 2-D layout of basic
structures like beams to form the elementary planar devices. In some cases, if
the MEMS is basically a result of a surface micro-machining process and no
significant 3-D features are present, design at this level will end one cycle of
design. More generally, modeling and analysis of a 3-D solid model for
MEMS is necessary. However, even if we have obtained an optimized 3-D
device shape, it is still very difficult to produce a proper mask layout and
correct fabrication procedures. Automated mask layout and process synthesis
tools would be very helpful to relieve designers from considering the
fabrication details and allow them to focus on the functional design of the
device and system (Ma and Antonsson [2000]). After a “top-down” design
path, a “bottom-up” verification process usually follows to guarantee that at
each design level the design specifications are met exactly as defined (Figure
5.2). The ultimate goal is to develop tools for MEMS design to ensure first-

Zhun Fan 72

pass success by having a well-defined “top-down” design path and “bottom-
up” verification path.

Figure 5.2. Hierarchical design of MEMS.

5.4. SYSTEM-LEVEL SYNTHESIS OF MEMS

For system-level design, hand calculation is still the most popular method

in current design practice. This is largely for the following reasons: 1) The
MEMS systems we are considering, or designing, are relatively simple in
dynamic behavior -- especially the mechanical parts -- largely due to
limitations in fabrication capability. 2) There is no powerful and widely
accepted synthesis approach to automated design of multi-domain systems. In
addition, most MEMS system-level design is accomplished by modeling entire
microelectromechanical systems as single behavioral entities having no lower
hierarchical level in design. If there is any change in geometric parameters or
topology, a whole new model must be created, and this substantially lengthens
design cycles.

The BG/GP approach, which combines the capability of genetic
programming to search in an open-ended design space and the merits of bond
graph for representing and modeling multi-domain systems elegantly and
effectively, proves to be a promising method to do system-level synthesis of

Evolutionary Synthesis of MEMS 73

multi-domain dynamical systems (Fan et al. [2001][2002]). At the first or
higher level of system synthesis of MEMS, the BG/GP approach can help to
obtain a high-level description of a system that assembles the system from a
library of existing components in an automated manner to meet a predefined
design specification. Then at the second or lower level, other numerical
optimization approaches (Zhou, [1998]), as well as evolutionary computation,
may be used to synthesize custom components from a functionality
specification. It is worthwhile to point out that for the system designer, the
goal of synthesis is not necessarily to design the optimum device, but rather to
take advantage of rapid prototyping and "design reuse" through component
libraries; while for the custom component designer, the goal may be maximum
performance. These two goals may lead to different synthesis pathways as well
as different results. Figure 5.3 shows a typical structured MEMS synthesis
procedure; the BG/GP approach aims to solve the problem of system-level
synthesis in an automated manner at the first level.

Zhun Fan 74

Figure 5.3. Structured MEMS design flow.

However, in trying to establish an automated synthesis approach for
MEMS, we should take cautious steps. Due to the limitations of fabrication
technology, there are many constraints in design of MEMS. Unlike VLSI,
which can draw on extensive sets of design rules and programs that
automatically test for design-rule violations, the MEMS field lacks design
verification tools at this time. This means that no design automation tools are
available at this stage capable of designing and verifying any kind of
geometrical shapes of MEMS devices. Thus, automated MEMS synthesis tools
must solve sub-problems of MEMS design in particular application domains

Evolutionary Synthesis of MEMS 75

for which a small set of predefined and widely used basic electromechanical
elements are available, to cover a moderately large functional design space.

5.4.1. Bond Graph

The reason we used bond graph in research on MEMS synthesis is

because MEMS are intrinsically multi-domain systems, unlike electronic
systems. We need a uniform representation of MEMS so that designers can not
only shift among different hierarchies of design abstractions but also can move
around design partitions in different physical domains without difficulty. The
bond graph is a modeling tool that provides a unified approach to the modeling
and analysis of dynamic systems, especially hybrid multi-domain systems
including mechanical, electrical, pneumatic, hydraulic components, etc. It is
the explicit representation of model topology that makes the bond graph a
good candidate for use in open-ended design search. Figure 5.4 shows an
example of a single bond graph model that represents a resonator unit in any of
three different application domains. It is also very natural to use bond graph to
represent a dynamic system, such as a mechatronic system, with cross-
disciplinary physical domains and even controller subsystems (Figure 5.5).

Zhun Fan 76

Figure 5.4. One bond graph represents resonators in different application domains.

Figure 5.5. Bond graph representing a mechatronic system with mixed energy domains
and a controller subsystem.

Evolutionary Synthesis of MEMS 77

5.4.2. Combining Bond Graph and Genetic Programming

As was discussed in Chapter 3, the most common form of genetic

programming (Koza [1994]) uses trees to represent the entities to be evolved.
Defining a proper function set is one of the most significant steps in using
genetic programming. It may affect both the search efficiency and validity of
evolved results and is closely related to the selection of building blocks for the
system being designed. In this work, the genotypes assembled from the
function sets are constructors which, upon execution, specify a bond graph. In
other words, when the genotype is executed, it generates the phenotype in a
developmental manner. In this research, we have an additional dimension of
flexibility in generating phenotypes, because bond graph are used as modeling
representations for multi-domain systems, serving as an intermediate
representation between the mapping of genotype and phenotype, and those
bond graph can be interpreted as systems in different physical domains, chosen
as appropriate to the circumstances. Figure 5.6 illustrates the role of bond
graph in the mappings from genotypes to phenotypes and Figure 5.7 gives a
particular example in the domain of electrical circuits.

Figure 5.6. Genotype-Phenotype mapping.

Zhun Fan 78

(A)

Evolutionary Synthesis of MEMS 79

(B)

Figure 5.7. A) Example of genotype-phenotype mapping in the electrical circuit
domain. B) The bond graph model realized to the phenotype - the electrical circuit
model.

Zhun Fan 80

5.4.3. Filter Topology

Automated synthesis of an RF MEM device, a micro-mechanical bandpass

filter, is used as an example in this research (Wang and Nguyen [1999]).
Through analyzing two popular topologies used in surface micromachining of
micro-mechanical filters, we found that they are topologically composed of a
series of concatenated Resonator Units (RUs) and Bridging Units (BUs) or
RUs and Coupling Units (CUs). Figure 5.8 shows the layout of a typical
resonator unit widely used in microsystems, along with its equivalent circuit
representation and bond graph representation. Figure 5.9 and Figure 5.10
illustrates the layouts and bond graph representations of two widely accepted
filter topologies, labeled I and II. Their corresponding bond graph
representations are also shown.

Figure 5.8. Resonator unit and its representations as both bond Graph and Equivalent
circuit.

Evolutionary Synthesis of MEMS 81

Figure 5.9. MEM filter topology I.

Zhun Fan 82

Figure 5.10. MEM filter topology II.

5.4.4. Realizable Function Set

The most common form of genetic programming uses trees to represent

the entities to be evolved. Defining of a proper function set is one of the most
significant steps in using genetic programming. It may affect both the search
efficiency and validity of evolved results and is closely related to the selection
of building blocks for the system being designed. In this research, a basic
function set and a higher-complexity, modular function set are presented and
listed in Tables 5.1 and 5.2. Operators in the basic function set aim to
construct primitive building blocks and assemble them into a system, while
operators in the modular function set purport to utilize relatively modular and

Evolutionary Synthesis of MEMS 83

predefined building blocks composed of primitive building blocks, assembling
them into a system. Notice that numeric functions are included in both
function sets, as they are needed in both cases. In other research, we
hypothesize that usage of modular operators in genetic programming has some
promise for improving its search efficiency (Seo et al. [2003]). However, in
this research, we concentrate on another issue, proposing the concept of a
realizable function set. By using only operators in a realizable function set, we
seek to guarantee that the evolved design is physically realizable and has the
potential to be manufactured. This concept of realizability may include
stringent fabrication constraints to be fulfilled in some specific application
domains.

Examples of operators, namely insert_BU and insert_RU, are illustrated in
Figures 5.11 and 5.12. Examples of basic operators are available in our earlier
work (Fan et al. [2001]). Figure 5.11 explains how the insert_BU function
works. A Bridging Unit (BU) is a subsystem composed of three capacitors
with the same parameters, attached together with a 0-junction in the center and
1-junctions at the left and right ends. After execution of the insert_BU
function, an additional modifiable site (2) appears at the rightmost newly
created bond. As illustrated in Figure 5.12, a resonator unit (RU), composed of
one I, R, and C component all attached to a 1-junction, is inserted in an
original bond with a modifiable site through the insert_RU function. After the
insert_RU function is executed, a new RU is created and one additional
modifiable site, namely bond (3), appears in the resulting phenotype bond
graph, along with the original modifiable site bond (1). The newly-added 1-
junction also has an additional modifiable site (2). As components C, I, and R
all have parameters to be evolved, the insert_RU function has three
corresponding ERC-typed sites, (4), (5), and (6), for numerical evolution of
parameters.

Zhun Fan 84

Table 5.1. Operators in Basic Function Set

Basic Function Set
add_C Add a C element to a junction
add_I Add a I element to a junction
add_R Add a R element to a junction
insert_J0 Insert a 0-junction in a bond
insert_J1 Insert a 1-junction in a bond

replace_C Replace the current element with a C

replace_I Replace the current element with a I

replace_R Replace the current element with a R

+ Sum two ERCs
- Substract two ERCs
enda End terminal for add functions
endi End terminal for insert functions
endr End terminal for replace functions
erc Ephemeral Random Constant (ERC)

Table 5.2. Operators in Modular Function Set

Modular Function Set

insert_RU Insert a Resonator Unit

insert_CU Insert a Coupling Unit
insert_BU Insert a Bridging Unit
add_RU Add a Resonator Unit

insert_J01
Insert a 0-1-junction compound
witelements

insert_CIR Insert a special CIR compound
insert_CR Insert a special CR compound
Add_J Add a junction compound
+ Sum two ERCs
 - Subtract two ERCs
endn End terminal for add functions
endb End terminal for insert functions
endr End terminal for replace functions
erc Ephemeral Random Constant (ERC)

Evolutionary Synthesis of MEMS 85

Figure 5.11. Operator to insert bridging unit.

Figure 5.12. Operator to insert resonator unit.

Zhun Fan 86

BG/GP is a quite general approach to automate synthesis of
multidisciplinary systems. Using a basic set of building blocks, BG/GP can
perform topologically open composition of an unconstrained design. However,
engineering systems in the real world are often limited by various constraints.
So if BG/GP is to be used to synthesize real-world engineering systems, it
must enforce those constraints.

Unlike our previous designs with basic function sets, which impose fewer
topological constraints on design, MEMS design features relatively few
devices in the component library. These devices are typically more complex in
structure than those primitive building blocks used in the basic function set.
Only evolved designs represented by bond graph matching the dynamic
behavior of those devices belonging to the component library are expected to
be manufacturable under current or anticipated technology. Thus, an important
and special step in MEMS synthesis with the BG/GP approach is to define a
realizable function set that, throughout execution, will produce only
phenotypes that can be built using existing or expected technology.

As is already known, if we analyze the system of MEM filters of (Wang
and Nguyen [1999]) from a bond graph viewpoint, we find that the filters are
basically composed of Resonator Units (RUs) and Coupling Units (CUs).
Another popular MEM filter topology includes Resonator Units and Bridging
Units (BUs). A realizable function set for these design topologies often
includes functions from both the basic set and modular set. In many cases,
multiple realizable function sets, rather than only one, can be used to evolve
realizable structures of MEMS. In this research, we used the following
function set, along with traditional numeric functions and end operators, for

creating filter topologies with coupling units and resonator units.

}__,__,__,__

,__,1__,_{1

IaddfRaddfCaddfCUinsertf

RUinsertfJinsertftreef

}__,__,__,__

,__,1__,_{2

IaddfRaddfCaddfBUinsertf

RUinsertfJinsertftreef

Evolutionary Synthesis of MEMS 87

5.4.5. Design Embryo

All individual genetic programming trees create bond graph from an

embryo. Selection of the embryo is also an important topic in system design,
especially for multi-port systems. In our filter design problems, we use the
bond graph shown in Figure 5.13 as our embryo.

Figure 5.13. Design embryo of the MEM filter.

5.4.6. Adaptive Fitness Function

Within the frequency range of interest,],[maxmin fff range ,

logarithmically sample 100 points. Here, rangef = [0.1, 1000K] Hz.

Compare the magnitudes of the frequency response at the sample points
with target magnitudes, which are 1.0 within the pass frequency range of [316,
1000] Hz, and 0.0 otherwise, between 0.1 and 1000KHz.

Zhun Fan 88

Compute their differences and get a sum of squared differences as raw

fitness, defined as rawFitness . If the initial raw fitness value
0

rawFitness <

Threshold, change rangef to],[*
max

*
min

* fff range Usually rangerange ff *
.

Repeat the above steps and obtain a new raw fitness value
1

rawFitness . We

obtain a final raw fitness value as sum of the two, represented by
10

rawrawraw FitnessFitnessFitness .

Then normalized fitness is calculated according to:

)(5.0
raw

norm FitnessNorm
NormFitness

The reason to use adaptive fitness evaluation is that after a GP population

has reached a fairly high fitness value as a group, the differences of frequency
responses of individuals need to be centered on a more constrained frequency
range. In this circumstance, if there is not sufficient sampling within this much
smaller frequency range, the GP may lack sufficient search pressure to push
the search forward. The normalized fitness is calculated from the sampling
differences between the frequency response magnitudes of the synthesized
systems and the target responses. Therefore, we adaptively change and narrow
the frequency range to be heavily sampled. The effect is analogous to
narrowing the search window onto a smaller yet most significant area,
magnifying it, and continuing to search this area with closer scrutiny.

5.4.7. Experimental Setup

We used a strongly-typed version of lilgp to generate bond graph models.

The major GP parameters were as shown below.

Population size: 500 in each of thirteen subpopulations
Initial population: half_and_half
Initial depth: 4-6
Max depth: 50 Max_nodes 5000
Selection: Tournament (size=7)
Crossover: 0.9 Mutation: 0.3

Evolutionary Synthesis of MEMS 89

Three major code modules were created in this work. The algorithm
kernel of HFC-GP was a modified version of an open software package
developed in our research group -- lilgp. A bond graph class was implemented
in C++. The fitness evaluation package is C++ code converted from Matlab
code, with hand-coded functions used to interface with the other modules of
the project. The commercial software package 20Sim was used to verify the
dynamic characteristics of the evolved design.

5.4.8. Experimental Results

The GP program obtains satisfactory results on a Pentium-IV 1GHz in

1000~1250 minutes. Experimental results show the strong topological search
capability of genetic programming and feasibility of our BG/GP approach for
finding realizable designs for micro-mechanical filters. Although significant
fabrication difficulty is currently presented when fabricating a micro-
mechanical filter with more than 3 resonators, it does not invalidate our
research and the topological search capability of the BG/GP approach BG/BP
shows potential for exploring more complicated topologies of future MEMS
design and the ever-progressing technology frontiers of MEMS fabrication.

Zhun Fan 90

Figure 5.14. Fitness improvement curve.

In Figure 5.14, K is the number of resonator units appearing in the best
design of the generation on the horizontal axis. As fitness improves, the
number of resonator units, K, grows – unsurprising because a higher-order
system with more resonator units has the potential of better system
performance than its low-order counterpart. The plots of corresponding system
frequency responses at generations 27, 52, 117 and 183 are shown in Figure
5.15.

Evolutionary Synthesis of MEMS 91

Figure 5.15. Frequency responses of a sampling of design candidates, which evolved
topologies (and associated parameter sets) with larger numbers, K, of resonators as the
evolution progressed. All results are from one genetic programming run of the BG/GP
approach.

A layout of a design candidate with four resonators and three coupling
units as well as its bond graph representation is shown below in Figure 5.16.
Notice that the geometry of resonators may not show the real sizes and shapes
of a physical resonator and the layout figure only serves as a topological
illustration.

Using the BG/GP approach, it is also possible to explore novel topologies
of MEM filter design. In this case, we may not necessarily use a strictly
realizable function set. Instead, a semi-realizable function set may be used to
relax the topological constraints, with the purpose of finding new topologies
not realized before but still realizable after careful design. Figure 5.17 gives an
example of a novel topology for a MEM filter design evolved using such a
semi-realizable function set. An attempt to fabricate this kind of topology is
being carried out at the University of California, Santa Barbara [Shaw, 2004].

Zhun Fan 92

Figure 5.16. Layout and bond graph representation of a design candidate from the
experiment, with four resonator units coupled by three coupling units.

Evolutionary Synthesis of MEMS 93

Figure 5.17. A novel topology of MEM filter and its bond graph representation as
evolved by the BG/GP approach using a semi-realizable function set.

5.5. SECOND-LEVEL PHYSICAL LAYOUT SYNTHESIS

For the second level -- two-dimensional layout designs of cell elements --

layout synthesis usually takes into consideration a large variety of design
variables and design constraints. Layout synthesis automatically generates
valid or optimized geometric sizing parameters for cell components, which in
most cases are commonly used micromechanical devices with fixed
topologies, according to engineering design objectives. In this research, the
cell component is a resonator device in the MEMS domain. The design
objectives come from either high-level specifications such as behavioral model
parameters that need to be satisfied, or from layout-level objectives such as
minimum areas occupied. Our approach is to model this lower-level design
problem as a formal constrained optimization problem, and then solve it with
powerful optimization techniques, resulting in a tool that automates the design
synthesis of MEMS structures. Two categories of optimization techniques are

Zhun Fan 94

used: one category includes stochastic algorithms such as genetic algorithms,
and the other category includes deterministic algorithms such as nonlinear
programming. For both categories, the process of solving the optimization
problem involves determining the design variables, the design constraints, and
the design objectives.

5.5.1. Formulation of Layout Synthesis as an
Optimization Problem

In this research, we decided to use 14 design variables for an example cell

component, a folded-flexure comb-drive microresonator fabricated in a
polysilicon surface microstructural process (Figure 5.18). Design variables and
their constraints are listed as follows (Figure 5.19) (Fedder and Mukherjee
[1996]):

Evolutionary Synthesis of MEMS 95

Figure 5.18. A folded-flexure comb-drive microresonator fabricated in a polysilicon
surface microstructural process A) Layout; B) Cross-section A-A’. (Fedder and
Mukherjee [1996]).

Figure 5.19. Major design variables for microresonators. (Fedder and Mukherjee

[1996]).

Zhun Fan 96

Note that the first 13 design variables have units of m . The fourteenth

design variable has units of volts.

In addition, we assume dgwt c in our design for simplicity.

Some design variables are predefined for this technology: they are 11baw ,

14caw , 4 , 10N .

There are also a number of design constraints for the microresonator cell
component, including both geometric constraints and functional constraints. In
this paper, without loss of generality, we consider the following constraints:

Among them, the first three are linear constraints, and the fourth is a

nonlinear constraint because the term dispx is highly nonlinear.

xxedisp KQFx /, , where gtNVF xe /12.1 2
0, ,

2/ xxx BKMQ .

Suppose that in the system-level synthesis, we get a set of behavioral
parameters for the cell component of a microresonator as

kgM

mkgBx

mNK

x

x

6

26

100.4

1018.5

/27.0

Then we have three additional equation constraints. Equations to relate the

design variables and the three behavioral model parameters are as follows:

Evolutionary Synthesis of MEMS 97

222

222

3

3

36414

36142

bbtt

bbtt

b

b
x

LLLL

LLLL

L

EtW
K

where

3)/(bt WW

]))(5.05.0[(11

g

A
AAAB c

dbtsx

btsx MMMM 35
12

4
1

where

ss AM , tt AM , bb AM

sysysasas LwLwA 2

cycat LwA 2 ,

)22(28 battbbb wwLwwLA

As an alternative, we can also put reformulations of these three constraint

equations into our design objectives, expressing them as differences to be
minimized. In that case, we actually deal with a multi-objective constrained
optimization problem. We take the objective function with the following
normalized Sum of Squared Error (SSE) format:

26

)100.4(
126

)1018.5(
12

27.0
1)100.4()1018.5()27.0()(26262

 xxx MBKxf

Finally, it is important to note the role of feature size in VLSI and MEMS

design. Feature size, which is often represented as , means the minimum
size or size difference a particular design can achieve, based on specific

Zhun Fan 98

fabrication procedures. In addition, the actual sizes of geometric shapes should

be integer multiples of the feature size , such as , 2 , 5 , 10 … etc.

In this research, we set = 0.09 m .

While it is very difficult for many numerical optimization approaches (for
example, gradient-based approaches) to include considerations of feature size
constraints (Fedder and Mukherjee [1996]), it is quite convenient for genetic
algorithms to do so. We need to modify the objective function only slightly,
mapping real values of design variables to integer multiples of the feature size

 before using them in formulations of constraints and objectives. No
modifications to the genetic algorithm are needed.

5.5.2. Solving the Optimization Problem Using GA

In trying to solve constrained optimization problems using genetic

algorithms or classical deterministic optimization methods, penalty function
methods have been the most popular approach, because of their simplicity and
ease of implementation. In this chapter, we use a special constrained GA that
exploits pair-wise comparisons in a tournament selection operator to devise a
penalty function approach that does not require any penalty parameter (Deb
[2000]). Careful comparisons among feasible and infeasible solutions are
made so as to provide a search direction towards the feasible region. Once
sufficient feasible solutions are found, a niching method (along with a
controlled mutation operator) is used to maintain diversity among feasible
solutions. This allows a real-parameter GA’s crossover operator to
continuously find better feasible solutions, gradually leading the search nearer
to the true optimum solution.

The parameters for setting the constrained GA are as follows:

In ten runs of the genetic algorithm using different random seeds, we

obtained the sizing parameters and values of the objective function (to be
minimized) listed in Table 5.3. It can be seen that during the ten GA runs

Variable Boundaries: Rigid Population size: 500
Total no. of generations: 100 Crossover probability: 0.9000
Mutation probability (real): 0.15 Niching parameter: 0.9000
Exponent (n for SBX): 2.00 Exponent (n for mutation): 50.00

Evolutionary Synthesis of MEMS 99

using different seeds, the GA performs very steadily. Almost all runs achieved
objective values, namely, the Normalized Squared Sum of Errors (NSSE),
within the range of 1.0E-6. The mean value of NSSE is 3.4E-6, while the
standard deviation of NSSE is 3.86E-6. The biggest NSSE is 1.4E-5. However,
the normalized squared sum of errors of 1.4E-5 is still considered very good
result. It also appears that there are many alternative and rather different ways
in which parameters can be set and still produce behavior rather close to that
desired.

Zhun Fan 100

Table 5.3. Layout parameters obtained in ten GA runs (different random seeds)

Run No. 1 2 3 4 5 6 7 8 9 10

Lb(m) 261.63 261.45 261.09 262.44 262.35 260.82 261.72 261.9 262.62 259.47

Wb(m) 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98

Lt(m) 3.87 4.32 3.87 3.6 8.46 2.43 2.52 5.13 6.84 11.88

Wt(m) 2.7 2.25 2.52 2.52 2.25 1.98 1.98 2.88 3.33 1.98

Lsy(m) 3.69 2.88 2.07 4.41 1.98 1.98 3.6 1.98 2.79 2.79

Wsy(m) 14.13 12.6 15.93 11.52 10.8 9.99 11.52 15.3 12.6 14.31

Wsa(m) 18.63 18.18 10.98 11.7 11.34 11.16 10.17 11.7 14.58 10.8

Wcy(m) 146.16 151.83 122.31 141.12 137.25 56.61 110.7 76.14 247.5 173.16

Lcy(m) 15.66 20.79 23.85 17.37 23.85 30.69 22.68 21.96 8.91 20.79

Lc(m) 199.26 187.29 174.06 202.41 181.89 154.71 188.19 162.09 161.91 183.6

Wc(m) 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98

Lsa(m) 2.25 2.16 2.52 2.43 2.88 1.98 2.7 2.7 6.3 2.7

Xo(m) 10.26 96.12 24.66 34.92 10.35 14.94 30.87 20.34 25.83 4.86
V (volt) 66.06 70.29 75.51 64.98 72.27 85.14 69.93 81.09 81.27 71.55
Obj.
Value 4E-006 3E-006 3E-006 1E-006 1E-006

1.4E-
005 2E-006 2E-006 1E-006 3E-006

Evolutionary Synthesis of MEMS 101

The Figure 5.20 shows a typical GA run with Normalized SSE vs.
Generation. It is noted that the logarithmic value of NSSE reduces at a nearly
linear rate in accordance to generation number. At generation 91, the NSSE
reduces to the value of 1.0E-6.

Figure 5.20. Curve of normalized SSE vs. generation.

5.6. CONCLUSION

In MEMS, there are two or three levels of designs that need to be

synthesized. Usually the design process must start with synthesis of a
schematic design of the overall system, including topology and behavior-
related parameters, and then goes on through layout and construction of a 3-D
solid model. So the first design level is the system level, which includes
selection and configuration of a repertoire of planar devices or subsystems.
The second level is 2-D layout of basic structures like beams to form the

Zhun Fan 102

elementary planar devices. In some cases, if the MEMS is basically a result of
a surface-micro machining process and no significant 3-D features are present,
design of this level will end one cycle of design. More generally, modeling
and analysis of a 3-D solid model for MEMS is necessary.

This chapter has suggested a design methodology for automatically
synthesizing hierarchical designs for MEMS. While there has been much
research using evolutionary computation techniques to synthesize MEMS (Ma
and Antonsson [2000]) (Zhou and Agogino [2001]), this is the first work
reported to seek to automate the hierarchical MEMS synthesis process in an
integrated framework. Our first step is to synthesize system-level behavioral
models using a combination of genetic programming and bond graph. Then as
the second step, we use a constrained genetic algorithm to automatically
optimize the geometric sizing parameters for the cell components. An example
of MEM filter design with coupling of multiple microresonators is used to
illustrate the approach. Extension of this work can lead to a composable design
and synthesis environment for micromechatronic systems (Paredis et al.
[2001]). In addition, target cascading in optimal system design needs to be
investigated in depth to propagate the desirable top-level design specifications
to appropriate specifications for the various subsystems and components in a
consistent and efficient manner (Kim and Papalambros [2000]). More work is
underway to improve the efficiency of genetic programming to explore
topologically open-ended design spaces, and the robustness of the constrained
genetic algorithm to solve real-world constrained optimization problems.

The third level design calls for FEA (Finite Element Analysis). FEA is a
computational method used for analyzing mechanical, thermal, electrical
behavior of complex structures. The underlying idea of FEA is to split
structures into small pieces and determine behavior of each piece. It is used for
verifying results of hand calculations for simple models, but more importantly,
for predicting behavior of complex models where 1st-order hand calculations
are not available or insufficient. It is especially well suited for iterative design.
As a result, it is quite possible that we can use an evolutionary computation
approach to evolve a design using evaluation by means of FEA to assign
fitness. Much work in this area has already been reported and it should also be
an ideal analysis tool for use in the synthesis loop for final 3-D structures of
MEMS. However, even if we have obtained an optimized 3-D device shape, it
is still very difficult to produce a proper mask layout and correct fabricate
procedures. Automated mask layout and process synthesis tools will be very
helpful to relieve designers from having to consider the fabrication details,
allowing them to focus on the functional design of the device and system

Evolutionary Synthesis of MEMS 103

instead (Ma and Antonsson [2000]). Our long-time task of research is to
include computational synthesis for different design levels, and to provide
support for design engineers in the whole MEMS design process.

Chapter 6

ROBUST SYNTHESIS OF MEMS

As we know from the last chapter, micro-electro-mechanical systems

(MEMS) are tiny mechanical devices that are built upon semiconductor chips
and are measured in micrometers. They usually integrate across different
physical domains a number of functions, including fluidics, optics, mechanics
and electronics, and are used to make numerous devices such as pressure
sensors, gyroscopes, engines, and accelerometers etc. Many designs of MEMS
are made through engineering experience and back of the envelop calculations,
and are highly dependent on designers’ knowledge and experience.

One reason for this is the complexity involved in the modeling, design and
fabrication of MEMS – there are many constraints in designing and fabricating
MEMS devices due to the limitations of current fabrication techniques.
However, as process technologies become more stable, research emphasis can
be shifted from developing specific process technologies towards the design of
systems with a large number of reusable components, such as resonators,
accelerometers, gyroscopes, and micro-mirrors. It greatly benefits the MEMS
designers if the routine design of frequently used components can be
optimized automatically by computer programs, while the designers can take
more time in contemplating the more creative conceptual designs.

It has been shown that performance of individual components influences
the quality of the whole system. For example, frequency stability of a MEMS
resonator can directly affect the quality of the MEMS RF system in which it
serves as a component of a filter or an oscillator (Liu [2002]). Because micro-
resonators are basically 2.5 dimensional devices, design automation of micro-
resonators boils down to a layout synthesis problem, which has been carried
out by many researchers. Some notable research uses deterministic numeric

Zhun Fan 106

approaches and meta-heuristic approaches such as evolutionary computation
and simulated annealing.

It is notable that with current micromachining techniques, the fabrication
process variation in MEMS is inevitable when devices are miniaturized to the
point of process limitations (Liu [2002]). For example, it is reported in (Hong
[2000]) that the width of a typical suspension beam has a fabrication tolerance
of about 10%. How to design MEMS that is most insensitive to fabrication
process variation is therefore an important issue in MEMS design. This work
also addresses this important issue, i.e. incorporating uncertainty in MEMS
design through robust optimization.

Many approaches exist in the literature to incorporate uncertainty in a
design formulation. Taguchi (Taguchi, [1993]) introduced the concept of
robust design to improve the quality of products with significant variations in
their manufacturing process, by reducing the sensitivity of the design
performance to possible sources of variations without an attempt to eliminate
the sources. Robust design has been developed and applied in many areas.
Some examples include robust optical coating design (Wiesmann [1998]),
robust design of a vibratory micro gyroscope (Hwang [2003]), an active
micro-mixer (Park [2008]), and a brushless DC motors (Low [2001]).

In this chapter, we present a robust optimization approach for designing
MEMS subject to process-induced geometrical uncertainties. In this approach,
we first formulate the robust design problem as a multi-objective constrained
optimization problem (Sedivec [2002]), and then solve it using an improved
differential evolution (DE). DE is a strong and efficient optimization algorithm
capable of handling nonlinear non-differentiable and multi-modal objective
functions (Storn [1997]). A case study based on layout synthesis of comb-
driven micro-resonator shows that the robust designs nominally meet the target
performance and are less sensitive to geometric uncertainties. It is also
demonstrated that the algorithm proposed in this chapter can not only obtain
better results than standard DE algorithm, but also outperform some other
state-of-the-art algorithms in constrained optimization.

The remainder of the chapter will be organized as follows. Section 6.2
introduces the formulation of the general robust optimization problem that is
used to formulate the MEMS layout synthesis problem in this paper. Section
6.3 describes the method of modeling uncertainty in MEMS fabrication
process and explains in details the improved differential evolution algorithm
used to do the robust layout synthesis. Section 6.4 gives the description of the
case study of comb-driven micro-resonator design and Section 6.5 presents
experimental results. Section 6.6 concludes the chapter with a brief summary.

Robust Synthesis of MEMS 107

6.1. FORMULATION OF THE ROBUST
OPTIMIZATION PROBLEM

This paper considers the application of a general robust optimization

problem that can be formulated as the following (Sedivec [2002]):

Let nxxxx ,, 21

 be an array of design variables of a given design

problem. We assume that the uncertainty, },,,{ 21 n

 , can be

characterized as a random vector with the following statistics

10)(nx

 (6.1)

nxnT)(

 (6.2)

where is the covariance matrix and is positive semi-definite. If the

uncertainties are uncorrelated then is diagonal, otherwise the off-diagonal
entries are non-zero when correlation exists.

Given a function),(

xf describing the performance of a design merit,

the robust design problem that we aim to solve is to minimize the expected
value of the squared error between the actual and target performance. We can
write this as:

 2),(min fxf
x

 subject to 0)(xgi

 (6.3)

where f is the target performance, and the expectation is taken over the

random vector

. In addition, 0)(xgi

represents a list of constraints to be

satisfied.
The problem posed in (6.3) is a difficult robust optimization problem to

solve in general. To simplify the problem, we choose to approximate),(

xf

with a first order Taylor series expansion in

 as

)0,()0,(),(xfxfxf (6.4)

Zhun Fan 108

where)0,(xf

 is the gradient of),(

xf with respect to

. Using

this approximation, we can expand the expression of 2),(fxf

into

)0,()0,()0,()0,(2)0,(),(
22

xfxfxffxffxffxf TT

 (6.5)

Taking the expectation of the above equation, we can get

)0,()()0,()()0,()0,(2)0,(),(
22

xfxfxffxffxffxf TT

 (6.6)

By reducing equation (6.6), based on our assumptions about the mean and

covariance of

 according to (6.1) and (6.2), we obtain

)0,()0,()0,(),(
22

xfxffxffxf T
 (6.7)

Substituting the approximation in (6.7) back into the original design

problem posed in (6.3) yields

)0,()0,()0,(min
2

xfxffxf T

x

 subject to 0)(xgi

 (6.8)

To normalize the cost function, we decide to divide through by 2f . We

then refer to the following expression as our robust design problem

)0,()0,(

1)0,(
min

2

2

xfxf
ff

fxf T

x

 subject to 0)(xgi

 (6.9)

It is now easy to see that the expression we want to minimize has two

distinct terms. For notational convenience, we will label the two terms as

2
)0,(

)(

f

fxf
xN

 (6.10)

Robust Synthesis of MEMS 109

)0,()0,(
1

),(
2

xfxf
f

xD T
 (6.11)

With the above definitions the robust design problem posed in (6.9)

becomes

),()(min xDxN
x

 subject to 0)(xgi

 (6.12)

The first term,)(xN

, penalizes deviation of the nominal solution,

)0,(xf

, from the target, f , while the second term,),(xD

, penalizes the

sensitivity of the design with respect to

. The first term is a performance
index, while the second term is a robustness index. Since there are two
objectives in the formation of the cost function to be minimized, a trade-off is
usually needed to be made by the designer to either focus on minimizing the
squared error of the nominal design or on reducing the sensitivity.

6.2. MODELING UNCERTAINTY IN MEMS
FABRICATION PROCESS

We assume that the uncertainty in the fabrication process is introduced by

etch-induced or lithograph-induced variations in line-width, and the structure
is etched uniformly.

Figure 6.1 illustrates the two uniform etch scenarios on a structure – over-
etch and under-etch. Take the under-etch situation for example, after process
variation is introduced, some design variables may increase (such as L1 and
L2), other design variables (such as L3) may decrease, while some others may
stay unchanged (such as L4).

We can model the geometric process variations using a simple additive
uncertain model

 xx~ (6.13)

Zhun Fan 110

where x~ is the uncertain (actual) design vector and for the above simple

example
4321

,,, LLLL

.

Figure 6.1. Under- and over-etch of a MEMS structure.

Since the structure is etched uniformly, if we define to be a normal

random variable with zero mean and standard deviation of , then we can
write

 (6.14)

where T0,1,1,1 , and is called a variation vector. Note that in the

condition of under-etch, L1 and L2 increase, L3 decreases, and L4 is not
changed. Also note that in this case, is positive, the above facts can easily

be verified by (6.14).
Because is a normal random variable, it can also be used to model the

over-etch situation, in which will take a negative value.

According to (6.2), we can obtain

 TT 2

 (6.15)

Robust Synthesis of MEMS 111

6.3. ROBUST OPTIMIZATION USING IMPROVED

DIFFERENTIAL EVOLUTION ALGORITHM

Many types of evolutionary approaches have been developed and

implemented as design optimization tools. Genetic algorithms with a robust
solution searching scheme was first presented by Tsutsui (Tsutsui [1997]), and
later discussed by Deb (Deb [2005]). Jin & Branke made a thorough survey of
applying evolutionary computation in uncertain environments (Y. Jin, [2005]).
One advantage of using genetic algorithms is its convenience to solve the
optimization problem with both discrete and continuous design variables.
While it is very difficult for many numerical optimization approaches (for
example, gradient-based approaches) to include considerations of feature size
constraints in MEMS design (Fedder [1996]), it is quite convenient for genetic
algorithms to do so. We need to modify the objective function only slightly,
mapping real values of design variables to integer multiples of the feature size
before using them in formulations of constraints and objectives. No
modifications to the genetic algorithm are needed. In this research, we always
set the feature size as 0.09 m . It is also very convenient for evolutionary

computation to integrate integer design variables such as the number of comb
fingers used in a micro-resonator.

An improved DE algorithm based on Stochastic Ranking, IDE-SR was
developed, and used to solve the robust layout synthesis problem in this work.
The succeeding sections will first introduce the standard DE algorithm, and
then explain the novel mechanisms developed in IDE-SR in details.

6.3.1. Standard DE

DE is one of the most recent EAs for solving real-parameter optimization

problems. In each iteration, DE creates one new offspring individual by
combining one parental individual and differences of several other individuals
in the same population. The generated offspring individual replaces the
parental individual only if it is better. In general, DE has three parameters that
can impact its performance significantly: scaling factor F , crossover control

parameter CRp , and population size PN .

The population of DE contains PN n -dimensional individuals:

Zhun Fan 112

},,,{ ,,,2,,1,, GniGiGiGi xxxx

 , PNi ,2,1 (6.16)

where G denotes the generation number. Because it is considered
beneficial to the search process if the initial population can be statistically
evenly distributed over the entire search space, each variable of all individuals
in the initial population is randomly decided by a uniform distribution between
lower and upper bounds predefined for each variable.

At each generation, a target vector Gix ,

 is first selected randomly, and

then a mutant vector Giv ,

 is created by disturbing the target vector using a

mutation operation, after that, a trial vector Giu ,

 is formed by applying

crossover operation between the target vector and mutant vector. Finally, a
selection operation is executed between the trial vector and target vector to
decide which vector goes to the next generation. The procedure is repeated

PN times to create all individuals for an offspring generation. The main

procedure for DE is shown in Figure 6.2 and explained in detail as follows.

1) Mutation Operation

For each target vector Gix ,

 at generation G , an associated mutant vector

},,,{ ,,,2,,1,, GniGiGiGi vvvv

 can be created by using one of the mutation

strategies. The most commonly used strategies are:

“rand/1”:)(,3,2,1, GrGrGrGi xxFxv

“best/1”:)(,2,1,, GrGrGbestGi xxFxv

“current to best/1”:)()(,2,1,,,, GrGrGiGbestGiGi xxFxxFxv

“best/2”:)()(,4,3,2,1,, GrGrGrGrGbestGi xxFxxFxv

“rand/2”:)()(,5,4,3,2,1, GrGrGrGrGrGi xxFxxFxv

where the indexes 1r , 2r , 3r , 4r and 5r represent the random and

mutually different integers generated between 1 and PN , Gbestx ,

 is the best

individual at generation G . Different strategies have different features for

Robust Synthesis of MEMS 113

different applications. It is also possible to use a combination of two or more
strategies to better cope with certain application.

2) Crossover Operation

After mutation, a “binary” crossover operation is applied to form the final

trial vector Giu ,

, according to its corresponding target vector Gix ,

 and mutant

vector Giv ,

.

,

,

,,

,,

,,
otherwisex

jjorprandifv
u

Gji

randCRGji

Gji

 (6.17)

where PNi ,,2,1 , nj ,,2,1 , index randj is a randomly chosen

integer within the range],1[n . By making use of randj , it can be guaranteed

that the trial vector Giu ,

 will differ from its target vector Gix ,

 by at least one

parameter.

3) Selection Operation

After evaluating the target vector Gix ,

 and the corresponding trial vector

Giu ,

, a “knock-out” competition is played between them and the vector with

smaller objective function value is selected and added to the next population.

 otherwisex

xfufifu
x

Gi

GiGiGi
Gi

,

,,,
1,

)()(

 (6.18)

Because each individual has both value of objective function, and value of

constraint violation for comparison, it is important to use some rules for the
purpose of comparison. According to our empirical experience, different rules
of handling constraints used can actually lead to very different results in
constrained optimization algorithms.

Zhun Fan 114

6.3.2. Different Rules of Handling Constraints

Very few constraint handling techniques have been reported in differential

evolution. Two very important and similar techniques are proposed by
Lampinen (J. Lampinen, [2002]) and Becerra and Coello (R. L. Becerra, C. A.
C. Coello [2006]). Both techniques use three rules for the replacement during
the selection procedure, and first two are the same. They are:

A feasible individual is always better than an infeasible individual.
If both individuals are feasible, the one with better value of the objective

function is selected for the next generation.

The third rule, regarding the situation when both individuals are

infeasible, is different. In Lampinen’s approach, the comparison is made in the
Pareto sense in the constraint violation space. It can be expressed as:

If both individuals are infeasible, the parent is replaced if the new

individual has lower or equal violation for all the constraints.

In Becerra and Coello’s approach, a sum of normalized constraint

violation is used for comparison, and can be written as:

If both individuals are infeasible, the individual with less level of

constraint violations is better. The level of constraint violation is
measured with normalized constraints with the expression of

constr

c c

c
j g

xg
xviol

1 max

)(
)(, where)(xgc are the violated constraints of

the problem, and cgmax the largest violation of the constraint)(xgc

found so far.

It is worthwhile to point out that both approaches bear some resemblance

with an approach proposed by Deb (Deb K., [2000]), previously, even though
Deb’s approach is not based in differential evolution. They key difference also
lies in the comparison for the case of two infeasible individuals: Lampinen’s
method makes the comparison in the Pareto sense, Deb’ method sums all the
constraint violations and compares a single value, Becerra and Coello’s
method makes normalization for the constraints violations before summing
them together.

Robust Synthesis of MEMS 115

Like selection of mutation strategies, selection of proper constraint
handling techniques is highly dependent on applications. In our work, Becerra
and Coello’s approach was selected because it outperformed the others.

Figure 6.2. Pseudo-code of iterative search procedure of DE.

6.3.3. IDE-SR: An Improved Differential Evolution Based on
Stochastic Ranking

The ‘rand/1’ mutation strategy used in standard DE provides no

information of direction towards the global optimum. If the information of
direction can be obtained and utilized in the search process, the performance
of the algorithm has a potential to be improved. To avoid the search to be

Zhun Fan 116

stuck in local minimum, however, the direction information should not be
local, but global. To define a ‘global direction’ information for the whole
population is not an easy task, especially when each individual has actually
two features to compare with others in a constraint optimization problem – one
feature is objective value, the other is level of constraint violation. How to
optimally balance them in the comparison procedure presents a challenge.

Stochastic Ranking (SR) (T. P. Runarsson and X. Yao, [2000]) provides a
convenient and powerful mechanism to balance the dominance in ranking the
whole population with both objective value and constraint violation as
comparison criteria. The pseudo code of SR is provided in Figure 6.4.

The improved DE algorithm, IDE-SR is designed with a focus on a
modified mutation strategy, which can be described in more details as the
following: for generation of trial vectors, the whole population is first made to
undergo a stochastic ranking procedure. Then the ranked population is divided
into two parts – upper part and lower part. The upper part comprises of the
‘better’ individuals who have been ranked high after stochastic ranking
procedure. For each individual trial vector, the upper part contributes two
‘good’ randomly selected individuals, and the lower part contributes one
randomly selected individual that is ‘less-good’. The three individuals then
make a mutation operation according to ‘rand/1’ strategy, with the difference
vector obtained through extracting one ‘good’ individual with the ‘less-good’
individual. It is notable that in this way the difference vector will always be
directed towards the upper part of the population, thus leading the population
to search upwards (refer to Figure 6.3). This procedure is repeated until the
whole population of trail vectors is obtained. The rest of the algorithm is
almost the same as standard DE, with the exception that the scaling factor F
can become a random variable as a variation of the algorithm. The overall
procedure of the IDE-SR algorithm can be illustrated using the pseudo-code
listed in Figure 6.5.

Robust Synthesis of MEMS 117

Figure 6.3. Illustration of the modified mutation strategy in IDE-SR. Note that the
population ranked by SR is divided into upper part Q1 and lower part Q2. Difference
of one randomly selected individual r2 from Q1 and one randomly selected individual
r3 from Q2 form a differential vector pointing towards r2.

6.4. CASE STUDY

The same case study used in Chapter 5 was carried out to verify the

effectiveness of the above robust optimization method using the improved
differential evolution IDE-SR. The design problem is a comb-drive micro-
resonator, with fifteen mixed-type design variables. Unlike in previous
chapter, this time altogether twenty four design constraints are considered,
both linear and nonlinear. The following list gives all the constraints
considered in the case study.

:)(1 xg 0)22(ccy wgL

:)(2 xg 070022 ccy wgL

:)(3 xg 0)22(tbsy wLL

:)(4 xg 070022 tbsy wLL

r1 r2

r3

 321 , rrNr

Q2

Q1

Zhun Fan 118

:)(5 xg 0)22243(0 cacycsyt wwxLwL

:)(6 xg 070022243 0 cacycsyt wwxLwL

:)(7 xg 0200)(0 dispc xxL

:)(8 xg 0)(4 0 dispc xxL

:)(9 xg 0212 cyccc LgNWN

:)(10 xg 0700212 cyccc LgNWN

:)(11 xg 040 dispxx

:)(12 xg 02000 dispxx

:)(13 xg 02/)(4 bsydispt WWxL

:)(14 xg 02002/)(bsydispt WWxL

:)(15 xg 02/)2(2 sabasy WWL

:)(16 xg 02002/)2(sabasy WWL

:)(17 xg 02 dispx

:)(18 xg 0100 dispx

:)(19 xg 05 Q
:)(20 xg 051 eQ

:)(21 xg 0/ bdisp Lx

:)(22 xg 01.0/ bdisp Lx

:)(23 xg 0/, yye KK

:)(24 xg 03/1/, yye KK

More details of the equations governing the variables in the constraints

please refer to (Fan Z., [2009]). The design objective of comb-driven micro-
resonator is to robustly match the natural frequency of the comb-driven micro-
resonator with a predefined natural frequency. In other words, in this particular

case study, the definition of)0,(xf

 in equation (6.10) can be expressed as

)0,()0,(xxf n

 (6.19)

Robust Synthesis of MEMS 119

f can be predefined by users. In this paper, without loss of generality,

KHzf 200 .

Figure 6.4. Pseudo-code of stochastic ranking (T. P. Runarsson and X. Yao, [2000]).

Zhun Fan 120

Figure 6.5. Pseudo-code of iterative search procedure of improved DE based on SR:
IDE-SR.

6.5. EXPERIMENTS

As is shown in (6.10) and (6.11), there are two design objectives to

minimize in the robust design problem. The first objective relates to the design
performance, while the second objective reflects robustness of the design. To
verify that involving the robustness consideration in the optimization process
can help to reduce the sensitivity of the resulting designs to variations of the
design variables, we carry out a comparative study. In the first set of runs of
IDE-SR, we only consider the first design objective, i.e. the performance

Robust Synthesis of MEMS 121

objective. In the second set of runs of IDE-SR, we consider both performance
objective and robustness objective.

To verify that the performance of IDE-SR is competitive, a comparison
study was also made among IDE-SR, standard DE and two other state-of-the-
art approaches in constrained evolutionary approaches.

6.5.1. Results of Non-Robust Layout Synthesis

In the first set of runs, we only considered the performance objective

)(xNfobj

 as described in (10). Ten runs of experiments using IDE-SR

algorithm were repeated with KHzf 200 . The parameters of the

constrained genetic algorithm are listed in Table 6.1.

Table 6.1. List of Parameters Used by IDE-SR

Symbol Meaning of Parameter Value

NP Population size 100

pf A parameter used in stochastic ranking 0.45

 Mean value of the randomized scaling factor 1

 Standard deviation of the randomized scaling factor 0.25

pCR Crossover probability 0.8

y Size of the upper part of the population 0.7

The experimental data was obtained in Table 6.2. It is noted that ten

results represent ten different designs that all satisfy the design constraints, and

have natural frequencies very closely matching to the target KHzf 200 .

Zhun Fan 122

Table 6.2. Results of non-robust layout synthesis of comb-driven micro-resonator

RUN NO. 1 2 3 4 5 6 7 8 9 10

Lb(m) 305.73 323.37 316.44 329.76 294.66 274.77 320.4 306.63 299.97 290.88

Wb(m) 15.75 20.07 16.56 19.8 19.62 17.1 20.07 17.82 15.84 15.57

Lt(m) 198.36 201.78 134.91 190.17 199.71 181.71 201.33 188.37 133.38 121.59

Wt(m) 14.49 2.07 15.48 2.07 2.07 9 2.07 2.07 15.21 14.85

Lsy(m) 59.49 47.79 36.09 36.09 104.85 119.34 53.64 67.86 69.57 88.29

Wsy(m) 18.27 10.08 202.95 42.3 16.47 70.47 10.53 50.4 60.57 112.32

Wsa(m) 33.48 15.93 10.08 10.08 67.32 93.33 27.36 34.47 43.47 31.5

Wcy(m) 10.44 10.08 12.51 11.43 10.08 10.08 10.17 10.08 47.16 15.12

Lcy(m) 652.68 644.94 657.27 253.35 314.28 617.67 607.41 636.93 649.89 649.44

Lc(m) 12.06 12.06 12.06 12.06 12.06 12.06 12.15 12.06 29.34 12.15

Wc(m) 10.17 12.33 9.36 10.62 9.63 9.9 11.97 13.77 8.82 9

Lsa(m) 398.07 399.51 382.59 29.07 104.85 20.34 239.94 27.99 244.08 96.03

Xo(m) 6.03 6.03 6.03 6.03 6.03 6.03 6.12 6.03 21.51 6.03

V (volt) 50 50 50 50 50 50 49.99 50 49.99 49.99

NC 33 27 36 22 26 33 27 24 38 37

|fx-200k|
| 200k|

8.55E-04 5.99E-04 2.49E-04 3.30E-04 3.24E-04 3.85E-04 3.34E-04 1.57E-04 2.20E-04 1.29E-04

D(x,) 1.31E-02 7.99E-03 6.96E-03 9.37E-03 7.31E-03 6.37E-03 8.35E-03 8.03E-03 8.26E-03 3.22E-03

Robust Synthesis of MEMS 123

6.5.2. Results of Robust Layout Synthesis
For robust layout synthesis of the comb-driven micro-resonator, we need

to consider both objectives in (6.10) and (6.11). To calculate the robustness
index in (6.11), we need to know the variation vector according to (6.15). By
examining the layout schematic of the comb-driven micro-resonator, we found
that the variation vector can be set as follows:

 001110111111010 .

According to (6.15), to obtain robustness index in (6.11), we also need to

make an assumption about . In this paper, we assume m 1.0 .

In the robust layout synthesis, we took the robustness index as the

optimization objective),(xDfobj

. In addition, another constraint

60.1)(exN

 is added to the constraint list. Ten runs of experiments using

IDE-SR algorithm were repeated, with the same parameters defined in Table
6.1. The experimental data was listed in Table 6.3. It can be seen from Table

6.2 and Table 6.3 that the values of the objective),(xD

are smaller in the

case of robust designs than those in the case of non-robust designs. The next

section demonstrates that reduced objective values of),(xD

lead to more

robust designs.

Zhun Fan 124

Table 6.3. Results of robust layout synthesis of comb-driven micro-resonator

RUN NO. 1 2 3 4 5 6 7 8 9 10

Lb(m) 305.73 323.37 316.44 329.76 294.66 274.77 320.4 306.63 299.97 290.88

Wb(m) 15.75 20.07 16.56 19.8 19.62 17.1 20.07 17.82 15.84 15.57

Lt(m) 198.36 201.78 134.91 190.17 199.71 181.71 201.33 188.37 133.38 121.59

Wt(m) 14.49 2.07 15.48 2.07 2.07 9 2.07 2.07 15.21 14.85

Lsy(m) 59.49 47.79 36.09 36.09 104.85 119.34 53.64 67.86 69.57 88.29

Wsy(m) 18.27 10.08 202.95 42.3 16.47 70.47 10.53 50.4 60.57 112.32

Wsa(m) 33.48 15.93 10.08 10.08 67.32 93.33 27.36 34.47 43.47 31.5

Wcy(m) 10.44 10.08 12.51 11.43 10.08 10.08 10.17 10.08 47.16 15.12

Lcy(m) 652.68 644.94 657.27 253.35 314.28 617.67 607.41 636.93 649.89 649.44

Lc(m) 12.06 12.06 12.06 12.06 12.06 12.06 12.15 12.06 29.34 12.15

Wc(m) 10.17 12.33 9.36 10.62 9.63 9.9 11.97 13.77 8.82 9

Lsa(m) 398.07 399.51 382.59 29.07 104.85 20.34 239.94 27.99 244.08 96.03

Xo(m) 6.03 6.03 6.03 6.03 6.03 6.03 6.12 6.03 21.51 6.03

V (volt) 50 50 50 50 50 50 49.99 50 49.99 49.99

NC 33 27 36 22 26 33 27 24 38 37

|fx-200k|
| 200k| 9.981E-04 9.997E-03 9.998E-04 9.888E-04 9.990E-04 9.943E-04 9.946E-04 1.0E-03 9.999E-04 9.999E-04

D(x,) 1.691E-03 9.277E-04 1.786E-03 2.011E-03 2.197E-03 2.201E-03 1.001E-03 9.682E-04 1.935E-03 2.096E-03

Robust Synthesis of MEMS 125

6.5.3. Comparison of Robust and Non-Robust Results

It is noted that in the robust design process, we minimized the robustness

objective. To verify doing this help the resulting designs to increase their
insensitivity to geometric uncertainties, we designed a comparative study as
the following: we put two designs in one group for comparison, by selecting
one design from the robust design group, and the other from the non-robust
design group. We then ran Monte Carlo simulations to model uncertain
MEMS fabrication processes. We introduced the same variations to the design
variables of both designs to emulate uniform over-etch and/or under-etch
situations. To represent the variations in the process we generated 10,000
Gaussian random vectors with a standard deviation, of 0.1 m . The natural

frequencies of both the robust design and the non-robust design were
calculated, and histograms of them plotted as shown in Figure 6.6.

According to Figure 6.6, we can see that robust design has a much tighter
distribution of natural frequencies, and therefore is much less sensitive to
geometric variations. Tests of other design candidates from both robust design
group and non-robust design group revealed similar results. Figure 6.7 and 6.8
drawn with SUGAR (N. Zhou, [1998]) show layout of two exemplar non-
robust and robust designs respectively.

Zhun Fan 126

Figure 6.6(a) histogram of natural frequencies of the non-robust design of comb-driven
micro-resonator subject to uncertainties.

Figure 6.6(b) histogram of natural frequencies of the robust design of comb-driven
micro-resonator subject to uncertainties.

Robust Synthesis of MEMS 127

Figure 6.7. (a) Layout of non-robust solution I with natural frequency of 200KHz.

Figure 6.7. (b) Layout of non-robust solution II with natural frequency of 200KHz.

Zhun Fan 128

Figure 6.8. (a) Layout of robust solution I with natural frequency of 200KHz.

Figure 6.8. (b) Layout of robust solution II with natural frequency of 200KHz.

Robust Synthesis of MEMS 129

6.5.4. Comparison of Different Optimization Algorithms

A comparison study was also made to compare the performance of IDE-

SR with standard DE and two other state-of-the-art evolutionary constraint
optimization algorithms, ISRES (T. P. Runarsson and X. Yao, [2000]) and
NSGA-II (K. Deb, [2002]). For each algorithm, 50 independent runs were
carried out, with the best, mean, worst, and standard deviation of obtained
results all recorded in Table 6.4 for comparison purpose. Bolded values in
Table 4 indicate the best results among different algorithms.

Table 6.4. Comparing IDE-SR with other algorithms

 DE ISRES NSGA-II IDE-SR

best 1.74E-03 9.68E-04 1.00E-03 9.277E-04

mean 2.02E-03 1.69E-03 1.61E-03 1.569E-03

worst 2.46E-03 2.25E-03 2.94E-03 1.823E-03

SR 50(50) 45(50) 50(50) 50(50)

PS 100 200 100 100

SR: success rate; PS: population size.

It is clear from Table 6.4 that IDE-SR outperforms DE, ISRES and

NSGA-II in terms of best, mean and worst results. The most important
criterion to be compared is the best result, because usually we choose the
design vector related to the best result to make the design. It is also important
to note that DE, NSGA-II, and IDE-SR all performed very stably, and could
successfully find feasible solutions that satisfy all the constraints every time
out of 50 independent runs. Due to their stochastic nature, evolutionary
algorithms cannot guarantee convergence every time. But the above three
algorithms show very good consistency in this particular problem. ISRES
however, failed to do so in 5 times out of 50 independent runs. It is also
notable that if we use a population size of 100 in ISRES, it could not find
feasible solution. The reported results for ISRES were obtained with a
population size of 200, which is double the population size used in other
algorithms.

Figure 6.9 shows the curves of objective values vs. generation number
recorded in one exemplar evolutionary process of both algorithms IDE-SR and
standard DE. It can be seen that IDE-SR has a stronger capability to find better
objective values.

Zhun Fan 130

Figure 6.9. Curves of objective value vs. generation of both DE and IDE-SR.

6.6. CONCLUSION

Layout synthesis is an important stage for structured design of MEMS,

after the stage of the system-level design. Due to uncertainty induced in the
fabrication process, robust synthesis becomes an important issue and is
addressed in this chapter. The chapter develops a novel constrained
optimization algorithm, IDE-SR, which is an improved differential evolution
based on stochastic ranking, and reports a method of robust layout synthesis of
MEMS based on it. The method transforms the robust design problem into a
multi-objective constrained optimization problem, and then solves it by using
IDE-SR. Simulation results based on the case study of layout synthesis of a
comb-driven micro-resonator show that the design solutions obtained using
the method proposed in this chapter are much less sensitive to process induced
uncertainties. The work also shows that the IDE-SR algorithm can not only
obtain better results than standard DE algorithm, but also outperform some
other state-of-the-art evolutionary constrained optimization algorithms. As

Robust Synthesis of MEMS 131

next step of the work, it will be very interesting to fabricate the synthesized
designs and test their physical performance.

Chapter 7

BODY-BRAIN COEVOLUTIONARY SYNTHESIS

OF MECHATRONIC SYSTEMS

In order to support the concurrent design processes of mechatronic

subsystems, unified mechatronics modeling and cooperative body-brain
coevolutionary synthesis are developed. In this paper, both body – passive
physical systems, and brain – active control systems, can be represented using
the bond graph paradigm. Bond graph are combined with genetic
programming to evolve low-level building blocks into systems with high-level
functionalities including both topological configurations and parameter
settings. Design spaces of coadapted mechatronic subsystems are
automatically explored in parallel for overall design optimality. A quarter-car
suspension system case study is provided. Compared with conventional design
methods, semi-active suspension designs with more creativity and flexibility
are achieved through this approach.

7.1. INTRODUCTION

Mechatronics is a natural stage in the evolution of modern products, many

containing components from different engineering domains, such as
mechanical, electrical, and control systems. At early design stages, important
decisions need to be made to determine which portions of an engineering
design problem are best solved in each of these domains given the current state
of technology. Decisions required include which parts should be designed as
mechanical subsystems, which should be electronic, where actuators and

Zhun Fan 134

sensors should be located, and how these subsystems should combine to
achieve overall design optimality. In concurrent engineering practice,
mechatronics represents a synergistic system design philosophy to optimize
the system as a whole simultaneously (Isermann R. [2003]). However, this
ideal integrated design philosophy is still not formally carried out in practice
due to the lack of system-level support for mechatronics conceptual design.
First, design in different engineering disciplines in general speaks different
languages. There is the lack of a unified approach that integrates design and
synthesis across multiple engineering domains. Second, there is the lack of a
concurrent design process across mechatronic subsystems. Mechatronic
systems are controlled electro-mechanical systems. In many cases, the time
when a mechanical or electro-mechanical design is specified is also the time
when many restrictions are inherently placed on the control system design.
This may not lead to overall design optimality since subsystems in different
domains are not designed concurrently. Third, there is the challenge of
exploring various design alternatives automatically and creatively. While
computers have a definite advantage over humans in memory, accuracy,
speed, and storage capability, their inability to make informed and intuitive
decisions causes many to believe that they are not capable of embodying the
innovative process of design synthesis. This perspective, however, has
gradually changed with advances in the establishment of formalized design
representation and design synthesis as computational search of the design
space (Campbell M, [2000]).

Recently, there have been substantial successes in research on
computational synthesis, especially using evolutionary algorithms (Bentley
PJ., [1999]) (Lipson H, [2003]), to address some of the problems and
challenges mentioned above. Among various approaches, genetic
programming is of particular interest due to its great potential for open-ended
search of both design topologies and associated parameters. Much research has
been carried on about design automation of analog electrical circuits using
schematic diagrams (J. R. Koza [1997a]), controller design using block
diagrams (J. R. Koza [1999b]), and mechatronic design using bond graph
(Goodman E. D. [2000]). While engineering systems in different domains can
be described using different model representations, for mechatronic product
design involving multiple domains, a unified formal model representation is
more desirable. The bond graph, a domain-neutral formal schematic paradigm,
has gained wide recognition for representation and analysis of energetically
coupled physical systems. Bond graph modeling maintains power conservation
and explicitly shows interactions among a succinct set of elements, which

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 135

allows for graphical analysis and readily leads to computer-based
manipulation.

Exploring multiple design choices for passive mechatronic systems
combining bond graph and genetic programming has been initiated and
explored for design of analog filters, printers, MEMS, etc, which are described
in previous chapters. Since in many cases mechatronic systems also
incorporate active control elements, bond graph modeling has been broadened
to represent controller schemes as well, thus unifying active control systems
and passive physical systems for whole system design (Wang, J.
[2003][2004]). Built upon the previous work and inspired by symbiosis
phenomena from nature, a useful extension to the more traditional
evolutionary algorithms, coevolution, is applied to this work. This approach
cooperatively evolves coadapted mechatronic subsystems in parallel and
generates alternative design concepts that are comparable or even superior to
those generated using conventional methods, with more flexibility and better
performance.

The remaining sections are arranged as follows. Section 7.2 provides the
foundation for unified physical systems modeling and control using bond
graph. Section 7.3 explains how computational synthesis of mechatronic
systems is achieved by combining bond graph and genetic programming.
Section 7.4 illustrates the coevolutionary synthesis framework for integrated
mechatronics design. A quarter-car suspension design case study is given in
Section 7.5. Conclusions are provided in Section 7.6, highlighting the value
and future plans for the proposed approach.

7.2. UNIFIED PHYSICAL SYSTEMS MODELING
AND CONTROL

While bond graph were developed mainly to study energy interaction of

passive physical systems, they are seldom applied to the synthesis of control
systems due to the richness and completeness of well-established control
system design methodologies in pure mathematical settings. However, it is
argued that the mathematical control methods distill out system-specific
features and physical insight that could have aided in the design procedure
using engineering intuition (Harman WW and Lytle DW, [1962]). The
postulate of “physical equivalence” states that for every controlled system
there exists a pure physical system with no controller whose dynamical

Zhun Fan 136

interaction behavior is identical; thus, it is possible to describe a controlled
system as an equivalent pure physical system. In other words, all a controller
can do is to alter the behavior of one physical system such that it emulates the
behavior of another physical system, provided that ideal actuators and sensors
can be placed at any point in the original physical system (Hogan N, [1985]).
Accordingly, controller design based on physical models is proposed, where
engineering insight from the physical domain is brought to bear directly onto
the control design problem (Sharon A, Hogan N, and Hardt DE. [1991]),
(Gawthrop PJ. [1995]).

According to the definition of network passivity (Newcomb RW, [1966]),
a passive system only dissipates or stores energy, while an active system relies
on the use of an external power source, together with sensors, controllers and
actuators within a physical structure, to provide energy to the system. Based
on whether the actuator and the sensor are located at the same place, control
methods can be classified as collocated control and non-collocated control.

Collocation means to physically locate the sensors and the actuator in the
same position such that the effort and flow variables are energetically
conjugated. Non-collocated control means to locate the sensor and the actuator
in different positions, so that there is a structural resonance between the sensor
and the actuator. Collocated control is of particular interest when using bond
graph, since it can be represented as an effort-flow one-port element, including
all sensor, controller and actuator effects, in the bond graph paradigm. The
active effort source is generated by the corresponding flow signal
measurement through controller modulation, and vice versa. One simple
example of collocated control can be illustrated in Figure 7.1. One the left
hand side, the bond graph represents a closed-loop feedback control system
with plant, sensor, controller and actuator, and its block diagram
representation is shown on the right hand side. It is recognized that bond graph
are condensed block diagrams, since there is a close correspondence between
bond graph and their equivalent block diagrams (Karnopp DC, Margolis DL,
Rosenberg RC, [2000]).

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 137

Figure 7.1. Controller as impedance in bond graph and block diagrams.

In the physical domain, all one-port elements, such as dampers and
springs, are positive real, thus passive. Collocated controls with positive-real
elements are intrinsically passive. They provide negative feedback and hence
lead to better stability than use of non-collocated control, with respect to
uncertainty (Preumont A, [2002]). A collocated control structure with positive-
real elements may be implemented either passively or actively. This allows for
an active implementation of a passive control law. Collocated controls with
negative-real elements are positive feedback control methods. They can only
be implemented actively since there is no physical correspondent of negative
one-port elements.

Non-collocated control can also be represented as a one-port element in
bond graph, while the effort and flow variables associated with one power
bond are actually separated to appear at two different physical locations for
measurement and actuation.

In order to design either a collocated or non-collocated control in the
physical domain, the controller can be represented by various combinations of
bond graph C, I, and R elements, to represent various control schemes, such as
P, PI, PD, PID controllers or lead and lag compensators. This approach
facilitates separation of controller representation issues from implementation
issues, thus providing guidance at the high-level design stage in selecting the
proper overall system architecture for a given design task.

Table 7.1 shows part of the controller schemes in bond graph generating
controlled effort from flow input, together with their corresponding block
diagrams and transfer functions. The various controller schemes are typical
modular structures consisting of basic bond graph elements.

Zhun Fan 138

Table 7.1. Controller schemes in bond graph and block diagrams

Figure 7.2 demonstrates the use of bond graph as a unified mechatronics

modeling tool. The apparently different systems in different domains, when
represented in bond graph, are the same (Broenink, [1999]). The bond graph
diagram shows a one-junction joining I, R, and C elements. It is a second-order
system functioning as a resonator. This resonator can be mapped to a
mechanical realization using a spring, a damper and a mass; or to an electrical
realization using a capacitor, a resistor and an inductor. It can also be mapped
into a micro-electro-mechanical system (MEMS) realization using
microstructures fabricated with C, I and R properties.

Most importantly to this work, bond graph have also been broadened to
represent controllers. For collocated control with sensors and actuators located
at the same place, if velocity signal is measured, negative velocity feedback is
equivalent to a damping R action; negative position feedback is equivalent to a
spring C action. The PI controller, which consists of one R and one C element,
is realized by measuring the velocity signal and generating a force
proportional to both the position and the velocity of the mass I. The force input
is realized through an actuator that provides modulated power to the system.
Since the power flow direction of the actuating bond is reversed, the
modulated force becomes negative, thus forming a negative feedback loop.

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 139

Figure 7.2. Resonator in bond graph and various domain realizations.

Our work takes a further step in advancing the physical domain design
methodology by designing the passive physical structures and the active
controller strategies of a mechatronic system concurrently and
computationally. By using bond graph as unified representation across
domains, it is expected to achieve co-design of physical systems and
controllers without a priori partitioning of the system into different domains.
This gives designers flexibility to investigate different possibilities for
designing subsystems in different domains to verify the entire system
optimality.

7.3. BOND GRAPH AND GENETIC PROGRAMMING

In this work, computational synthesis of mechatronic systems using bond

graph benefits from their simple and unified representation across multiple
energy domains. The graphical and topological characteristics of bond graph
allow their generation by flexible combination of bonds and elements, to form
high-level functionality and complexity from lower-level building blocks.

The program trees evolved by genetic programming may be employed in
many different ways. In the first approach, genetic programming is used to
automatically create a computer program to solve a problem. The program tree
is simply executed, for example, to generate an algebraic function to

Zhun Fan 140

approximate a certain input-output pattern using standard arithmetic operators
and operands. A second approach is a developmental approach, in which the
program tree is interpreted as a set of instructions for constructing a complex
structure from a very simple embryonic structure. This approach has been used
to generate electrical circuits, including several previously patented circuits
and human-competitive results (J. R. Koza, F. H. Bennet, D. Andre, M. A.
Keane, [1999a]). This approach has also been used to evolve analog circuits, a
printer, and MEMS structures using bond graph (Goodman ED, Seo K,
Rosenberg RC, Fan Z, Hu J, Zhang B, [2000]). A third approach is to let
program trees represent modular building blocks, linked by direct lines
representing the flow of information. This approach has been used to evolve
robust controllers for a given plant (J. R. Koza et al., [1999b]).

In the context of this work, we chose to apply the first approach. Bond
graph are treated as binary tree-based structures with elements interconnected
through junctions. The result of executing the program tree is the impedance
function of an effort-flow pair in a bond graph joined by 0- and/or 1- junctions
that can be used directly for impedance calculation. 1-junction, 0-junction, R,
C and I elements are mapped to operators relating to bond graph elements.
Arithmetic addition and subtraction are mapped to arithmetic operators to
manipulate ephemeral random constants (ERC) (J. R. Koza, [1994]). ERCs are
mapped to operands with their numerical values interpreted in a logarithmic
scale to represent numbers ranging over ten orders of magnitude (J. R. Koza,
[1994]). Due to the introduction of negative one-port element, the ephemeral
random constant (ERC) can be set to both positive and negative values. The
impedance calculation process is similar to arithmetic operations. Table 7.2
defines the function and terminal primitive set of genetic programming to
construct bond graph in this work.

Once the evolutionary computation converges or terminates, the resulting
genetic programming tree structures will be simplified to reduce redundant
branches and nodes for further analysis and verification.

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 141

Table 7.2. GP function and terminal primitive set

 Name and description Symbol

Basic Function Set 0 – Junction f0

1 – Junction f1
R Element R
C Element C
I Element I
Arithmetic +: add two ERCs ADD
Arithmetic –: Subtract two ERCs SUB

Terminal Primitive Ephemeral Random Constant (ERC) E

7.4. COOPERATIVE COEVOLUTIONARY SYNTHESIS

In order to successfully apply the BG/GP approach to solve increasingly

complex mechatronic design problems, an explicit notion of modularity is
introduced to provide reasonable opportunities for solutions to evolve in the
form of co-adapted subsystems. Cooperative co-evolution is a natural
symbiosis phenomenon that has aroused a growing interest in its application to
solve various problems with interacting modules. It is argued that in nature the
body and brain of a creature are tightly coupled and survive together (Pollack
JB, Lipson H, Funes P, Hornby G, [2001]). Initial research on evolving
artificial life forms with both body and brain for a particular task has proved to
be successful. Robot morphology and a controller have been encoded directly
(Lipson H, Pollack JB, [2000]), using a generative graph structure (Hornby
GS, Pollack JB, [2001]), or with a hybrid structure consisting of genetic
programming for evolving the controller and genetic algorithms for evolving
the body parameters (Lund HH, [2003]).

While many of the above-mentioned coevolutionary robotics approaches
use neural network controllers, in this work, the body and brain coevolutionary
synthesis of mechatronic systems uses unified bond graph trunk modules
encoded in genetic programming across all subsystems. The whole system
needing to be designed is first decomposed based on engineering judgment
into co-adapted subsystems in the analysis phase, and then all subsystems are
coevolved cooperatively in the synthesis phase. The decomposition is not for

Zhun Fan 142

dividing the system into separate engineering domains, only into subsystems.
Using bond graph to represent each subsystem, it benefits from exploring
concurrent design of mechatronic subsystems without first dividing them into
specific domains. For example, if an evolved subsystem can be implemented
either passively or actively, a decision may be made at a later point of time
such that it is part of the “body” design rather than part of the “brain” design.

We use generalized cooperative coevolution architecture for evolving
ecosystems consisting of two or more interacting co-adapted species (Potter
MA, De Jong KA, [2000]). The species are genetically isolated as in nature—
i.e., individuals from one species only mate with individuals from the same
species. The species interact with one another within a shared domain model
and have a cooperative relationship. Figure 7.3 shows the general architecture
of the cooperative coevolutionary synthesis framework.

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 143

Figure 7.3. Cooperative coevolutionary synthesis framework.

Since any given individual from one species represents only a
subcomponent of the problem, collaborators need to be selected from other
species in order to assess fitness. Each generation, all individuals belonging to
a particular species have their fitness evaluated by selecting some set of
collaborators from other species to form a complete solution. There are several

Zhun Fan 144

issues needing to be addressed for applying co-evolutionary algorithms to
evolve interdependent subcomponents (Wiegand RP, Liles WC and De Jong
KA, [2001]).

1. The degree of greediness of choosing a collaborator (collaborator

selection pressure): The last evaluated fitness scores of the individuals
in the alternative subpopulations are used to bias how to choose
collaborators. There are greedy, random, and worst methods to select
the best, random, and the worst representative collaborators from the
previous generation, respectively.

2. The number of collaborators per subpopulation to use for a given
fitness evaluation (collaboration pool size): The number of
collaborators can clearly affect the success of the coevolutionary
algorithm. Increasing the number of collaborators can significantly
increase overall computation time, a problem which is combinatorial
with the number of subpopulations. Commonly in practice, 1-5
collaborators are selected for experimentation.

3. The method of assigning fitness value given multiple collaborations
(collaboration credit assignment): the optimistic method assigns an
individual fitness score based on the value of its best collaboration;
the hedge method assigns an individual fitness score based on the
average value of its collaboration; the pessimistic method assign an
individual fitness score based on its worst collaboration. All
experiments in this work used the optimistic method for credit
assignment.

In this work, the coevolutionary design synthesis started from the desired

system specification. The fitness of a complete solution combining individuals
from all the species is evaluated according to how accurately it approximates
the desired overall system specification. We use Open Beagle as our
evolutionary computation platform. It is a well-structured object-oriented
framework including support for genetic algorithms, genetic programming,
evolution strategies, and coevolution (Gagné C, Parizeau M, [2002]).

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 145

7.5. CASE STUDY: QUARTER-CAR SUSPENSION

7.5.1. Problem Description

Suspension systems are important subsystems of most wheeled vehicles.

From a system design point of view, there are two main types of disturbances
acting on a vehicle, namely, road and load disturbances. Road disturbances
have the characteristics of large magnitudes at low-frequency (such as hills)
and small magnitudes at high-frequency (such as road roughness). Load
disturbances include the variations of loads induced by accelerating, braking
and cornering. A good suspension design is concerned with disturbance
rejection from both these disturbances to the outputs (e.g., vertical position of
vehicle mass). In general, a suspension system needs to be “soft” to follow the
road smoothly for a comfortable ride as well as to insulate against high-
frequency road disturbances, and to be “hard” to insulate against any load
disturbances (Wang, F, [2001]).

Suspension systems have been widely applied to vehicles to isolate body
vibration from road and load disturbances. They may include passive physical
designs as well as active control designs. In the literature, the three common
classifications of suspension systems are passive, active, and semi-active,
depending on the amount of external power required for the suspension to
perform its function (Chalasani RM, [1986]).

A quarter-car schematic model is illustrated in Figure 7.4. The sprung
mass ms (kg), consists of the main vehicle body supported by the suspension.
The unsprung mass mu (kg), consists of hub, wheel and tire. The tire is
modeled as a spring with stiffness kt (N/m). zs, zu, and zr are the vertical
positions of the sprung mass, the unsprung mass and the road disturbance
input, respectively. Force Fs is the load force disturbance input. Force u
represents any possible suspension force. Fr represents the force between the
road and the tire. This case study is adapted from Smith (Smith MC, [1995]).

Zhun Fan 146

Figure 7.4. Quarter-car schematic model.

The following equations describe the system motion.

 (7.1)

 (7.2)

where

From the point of view of a multi-port mechatronics network, the quarter-
car suspension system can be viewed externally as a two-port network. Its
corresponding mixed immittance matrix specification G is defined as:

 (7.3)

When both road and load disturbance rejection are considered, it requires

that in Eq. (7.3), G12(s) and G22(s) be set “soft” for road disturbance rejection
while G11(s) and G21(s) be set “hard” for load disturbance rejection. To

,sss Fuzm

ruu Fuzm

)(urtr zzkF

r

s

r

s

z

F

GG

GG

F

z

2221

1211

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 147

achieve such behavior, the desired system performance is specified in the
immittance matrix for a combination of soft and hard suspensions as follows:

 (7.4)

In this work, the desired system is specified as an ideal “double skyhook”

configuration as shown in Figure 7.5, which has been frequently used for
target suspension force. It is depicted as the additional dashed system,
consisting of a spring ks between the sprung mass and the unsprung mass, a
virtual sky-hook damper cs for the sprung mass, and a virtual sky-hook damper
cu for the unsprung mass. The ideal suspension force

.

The experimentation below uses the following parameters for the quarter-
car model: ms = 250kg, mu = 35kg, kt = 150 103 N/m. The desired frequency

response for road disturbance is specified in using a double skyhook

configuration with a soft damper and spring parameterization:

. The desired load

disturbance frequency response is specified in using another double

skyhook configuration with a hard damper and spring parameterization:

.

r

s

sh

sh

r

s

z

F

GG

GG

F

z

2221

1211

uussuss zczczzku)(

)(12 sG s

mNscmNscmNk s
u

s
s

s
s /2000,/4000,/10000

)(11 sG h

mNscmNscmNk h
u

h
s

h
s /6000,/12000,/150000

Zhun Fan 148

Figure 7.5. Quarter car with double skyhook suspension configuration.

The desired and can be calculated as follows:

t
h
st

h
ssts

h
su

h
ss

h
uu

h
sus

h
st

h
uu

s

sh

kkskcsmkmkmksmCmcsmm

skksCsm

F

z
G

234

2

11)()(

)(

t
h
st

h
ssts

h
su

h
ss

h
uu

h
sus

t
s
st

s
u

r

ss

kkskcsmkmkmksmCmcsmm

kkskc

z

z
G

23412)()(

Their Bode plots are shown in Figure 7.6.
There is one degree of freedom available for the response to each of the

road and load disturbances. They can be determined independently if two
suitable measurements are available for feedback – for example, suspension
deflection and sprung mass velocity (Smith MC, [1995]). The suspension
design with two such measurements, as depicted in a bond graph, is shown in
Figure 7.7.

)(11 sG h)(12 sG s

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 149

Figure 7.6. Desired road and load disturbance response.

Zhun Fan 150

Figure 7.7. Quarter-car suspension control with both road and load disturbances.

The control law is taken to be:

s

us

sz

szsz
skskuuu)()(2121 , where k1(s) is a collocated

controller with relative velocity feedback, k2(s) is a non-collocated controller
with absolute velocity feedback. With k1(s) and k2(s), the actual road and load
disturbance response can be calculated as:

Due to conflicting specifications for road and load disturbance

performance requirements, the performance cannot be achieved by a passive
suspension alone. Extra energy must be introduced using active suspension
(Smith MC and Walker GW, [2000]). From the system point of view, it is

ttstuusus

tu

s

s

kkkksmksmkmkmksmm

ksksm

F

z
G

21
2

211
3

1
2

11)(

ttstuusus

t

r

s

kkkksmksmkmkmksmm

kk

z

z
G

21
2

211
3

1
12)(

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 151

desirable to explore both controller strategies concurrently for possible passive
and active realization of the suspension system to achieve overall optimal
system performance and energy efficiency.

7.5.2. Controller Coevolution

Controller k1(s) and k2(s) are both represented in bond graph encoded in

genetic programming. They belong to two coevolved individual GP species
cooperating with each other to form a complete solution for the quarter-car
suspension design. Table 7.3 summarizes the key features of the problem of
coevolving two suspension controllers.

Table 7.3. Tableau for suspension controllers

Objective: Design a suspension system composed of two

controllers.
Test fixture and
embryo:

Two-input, two-output initial suspension system with
a sprung mass, an unsprung mass, and a spring.

Program architecture: Two result-producing GP species, k1 and k2, with
common attributes (below).

Function set for the
result-producing
branches:

For construction-continuing subtrees: Fccs-rpb-initial =
{f0, f1, R, C, I}.
For arithmetic-performing subtrees: Faps = {ADD,
SUB}.

Terminal set for the
result-producing
branches:

For arithmetic-performing subtrees: Taps = {E}.

Fitness Cases: 41 frequency values in an interval of four decades of
frequency values between 0.1Hz and 1,000Hz.

Zhun Fan 152

Raw Fitness: Taking the desired road and load disturbance rejection

responses and as evaluation criteria, the

raw fitness of a combined solution including
individuals from both species is

calculated as:
n

errerr
Fitness

n

i
raw

2

1
21)(

n is the number of logarithmically sampled frequency
points; err1 and err2 are the absolute difference of
magnitude between the evolved and the desired road
and load disturbance rejection frequency response,
respectively.

212121)()(jGjGerr s ;
211112)()(jGjGerr h

Normalized Fitness:

0.1

0.1

raw
norm Fitness

Fitness

Parameters: Each species: 10 subpopulations of 100 individuals;
Migration interval: 10 generations; Migration size: 2
individuals
Crossover rate: 0.85; Mutation rate: 0.15; initializing
tree depth: 2-4; maximum tree depth: 10-17

Result designation: Best-so-far individual from max fitness species and
matching individual from another species.

Termination: When either species reaches max fitness value 0.99.

)(12 sG s)(11 sG h

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 153

Figure 7.8. Coevolved controller structure in bond graph for k1(s).

As shown in Figure 7.8, k1(s) measures velocity difference between the
sprung mass and the unsprung mass, and provides u1, part of force u between
the two masses. Note that R8, C12, R13, C9, R10 and C11 have negative
values, thus need to be implemented actively.

The genotype for controller k1(s) is:

f1(f1(f1(f0(R(-2536.01), C(-2.91685e-05)), C(7.29305e-06)), f1(f0(R(-

28144.44), C(-1.23919e-05)), f0(R(-465.871), C(-9.565442e-05)))),
R(2104.298))

A one-port bond graph structure can be represented in impedance form

and transformed to a transfer function (Redfield, RC. and Krishnan, S. [1993]).

ssss

ssss
sk

8.8695.40683.38

119300000304700002238000933802104
)(

234

234

1

Zhun Fan 154

Figure 7.9. Coevolved controller structure in bond graph form for k2(s).

As shown in Figure 7.9, the input to controller k2(s) is the sprung mass
velocity; the output of controller k2(s) is u2, which provides another part of
force u acting between the sprung mass and the unsprung mass.

The genotype for controller k2(s) is:

f1(f0(f1(f0(R(317.927), C(5.33948e-07)), R(28639.9)), f0(f1(C(8.3877e-

06), R(10490.4)), f1(I(48.0437), C(5.9036e-06)))), R(1890.49))

k1(s) and k2(s) can also be calculated algebraically using conventional

control methods, to match the desired load and road disturbance responses,
with the following results (Smith MC, [1995]).

sssss

sssss
sk

6.171428960004.86114.187

)128600003600000251600102704.224(2000
)(

2345

2345

1

6.171428960004.86114.187

)7.5142859.10114214.4577886.57(10000
)(

234

234

2

ssss

ssss
sk

Comparison of the two results shows that controller k1(s) is of lower order

and less complexity than the controllers obtained from algebraic calculation.
This demonstrates that by applying genetic programming to coevolve
controller structures encoded in bond graph, it is possible to discover equal or
better control strategies in comparison to those obtained through conventional

007328.6007177.3005752.96102

012952.1011216.200939.2007735.59569
)(

234

234

2 esesess

eseseses
sk

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 155

methods. The Bode plots of the coevolved controllers are compared with those
of the calculated controllers, as shown in Figure 7.10. They have almost the
same frequency responses. However, controllers represented only in transfer
functions give no physical insight as whether certain parts of the controller
may be implemented passively.

In this approach, the controllers are evolved in the physical domain with
bond graph representation. The resulting bond graph structures give designers
insight in choosing among different physical realizations using active or
passive subsystems. Analyzing the collocated controller k1(s), R2 and C4,
joined by a 1-junction, are positive-real, thus can be implemented passively as
a spring-damper parallel pair, while R8, C12, R13, C9, R10 and C11 are
negative-real and need to be implemented actively. This is shown in Figure
7.11, with the following parameters: R2 = 2104.298 Ns/m, C4 = 137116.9

N/m, .

Figure 7.10. Evolved k1 and k2 compared to calculated k1 and k2.

8.8695.40683.38

270900003941000125400
)(

23

2

11

sss

ss
sk

60

80

100

120

140

M
ag

ni
tu

de
 (

dB
)

10
-1

10
0

10
1

10
2

10
3

10
4

-135

-90

-45

0

45

P
ha

se
 (

de
g)

Bode plots - Evolved k1 and k2 compared to calculated k1 and k2

Frequency (rad/sec)

calculated k1

evolved k1

calculated k2

evolved k2

Zhun Fan 156

Figure 7.11. physical realization of suspension control with road and load disturbances.

7.5.3. Incorporating Physical System Consideration

The advantage of using bond graph for mechatronic system design is that

they can explore the whole system configuration with both passive and active
systems simultaneously for concurrent synthesis. In the experiments of the last
section, there are no initial constraints as to whether the coevolved controllers
are to be implemented actively or passively. Coevolutionary computation is
used to discover useful controller structures, including possibly emergent
passive physical structures between the sprung mass and the unsprung mass.
Emergent passive physical structures are beneficial in terms of energy
efficiency in comparison to a fully active suspension system. Instead of relying
on generating passive physical structures emergently, constraints can be
explicitly incorporated into the coevolution requiring that certain parts of the
suspension system be passive, and that the physical structures have no inertia
component. This approach adds pressure to discover physically meaningful
structures for a semi-active suspension design.

When taking explicit physical systems into consideration, our coevolution
of controllers involves three species. The collocated controller k1 in the last
section is split into two parts joined by a one-junction: passive k1p, and active

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 157

k1a. k1p is part of the suspension that is physically realizable; k1a corresponds to
active controller k11 in Section 7.5.2. k2 is the same as in Section 7.5.2. They
are all represented as bond graph.

Using the same parameter settings as before, coevolutionary computation
on this problem generated the following three best structures after
simplification, having the same active control configuration as shown in
Figure 7.11.

1) Design Alternative 1

The bond graph of the physical system and its mechanical implementation
are illustrated in Figure 7.12.

Figure 7.12. Suspension passive physical structure design alternative 1.

2) Design Alternative 2

The bond graph of the physical system and its mechanical implementation
are shown in Figure 7.13.

Zhun Fan 158

Figure 7.13. Suspension passive physical structure design alternative 2.

3) Design Alternative 3

The bond graph of the physical system and its mechanical implementation
are shown in Figure 7.14.

Figure 7.14. Suspension passive physical structure design alternative 3.

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 159

Figure 7.15. Coevolved controller k1 compared to calculated k1.

The three alternative coevolutionary results yield different configurations
of the passive part of the suspension system. The one shown in Figure 7.12 has
the simplest physical structure and is also close to the passive physical systems
obtained in Section 7.5.2. Taking k1 = k1p+k1a, the Bode plots of the coevolved
controller k1 compared to the calculated controller k1 are shown in Figure 7.15.
They also have similar frequency responses.

In summary, a passive suspension system has the ability to store energy
via a spring and to dissipate it via a damper. Its parameters are generally fixed,
being chosen to achieve a certain level of compromise between road following
and load carrying. An active suspension system has the ability to store,
dissipate and introduce energy to the system, with extra flexibility to achieve
improved design performance. In this work, by designing controllers in the
physical domain, it enables coevolving both passive physical structures and
active controllers simultaneously. It should be noted that in this work, we have
assumed that the sensor and the actuator have perfect dynamics. The
suspension design will be considerably modified if such assumptions do not
hold well.

Zhun Fan 160

7.5.4. Coevolutionary Experimental Analysis

In the experimentation from section 7.5.2, there are two species, controller

k1 and k2. For each species, two representative collaborators are chosen to pair
with individuals in the other species for their fitness evaluation. The two
representative collaborators are the best individual and one random individual
from the previous generation. The termination criterion for this coevolutionary
process is when either of the species reaches its maximum fitness value (0.99).
Since the two species are quite inter-related, the fitness improvement for each
species shows many dynamics with sharp-edged curves. This is typically
different from single-species evolution, which normally has smoother fitness
improvement curves. The coevolution average and max fitness improvement
curves are shown in Figure 7.16 and Figure 7.17 for a typical run, respectively.

Figure 7.16. Suspension controller k1 and k2 coevolution average fitness improvement.

Coevolution average fitness improvement

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324
generation

fi
tn

es
s

Series1 Series2
 k1 k2

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 161

Figure 7.17. Suspension controller k1 and k2 coevolution max fitness improvement.

In the experimentation from section 7.5.3, there are three species: passive
physical system k1p, collocated active controller k1a, and non-collocated
controller k2. The experimental configuration setting is similar to the
coevolution with two species. The average and max fitness improvement
curves for one typical coevolutionary run with three species are shown in
Figure 7.18 and Figure 7.19 for a typical run, respectively.

Figure 7.18. Suspension k1p, k1a, k2 coevolution average fitness improvement.

Coevoultion max fitness improvement

0

0.2

0.4

0.6

0.8

1

1.2

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324
generation

fi
tn

es
s

Series1 Series2
 k1 k2

Coevolution average fitness improvement

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451
generation

fi
tn

es
s

Series1 Series2 Series3
 k1p k1a k2

Zhun Fan 162

Figure 7.19. Suspension k1p, k1a, k2 coevolution max fitness improvement.

7.6. CONCLUSION

This paper describes an integrated system-oriented coevolutionary

synthesis approach for open-ended mechatronics design using bond graph. The
combination of bond graph and genetic programming provides a mechanism
for bridging the field of mechatronics design with computational intelligence.
This work takes a further step upon previous work by designing truly
mechatronic systems including active control systems. It integrates control
system design with multi-domain physical system design, and achieves
synergy for whole system design through concurrent computational synthesis
of mechatronic subsystems. The design philosophy and formal design
methodology have been demonstrated in the quarter-car suspension case study.
The emergent passive physical structures are more energy efficient than a fully
active suspension system.

While this is not the first approach to body-brain coevolution, it is the first
to use the same bond graph representation to coevolve mechatronic
subsystems that can consist of both passive and active components. Using the
same design representation, we have the flexibility of choosing different ways
of physically implementing the system. The integrated coevolutionary
synthesis procedure can assist the designers in reviewing a wider range of
potential innovative and overall optimal design options, and having more
flexibility and insight to determine a final solution.

0

0,2

0,4

0,6

0,8

1

1,2

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451

fi
tn

es
s

generation

Coevolution max fitness improvement

Series1 Series2 Series3
k1p k1a

Body-Brain Coevolutionary Synthesis of Mechatronic Systems 163

There is a great deal of work that needs to be done to further advance this
approach. Mechatronics design integrates various disciplines and tools. At the
conceptual design stage with bond graph modeling, it only considers energy
flows and signal flows. However, at the detailed design level, the design
process should be accomplished in the context of global optimization with
multidisciplinary constraints and multiple objectives, for more realistic
implementation and economic trade-off analysis.

For simplicity, this paper focuses only on linear systems. However, the
overall integrated design philosophy using bond graph can readily
accommodate nonlinear systems. The bond graph methodology easily allows
one to model components that have nonlinear constitutive laws. Mechatronic
system design with nonlinear characteristics will be investigated in future
work.

Chapter 8

CONCLUSION

8.1. CONTRIBUTIONS

With mechatronics emerging as an independent and integrated discipline

of the 21st century, the research results presented in this book are of particular
significance because it is one of the first endeavors to address the challenging
issue of design automation of mechatronic systems. In this research, we have
developed and applied a general framework, namely, the BG/GP approach, for
automated conceptual design of mechatronics systems. The BG/GP approach
combines both bond graph as a modeling tool to unify representations of
mixed-domain subsystems across different physical domains in typical
mechatronic systems, and genetic programming as a strong search tool to
explore the open-ended design space of mechatronic systems. We have
verified the effectiveness and efficiency of the BG/GP approach through a set
of case studies, including electrical passive analog filter design, mechanical
typewriter redesign, system-level and layout synthesis of MEMS, and vehicle
suspension system design.

An interesting and instructive comparison is made between Electronic
Design Automation (EDA) and Mechatronic Design Automation (MDA).
Because energy and information flow between modules of mechatronic
systems can be transferred through electric wires, mechatronic systems can be
modularized more easily than conventional mechanical systems, and are thus
more amenable to modular design automation approaches. It is believed that
MDA holds great promise and may be the next big wave after EDA. In
particular, micromechatronic (microelectromechanical) systems (MEMS) have
the potential to be the first type of mechatronic systems that can achieve

Zhun Fan 166

comparable success to that achieved in Electronic Design Automation. A
structured and hierarchical design methodology for MEMS is recommended
and studied in this research. The preliminary results of both system-level
behavioral synthesis and second level layout synthesis show that automated
synthesis of MEMS is a very promising research area.

Because block diagrams could be mapped to bond graph, bond graph can
also be used to represent designs of controllers. This feature of bond graph is
important for mechatronics research because a typical modern mechatronic
system not only includes a plant consisting of mechanical, electrical, and/or
hydraulic subsystems, etc., but also includes a critical controller part that
regulates and coordinates movements and functionalities of various physical
subsystems in the plant. It has been proved that the BG/GP approach is
capable of concurrent design of both controllers and plants of mechatronic
systems in a joint research project on vehicle suspension system design
(Wang, Fan et al. [2004]).

8.2. FUTURE WORK

There are many research directions to undertake in the future to extend the

current BG/GP framework.
One direct enhancement is to include more complex multi-port

components in the component library as the building blocks for design
configurations. For example, in the current implementation of case studies in
Chapter 4, basic components used to construct design candidates include 1-
port C, 1-port I and 1-port R elements. These components can be generalized
to multiport C-field, I-field and R-field (Karnopp, [2000]). Actually, in
Chapter 5, the modular bridging unit component can be represented by a 2-
port C-field. However, in this book, multiport fields were not investigated in
depth. More study of multiport fields is underway and integration of multiport
fields into the BG/GP framework is the next research task of the author.

Since most mechatronic systems are actually hybrid systems, involving
both continuous and discrete-event dynamics, it is therefore important to
enhance the traditional bond graph so that it can accommodate discrete events
and control as well. Some work has been done in my student, Jean-Francois
Dupuis’s PhD project. We chose not to involve this part now, but to extend the
work and possibly involve it in the next version of the book.

In the current BG/GP framework, and particularly in the case studies of
Chapter 4, we focus our research on generating conceptual designs of

Appendix A: Causal Constraints 167

mechatronic systems that satisfy predefined design specifications. Detailed
design, as well as design hierarchy, is discussed in Chapter 5. More work to
build a composable design and simulation environment is needed so that
designers can migrate among different design levels conveniently. In a
composable design and simulation environment, any component involved in
design not only has a high-level behavioral model, but also one or more
detailed physical form models (Diaz-Calderon, [1999]).

Design robustness is a very important research topic to bridge the gap
between academic research results and industrial application tools. In
industrial practice, the design parameters, system structure, and the overall
system behavior may have many more constraints than those in the academic
research environment. Fabrication and measurement errors make it difficult for
component parameters of a real-world product to match the design parameters
exactly. In addition, changes in working environments such as temperature
fluctuation and/or electromagnetic interference may easily introduce noise to
the working system and make its components’ equivalent parameters deviate
from their designed values. Robust design (Sanchez, [1994]) aims to address
the issue of making designs that are insensitive to those noise and parameter
variations. Even though the issue of robust design of MEMS is studied in
Chapter 6, how to approach robust design in a more general manner is an
interesting research topic that the author will continue to investigate in his
future career.

In industrial practice, the designer is often faced with more than one
objective to extremize. Sometimes these objectives are weighted and summed,
and sometimes some of them are converted into constraints. However, in some
circumstances, it would be advantageous to treat both as independent
objectives, using any of a variety of evolutionary multi-objective optimization
methods (Deb, [2003]) to identify a Pareto surface of desirable solutions.

To increase scalability of evolutionary synthesis, another line of research
has drawn much attention recently. By augmenting experimental biology with
computer models of development, biologists are building a greater
understanding of how developmental processes construct the staggering
complexities of living organisms (Kumar and Bentley, [2003]). Taking
advantage of this understanding, I expect to enhance the capability of the
current evolutionary synthesis approach to reach designs that are far more
complex than current evolved designs in terms of functional complexity.
Related research topics include morphogenesis, cell signaling and
regeneration, investigations of synthetic developmental mechanisms, and their
implications in automated synthesis of engineering systems.

Zhun Fan 168

APPENDIX A: CAUSAL CONSTRAINTS

FIXED CAUSALITY

Fixed causality holds at a port when the equations only allow one of the

two port variables to be the outgoing variable. This occurs at sources: an effort
source (Se), by definition, always has its effort variable as signal output, and
has the causal stroke outwards. This causality is called effort-out causality or
effort causality. A flow source (Sf) clearly has a flow-out causality or flow
causality.

Another situation where fixed causality occurs is at nonlinear elements, in
cases in which the equations for that port cannot be inverted (for example,
potentially yielding division by zero). This is possible at R, GY, TF, C and I
elements. Thus, there are two reasons to impose a fixed causality:

1. There is no relationship between the port variables.
2. The equations are not invertable (‘singular’).

CONSTRAINED CAUSALITY

At TF, GY, 0– and 1–junctions, relationships exist between the causalities

of the various ports of the element. These relations are causal constraints, since
the causality of a particular port imposes the causality of the other ports. At a
TF, one of the ports has effort-out causality and the other has flow-out
causality. At a GY, either both ports have effort-out causality or both have
flow-out causality. At a 0–junction, where all efforts are the same, exactly one

Zhun Fan 170

bond must bring in the effort. This implies that 0–junctions always have
exactly one causal stroke on junction side of their ports. The causal condition
at a 1–junction is the dual of the 0-junction. The flows must sum to zero, thus
exactly one bond can have its value determined by the junction, implying that
exactly one bond has the causal stroke away from the 1–junction. [Zhun, I
think that what you had said was wrong, but please check that what I said is
correct for bond graph. This would represent a major error if uncorrected.
Where did this language come from?].

PREFERRED CAUSALITY

At the storage elements, the causality determines whether an integration or

differentiation with respect to time will hold. Integration has preference over
differentiation in causal assignment. In the integrating form, an initial
condition must be specified. Integration with respect to time is a process that
can be realized physically. Differentiation is not always physically realizable,
since information at future time points is needed. Another drawback of
differentiation is that when the input contains a step function: the output then
becomes infinite. Therefore, integrating causality is seen as the preferred
causality. This implies that C–elements have effort-out causality and I–
elements have flow-out causality as their preferred causal assignments.

We will present an example to illustrate this. When a voltage u is imposed
on an electrical capacitor (a C–element), the current i is the result of the
constitutive equation of the capacitor:

dt

du
Ci

A differentiation is thus happening. We have a problem when the voltage

instantly steps to another value, since the current required to achieve that will
be infinite (the derivative of a step is infinite). This is not the case when the
current is imposed on a capacitor. Now, an integral is used:

 idtuu 0

Appendix A: Causal Constraints 171

The first case is flow-out causality (effort imposed, flow the result), and
the second case is effort–out causality, which is the preferred causality.
Furthermore, an effort–out causality also results in a state variable with an
initial condition, u0.

In an inductor, the dual form of the C–element is used: flow-out causality
will result in integral causality, and is the preferred assignment. Step changes
in voltage produce integral changes in current.

INDIFFERENT CAUSALITY

Indifferent causality is used when there are no causal constraints. At a

linear R, it does not matter which of the port variables is the output (or
response). Consider an electrical resistor. Imposing a current (flow) yields:

iRu

It is also possible to impose a voltage (effort) on the linear resistor:

R

u
i

There is no difference in feasibility between choosing the current as

stimulus variable and the voltage as response variable, or the other way
around.

In summary, the Se and Sf have fixed causalities, the C and I have
preferred causalities, the TF, GY, 0 and 1 have constrained causalities, and the
R has an indifferent causality (provided that the equations characterizing these
basic elements are all invertable). When the equations are not invertable, a
fixed causality must be used.

APPENDIX B: STATE-SPACE FORMULATION

FOR BOND GRAPH MODELS

The problem of state-space formulation for bond graph models can be

formulated as follows. Given a bond graph composed of elements from the
basic set {C, I, R, Se, Sf, TF, GY, 0, 1}, find a method of generating state-space
equations of the form

BUAXX

 (B.1)

or

),(UXX

 (B.2)

where

C – capacitance
I – inertance
R – dissipation
Se-- source of effort
Sf-- source of flow
TF – modulated transformer
GY – modulated gyrator
0 – zero junction
1 – one junction

Zhun Fan 174

A bond graph can be organized into a form consisting of storage field, loss
field, source field and junction structure. The storage (energy) field is a
collection of C and I elements. The loss (dissipation) field is composed of R
elements. The source field is composed of source elements Se and Sf. The
collection of elements from the set {TF, GY, 0, 1} forms the junction
structure, which is a power-preserving multi-port subsystem. Any bond graph
composed of elements from the basic set may be organized into the form
shown in the Figure B.1 describing the system division.

Figure B.1. Basic fields of multiport systems: acausal form.

After causality is assigned to the bond graph according to the systematic
approach described above, Figure B.1 becomes Figure B.2. The graph is said
to have integral causality. In particular, this means that every C-field port and
every I-field port is as shown in Figure B.2. According to causality, Figure B.2
identifies for the port of each characteristic field the input and output
variables, namely, loss, storage and source. An R port can have either e in and
f out, or the reverse, depending upon causality. C and I ports are always
defined as shown. The variable x in the storage field is the true energy
variable, and its derivative dx/dt is taken as input, with the co-energy variable
z as output. The outputs of the source field are the independent driving
functions u (e for Se, f for Sf), and the inputs to the source elements are the
complementary bond variables v.

Appendix B: State-Space Formulation for Bond Graph Models 175

Figure B.2. Symbolic form for integration causality.

Based on the definitions given for each field port in Figure B.2, the entire
system may be represented in causal form as shown in Figure B.3. Each of the
arrows represents a vector of variables, and the vector sets are paired
according to the field types.

Figure B.3. Significant vectors for systems having integration causality.

Then, the linear field equations in standard form in the dissipation field
can be given by

inout DLD , (B.3)

For the case of storage field, we have

Junction Structure

 {TF, GY, 0, 1}

 Source {Se, Sf}

 S
{C, I}

 S
{R}

dx/dt

Z

Di

Dou

U V

Zhun Fan 176

XSZ (B.4)
The junction structure yields expressions for the dx/dt and Din vectors in

terms of the inputs to the junction structure, namely, Z, Dout, and U. Provided
the elements TF and GY all have constant modulus, we have

UJDJZJX SUoutSLSS

 (B.5)

UJDJZJD LUoutLLLSin (B.6)

where J matrices are the constraints imposed by the junction structure

between sets of ports. Reduction of the four equations (B.3) through (B.6) to a
single state-space equation of the desired form may be accomplished quite
directly. Substituting (B.4) into (B.5), we get

UJLDJZJX SUinSLSS

 (B.7)

Then substituting (B.6) into (B.7), we obtain

UJUJDJZJLJZJX SULUoutLLLSSLSS

)((B.8)

Equation (B.4) and (B.6) may be combined and solved to give

UJLJILZJLJILD LLLLLSLLout
11)()((B.9)

Substituting (B.3) into (B.9), we get

UJLJILSXJLJILD LLLLLSLLout
11)()((B.10)

Substituting (B.10) into (B.8), we get

UJLJILJJXSJLJILJSJX LULLSLSULSLLSLSS])([])([11

 (B.11)

This can be written as

Appendix B: State-Space Formulation for Bond Graph Models 177

BUAXX

 (B.12)

where

SJLJILJJA LSLLSLSS])([1 (B.13)

])([1
LULLSLSU JLJILJJB (B.14)

REFERENCES

F. Broenink, [1999], “Introduction to physical systems modelling with bond
graph,” In SiE Whitebook on Simulation methodologies,
http://www.rt.el.utwente.nl/bnk/papers/BondGraphsV2.pdf.

J. van Amerongen, and P.C. Breedveld, [2003], “Modelling of physical systems
for the design and control of mechatronic systems (IFAC Professional
Brief),” Annual Reviews in Control 27, Elsevier Ltd., ISBN S1367-5788, pp
87–117

R. L. Becerra, C. A. C. Coello, [2006], “Cultured differential evolution for
constrained optimization ”, Computer Methods in Applied Mechanics and
Engineering, Vol. 195, No. 33-36, 2006, pp. 4303-4322.

P. J. Bentley, [1999], Evolutionary Design by Computers. Morgan Kaufmann;
1999

J. F. Broenink, [1999], Introduction to physical systems modelling with bond
graph. http://www.ce.utwente.nl/bnk/papers/BondGraphsV2.pdf, 1999

M. I. Campbell, J. Cagan and K. Kotovsky, [1999] “A-Design: An Agent-Based
Approach to Conceptual Design in a Dyanmic Environment,” Research in
Engineering Design, vol. 11, pp.172-192.

M. Campbell, [2000], “The A-Design invention machine: a means of automating
and investigating conceptual design”. PhD thesis, Department of Mechanical
Engineering, Carnegie Mellon University; 2000.

J. M. Cabanells, J. Feléz, [1999], “Dynamic Systems Optimization Based on
Pseudo Bond Graph,” 1999 International Conference on Bond Graph
Modeling and Simulation, pp.50-55.

Zhun Fan 180

Antonio Diaz-Calderon, [2000], A Composable Simulation Environment to
Support the Design of Mechatronic Systems, PhD Dissertation, Department of
Electrical and Computer Engineering, Carnegie Mellon University.

S. Carlson-Skalak, M. D. White, Y. Teng, [1998], “Using Evolutionary Algorithm
for Catalog Design,” Research in Engineering Design, vol 10, pp. 63-83.

A. Chakrabarti, T.P. Bligh, [1996a], “An Approach to Functional Synthesis of
Solutions in Mechanical Conceptual Design. Part I: Kind Synthesis,”
Research in Engineering Design, vol. 8, pp.52-62.

A. Chakrabarti, T.P. Bligh, [1996b], “An Approach to Functional Synthesis of
Solutions in Mechanical Conceptual Design. Part III: Spatial Configuration,”
Research in Engineering Design, vol. 8, pp.116-124.

A. Chakrabarti, T.P. Bligh, [1994], “An Approach to Functional Synthesis of
Solutions in Mechanical Conceptual Design. Part I: Introduction and
Knowledge Representation,” Research in Engineering Design, vol. 6, pp.127-
141.

R. M. Chalasani, [1986], “Ride performance potential of active suspension
systems – Part I: Simplifies analysis based on a quarter-car model”.
Proceedings of 1986 ASME Winter Annual Meeting, Los Angeles, CA.

E. Coelingh, T. J. A. de Vries, J. V. Amerongen, [1998], “Automated
Performance Assessment of Mechatronic Motion Systems During the
Conceptual Design Stage,” Proceedings of the 3nd International Conference
on Advanced Mechatroncis, Okayama, Japan, pp.472-477

B. Danielson, J. Foster and D. Frincke, [1998], “GABSys: Using Genetic
Algorithms to Breed a Combustion Engine,” Proc. of IEEE Conf. on
Evolutionary Computation, pp. 259-264.

K. Deb, [2000], “An efficient constraint handling method for genetic algorithms”,
Comput. Methods Appl. Mech. Engrg., Vol. 186, (2000) 311-338

K. Deb, [2002], “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,”
IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, 2002, pp.
182 – 197

K. Deb, [2003], Multi-Objective Optimization Using Evolutionary Algorithms,
Chichester, UK: Wiley Publisher

K. Deb, and H. Gupta, [2005] “A constraint handling strategy for robust multi-
criterion optimization,” KanGAL Report No. 2005001, 2005

D. Eby, R. C. Averill, W. Punch, E. D. Goodman, [1998], "Evaluation of Injection
Island GA Performance on Flywheel Design Optimization,” Proceedings,
Third Conference on Adaptive Computing in Design and Manufacturing,
Plymouth, England, Springer Verlag, pp.121-136.

References 181

Z. Fan, K. Seo, R. C. Rosenberg, J. Hu, E. D. Goodman, [2003], “System-Level
Synthesis of MEMS via Genetic Programming and Bond graph”, Proc. 2003
Genetic and Evolutionary Computing Conference, Chicago, Springer, Lecture
Notes in Computer Science, 2058-2071

Z. Fan, K. Seo, R. C. Rosenberg, J. Hu, E. D. Goodman, [2002], “Exploring
Multiple Design Topologies using Genetic Programming and Bond graph”,
Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO-2002, New York, pp.1073-1080.

Z. Fan, J. Hu, K. Seo, E. Goodman, R. Rosenberg, and B. Zhang, [2001], “Bond
Graph Representation and GP for Automated Analog Filter Design”, Genetic
and Evolutionary Computation Conference Late-Breaking Papers, San
Francisco, pp. 81-86

Z. Fan, J. Liu, T. Sørensen, P. Wang, [2009], “Improved Differential Evolution
Based on Stochastic Ranking for Robust Layout Synthesis of MEMS
Components”, IEEE Transactions on Industrial Electronics vol: 56, issue: 4,
pages: 937-948, 2009,

G. K. Fedder, and Q. Jing, [1999], “A Hierarchical Circuit-Level Design
Methodology for Microelectromechanical Systems”, IEEE Transactions on
Circuits and Systems II (TCAS), vol. 46, no. 10, pp. 1309-1315.

G. Fedder and T. Mukherjee, [1996], “Physical Design for Surface-
Micromachined MEMS”, Proceedings of the Fifth ACM/SIGDA Physical
Design Workshop, April, pp. 53-60.

C. Gagné, M. Parizeau, [2002], “Open BEAGLE: A new versatile C++
framework for evolutionary computations”, Genetic and Evolutionary
Computation Conference Late-Breaking Papers, New York, 2002; p. 161-168.
(http://www.gel.ulaval.ca/~beagle)

P. J. Gawthrop. [1995], “Physical model-based control: a bond graph approach”.
The Franklin Institute, 1995; 332B (3): 285-305

J. S. Gero, [1996], Computers and Creative Design, in M. Tan and R. Teh (eds),
The Global Design Studio, National University of Singapore, pp. 11-19

D. Goldberg, [1989], Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley

E. D. Goodman, R. C. Averill, W. F. Punch, D. J. Eby, [1997a], "Parallel Genetic
Algorithms in Optimization of Composite Structures,” Proc. Second World
Conference on Soft Computing (WSC2), Springer Verlag, pp. 199-208.

E. D. Goodman, [1996], An Introduction to GALOPPS, GARAGe Technical
Report #96-07-01, Michigan State University.

E. D. Goodman, K. Seo, R. C. Rosenberg, Z. Fan, J. Hu, B. Zhang, [2000], “
Automated Design Methodology for Mechatronic Systems Using Bond graph

Zhun Fan 182

and Genetic Programming”, Proc. of the 2002 NSF Design, Service and
Manufacturing Grantees and Research Conference, San Juan, Puerto Rico;
Jan. 7-10, 2002.

J. B. Grimbleby [2000], “Automatic analogue circuit synthesis using genetic
algorithms”, IEE Proc. – Circuits Devices Systems.319-323.

W. W. Harman and D. W. Lytle, [1962], Electrical and mechanical networks,
McGraw-Hill, 1962

M. Heinrich, W. E. Jeungst, [1996], “Resource Base Paradigm for the
Configuring of Technical Systems from Modular Components,” Proceedings
of the 1996 ASME Design Engineering Technical Conference and Computers
in Engineering Conference, Irvine, CA, August, pp.18-22.

N. Hogan, [1985], “Impedance control: an approach to manipulation”. ASME
Journal of Dynamic Systems, Measurement, and Control, 1985; 107: 1-24.

J. H. Holland, [1975], Adaptation in Natural and Artificial Systems, University of
Michigan Press.

Y. S. Hong, J. H. Lee, and S. H. Kim, [2000], “A laterally driven symmetric
micro-resonator for gyroscopic applications,” Journal of Micromechanics and
Microengineering, vol. 10, 2000, pp 452-458.

S. P. Hoover, J. R. Rinderle, [1989], “A Synthesis Strategy for Mechanical
Devices,” Research in Engineering Design, vol 1, pp.87-103.

G. S. Hornby, J. B. Pollack, [2001], “Body-Brain co-evolution using L-systems as
a generative encoding”, Genetic and Evolutionary Computation Conference,
San Francisco, 2001

K. Hwang, K. Lee, G. Park, B. Lee, Y. Cho, and S. Lee, [2003], “Robust Design
of a Vibratory Gyroscope With an Unbalanced Inner Torsion Gimbal Using
Axiomatic Design,” Journal of Micromechanics and Microengineering, No.
13, 2003, pp 8-17.

J. Hu, E. D. Goodman, K. Seo, M. Pei, [2002] Adaptive Hierarchical Fair
Competition (AHFC) Model for Parallel Evolutionary Algorithms,
Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO-2002, New York, 772-779.

R. Isermann [2003] Mechatronic design approach, In: R. H. Bishop, editor. The
Mechatronics Handbook, CRC press; 2003.

Y. Jin and J. Branke, [2005], “Evolutionary optimization in uncertain
environments - A survey,” IEEE Transactions on Evolutionary Computation,
Vol. 9, No. 3, 2005, pp. 303-317

D. C. Karnopp, D. L. Margolis, R. C. Rosenberg, [2000] System Dynamics, A
Unified Approach, 3rd Ed., John Wiley & Sons.

References 183

H. M. Kim, N. F. Michelena, P. Y. Papalambros, and T. Jiang, [2000], “Target
Cascading in Optimal System Design,” Proceedings of the 2000 ASME
Design Automation Conference, DAC-14265, Baltimore, Maryland, USA.

S. Kota, C. L. Lee, [1993], “General Framework for Configuration Design: Part I
– Methodology,” Journal of Engineering Design, vol. 4, no. 4, pp.277-289.

H. Lipson, E. K. Antonsson, and J. R. Koza, editors. [2003], “Computational
synthesis: from basic building blocks to high level functionality”, AAAI
Symposium, March 24-26, 2003, Stanford CA.

D. C. Karnopp, D. L. Margolis, R. C. Rosenberg, [2000], System dynamics: A
unified approach, 3rd ed. New York: John Wiley & Sons; 2000

J. R. Koza, F. H. Bennet, D. Andre, M. A. Keane, [1999a], Genetic Programming
III, Darwinian Invention and Problem Solving, Morgan Kaufmann
Publishers.

J. R. Koza et al., [1999b], “Automatic Creation of Both the Topology and
Parameters for a Robust Controller by Means of Genetic Programming,”
Proceedings of the 1999 IEEE International Symposium on Intelligent
Control, Intelligent Systems, and Semiotics. Piscataway, NJ: IEEE. pp.344-
352.

J. R. Koza, F. H. Bennet, D. Andre, M. A. Keane, F. Dunlap, [1997a], ”Automate
Synthesis of Analog Electrical Circuits by Means of Genetic Programming,”
IEEE Trans. on Evolutionary Computation, vol. 1, no. 2, pp.109-128.

J. R. Koza, D. Andre, F. H. Bennet, M. A. Keane, [1997b], “Evolution Using
Genetic Programming of a Low-Distortion 96 Decibel Operational
Amplifier,” Proceedings of the 1997 ACM Symposium on Applied
Computing, San Jose, California, pp.207-216.

J. R. Koza, [1994], Genetic Programming II, Automatic Discovery of Reusable
Programs, MIT Press.

J. R. Koza, [1992], Genetic Programming: On the Programming of Computers by
Means of Natural Selection, MIT Press.

S. Kumar, and P. J. Bentley, [2003], On Growth, Form and Computers. Academic
Press, London.

J. Lampinen, [2002] “A constraint handling approach for the differential evolution
algorithm, in Proceedings of the Congress on Evolutionary Computation
2002 (CEC’02), May, vol. 2, IEEE Service Center Piscataway, NJ 2002, pp.
872-877.

H. Lipson, J. B. Pollack, [2000], “Automated design and manufacture of artificial
lifeforms”. Nature, 2000; 406: 974-978

Zhun Fan 184

R. Liu, B. Paden, and K.Turner, [2002] “MEMS Resonators that are Robust to
Process-Induced Feature Width Variations,” Journal of
Microelectromechanical Systems, vol. 11, No. 5, October 2002, pp. 505-511

J. D. Lohn, S. P. Colombano, [1999]. “A circuit representation techniques for
automated circuit design”, IEEE Transactions on Evolutionary Computation.
205-219

T.-S. Low, S. Chen, X. Gao, [2001], “Robust Torque Optimization for BLDC
Spindle Motors,” IEEE Transactions on Industrial Electronics, Vol. 48, No.
3, June 2001, pp. 656 – 663

S. Luke, “Strongly-Typed, Multithreaded C Genetic Programming Kernel”,
http://www.cs.umd.edu/users/-seanl/gp/patched-gp/ (1997)

H. H. Lund, [2003], “Co-evolving control and morphology with LEGO Robots”.
In: Hara F and Pfelifer R, editors. Morpho-functional machines, Heidelberg:
Springer-Verlag; 2003

L. Ma, and E. K. Antonsson, [2000], “Automated Mask-Layout and Process
Synthesis for MEMS”, Technical Proceedings of the 2000 International
Conference on Modeling and Simulation of Microsystems pp. 20-23.

R. W. Newcomb, [1966], Linear multiport synthesis. McGraw-Hill, 1966
C. J. J. Paredis, A. Diaz-Calderon, R. Sinha, and P. K. Khosla, [2001],

“Composable Models for Simulation-Based Design”, Engineering with
Computers 17, pp. 112-128.

J.-Y. Park, Y.-D. Kim, et. al. [2008], “Robust Design of an Active Micro-Mixer
Based on the Taguchi Method,” Sensors and Actuators B, 129, 2008, pp. 790-
798.

J. B. Pollack, H. Lipson, P. Funes, G. Hornby, [2001], “Three generations of
coevolutionary robotics”, Artificial Life, 2001; 7(3), pp. 215-223.

M. A. Potter, K. A. De Jong, [2000], “Cooperative coevolution: an architecture
for evolving coadapted subcomponents”, Evolutionary Computation, 2000;
8(1): 1-29

D. R. Prabhu, [1989], “Synthesis of Systems from Specifications Containing
Orientations and Positions Associated with Flow Variables”, Proc. 1989
Design Automation Conference, Montreal, Canada

A. Preumont [2002], Vibration Control of Active Structures, Kluwer Academic
Publishers; 2002

W. Punch [1998], lil-gp 1.1 User’s Manual, Technical Report, Genetic
Algorithms Research and Algorithms Group, Michigan State University.

W. Punch, R. C. Averill, E.D. Goodman, S.-C. Lin, Y. Ding [1995], “Design
Using Genetic Algorithms – Some Results for Laminated Composite
Structures,” IEEE Expert, vol 10 (1), pp. 42-49.

References 185

M. Raymer, W. Punch, E. Goodman, and L. Kuhn, [1996], “Genetic
Programming for Improved Data Mining –Application to the Biochemistry of
Protein Interactions,” Proc. First Genetic Programming Conference, Stanford
University, pp. 375-380.

R. C. Redfield, and S. Krishnan, [1993], “Dynamic System Synthesis with a Bond
Graph Approach: Part Ι - Synthesis of One-port Impedances”, Journal of
Dynamic Systems, Measurement, and Control, 1993, vol. 115, pp. 357-363

R. C. Redfield, [1999], “Bond graph in Dynamic Systems Designs: Concepts for a
Continuously Variable Transmission,” 1999 International Conference on
Bond Graph Modeling and Simulation, pp. 225-230.

Y. Reich, [1995], “A Critical Review of General Design Theory,” Research in
Engineering Design, vol. 7, pp.1-18.

D. W. Rosen, T. J. Peters, [1996], “The Role of Topology in Engineering Design
Research,” Research in Engineering Design, vol. 8, pp.81-98.

R. C. Rosenberg, [1996a], The ENPORT User’s Manual, Rosencode Associates,
Inc.

R. C. Rosenberg, M. K. Hales, and M. Minor, [1996b], “Engineering Icons for
Multidisciplinary Systems,” Proc.ASME IMECE 1996, DSC-V.58, pp.665-
672.

R. C. Rosenberg and Y-y. Wang , [1993a], “Multiport Subsystems,” Proc. 1993
IEEE International Conference on Systems, Man and Cybernetics, Le
Touquet, France.

R. C. Rosenberg [1993b], “Reflections on Engineering Systems and Bond graph,”
ASME Trans. J. Dynamic Systems, Measurements and Control, V.115,
pp.242-251.

R. C. Rosenberg, J. Whitesell, and J. Reid, [1992], “Extendible Simulation
Software for Dynamic Systems,” SIMULATION, 58:3, pp.175-183.

R. C. Rosenberg [1971], “State-Space Formulation for Bond Graph Models of
Multiport Systems,” ASME Trans. J. Dynamic Systems, Measurements and
Control, V.93, pp.35-40.

T. P. Runarsson and X. Yao, [2000], “Stochastic Ranking for Constrained
Evolutionary Computation”, IEEE Transactions on Evolutionary
Computation, Vol. 4, No. 3, 2000, pp. 284 - 294

Susan M. Sanchez, [1994], “A Robust Design Tutorial”, Proceedings of the 26th
conference on Winter simulation, pp. 106-113.

K. Seo, Z. Fan, J. Hu, E. Goodman, R. Rosenberg, [2003], “Toward an
Automated Design Method for Multi-Domain Dynamic Systems Using Bond
graph and Genetic Programming,” Mechatronics, 13 (8-9), pp: 851-885

Zhun Fan 186

P. J. Sedivec, Robust Optimization: Design in MEMS, Master Thesis, University
of California, Berkeley, 2002

A. Sharon, N. Hogan, D. E. Hardt, [1991], “Controller design in the physical
domain”, The Franklin Institute, 1991; 328(5/6): 697-721.

J. E. Sharpe, R. H. Bracewell,[1995], “The Use of Bond Graph Reasoning for the
Design of Interdisciplinary Schemes,” 1995 International Conference on
Bond Graph Modeling and Simulation, pp. 116-121.

S. Shaw, Michigan State University, October, 2003, pers. comm.
M. C. Smith, [1995], “Achievable dynamic response for automotive active

suspension”, Vehicle System Dynamics, 1995, vol. 24, pp. 1-33
M. C. Smith and G. W. Walker, [2000], “Performance limitations and constraints

for active and passive suspensions: a mechanical multi-port Approach”.
Vehicle System Dynamics, 2000, vol. 33, pp.137-168.

J. L. Stein, L. S. Louca, [1995], “A Component-based Modeling Approach for
System Design: Theory and Implementation,” 1995 International Conference
on Bond Graph Modeling and Simulation, pp.109-115.

R. Storn and K. Price, [1997] “Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of Global
Optimization, vol. 11, 1997, pp. 341–359.

G. Taguchi [1993], Taguchi on Robust Technology Development: Bringing
Quality Engineering Upstream, ASME Press, New York, 1993.

S. Tsutsui, and A. Ghosh, [1997], “Genetic Algorithms with a Robust Solution
Searching Scheme,” IEEE Transactions on Evolutionary Computation, Vol.
1, No. 3, September 1997, pp 201-208.

E. Tay, W. Flowers and J. Barrus, [1998], “Automated Generation and Analysis
of Dynamic System Designs,” Research in Engineering Design, vol 10, pp.
15-29.

N. Vargas-Hernandez, J. Shah, Z. Lacroix, [2003], “Development of a Computer-
Aided Conceptual Design Tool for Complex Electromechanical Systems”,
Computational Synthesis: From Basic Building Blocks to High Level
Functionality, Papers from the 2003 AAAI Symposium Technical Report SS-
03-02, pp. 255-261.

F. Wang, [2001], Design and synthesis of active and passive vehicle suspensions,
PhD thesis, Department of Engineering, University of Cambridge, 2001.

G. Wang, E. D. Goodman, W. Punch, [1997b], “Toward the Optimization of a
Class of Blackbox Optimization Algorithms,” Proc. IEEE Internat. Conf. on
Tools for Artif. Intell., pp. 348-356.

J. Wang, Z. Fan, J. P. Terpenny, and E. D. Goodman, [2004], “Knowledge
Interaction with Genetic Programming in Mechatronic Systems Design Using

References 187

Bond graph,” IEEE Transactions on Systems, Man and Cybernetics, Part C:
Applications and Reviews, Special Issue on Knowledge Extraction and
Incorporation in Evolutionary Computation Vol. 35(2), pp. 172-182

J. Wang, and J.Terpenny, [2003], “Interactive Evolutionary Solution Synthesis in
Fuzzy Set-based Preliminary Engineering Design”, Special Issue on Soft
Computing in Manufacturing, Journal of Intelligent Manufacturing, Vol. 14.
pp. 153-167

D. E. Whitney, [1996], “Why Mechanical Design cannot be like VLSI Design,”
Research in Engineering Design, vol 8, pp. 125-138.

R. P. Wiegand, W. C. Liles and K. A. De Jong, [2001], “An empirical analysis of
collaboration methods in cooperative coevolutionary algorithms”, Genetic
and Evolutionary Computation Conference, San Francisco, 2001; p.1235-
1245

D. Wiesmann, U. Hammel, and T. Back, [1998], “Robust Design of Multilayer
Optical Coatings by Means of Evolutionary Algorithms,” IEEE Transactions
on Evolutionary Computation, Vol. 2, No. 4, November 1998, pp. 162-16.

K. Youcef-Toumi, Y. Ye, A. Glaviano, P. Andrson, [1999], “Automated Zero
Dynamics Derivation from Bond Graph Models,” 1999 International
Conference on Bond Graph Modeling and Simulation, pp. 39-44.

N. Zhou, J. V. Clark, K. S. J. Pister, [1998], “Nodal Simulation for MEMS Design
Using SUGAR v0.5,” In 1998 Int. Conference on Modeling and Simulation of
Microsystems Semiconductors, Sensors and Actuators, Santa Clara, CA,
April 6-8, 1998, pp. 308-313.

N. Zhou, B. Zhu, A.M. Agogino, K.S.J. Pister, [2001], “Evolutionary Synthesis of
MEMS (Microelectronic Mechanical Systems) Design”. Proceedings of
ANNIE 2001, Intelligent Engineering Systems through Artificial Neural
Networks, Volume 11, ASME Press, pp. 197-202

Y. Zhou [1998], Layout Synthesis of Accelerometers, Thesis for Master of
Science, Department of Electrical and Computer Engineering, Carnegie
Mellon University.

INDEX

