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Chapter 1 
 
 
 

INTRODUCTION 
 
 
Several issues in design currently demand significant attention, including 

multi- and mixed-energy-domain systems, automated synthesis, and 
topologically open-ended design (Figure 1.1).  

First, there is a great demand for improved capabilities to design high-
performance, multi-domain, dynamic systems, particularly in the area of 
mechatronics. The inclusion of components from multiple energy domains 
(such as electrical, mechanical, hydraulic, thermal and/or magnetic) and 
demands for rigorous performance and consideration of cost constraints make 
design of these systems very challenging.  

Second, the need for automated synthesis is growing ever stronger. Design 
of such complex systems is typically an iterative process in a very large 
solution space, with multiple objectives. Traditional CAD design processes are 
tedious, inefficient and quite time-consuming. 

Third, compared to parametric design, topological design is more 
challenging because it has a much larger and less well-defined search space. In 
order to achieve the desired performance of complex mechatronic systems, 
open-ended topological search is required to incorporate enough topological 
variations.  
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Figure 1.1. Requirements for Automated Design of Mixed-Domain Systems. 

 
 

1.1. AUTOMATED SYNTHESIS 
 
Computer-aided design (CAD) and computer-aided engineering (CAE) 

have been powerful tools that have revolutionized engineering practice and 
education since the advent of high-performance computers. The biggest 
influence of CAD and CAE is to give engineers the ability to design and test 
products on a testbed based on computational simulation before fabricating 
them. This ability has profound implications, especially because fabricating a 
product or system is time-consuming and costly. With the capability of 
numerical simulation in computers, engineers can compare more design 
concepts and prototypes, make judgments and tradeoffs, and be much more 
sure that the final product will satisfy the design specifications before he or 
she starts to fabricate it in the physical domain.  

The computer tools we discussed above, including analysis tools that can 
simulate and measure the performance of designs, are passive design tools. 
Using such tools, the designer is at the center of the design scheme, controlling 
all aspects of the design process. The design tools just serve to provide 
information that the designers want or need, as feedback about performance of 
designs presented to them. Their roles are passive relative to the designer’s, in 
the sense that they only “answer” or provide feedback when the designer 
“asks” a question and presents a design.  
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We describe another type of computer tool as active, rather than passive, 
in that it not only “answers” when the designer “asks”, but also “thinks” when 
the designer is “thinking.” In other words, such tools not only perform 
analysis, but suggest designs, with guidance from the designer only at a more 
abstract level. As a result, they not only gather and evaluate, but also to 
analyze and process information, make decisions, foster design insights and 
guide the design process.  

 While computers are definitely faster and more accurate in calculation 
than human beings, it is generally believed that they lack the cognitive 
capability humans use to make creative designs and true inventions. This is not 
challenged in this work. It is also argued that in order to automate any phase of 
the design process, one must first understand the cognitive theory of how 
humans design; were this true,  active computer tools could hardly be 
successful, because establishment of such a cognitive theory of human design 
is still an extremely distant goal. This argument sounds reasonable to many, 
but has one assumption that people should attend to carefully – that is, it is 
assumed in this argument that the human designer offers the only example of a 
successful design system. However, other successful design systems do exist. 
Nature is one of them. Even before the history of human beings, nature 
invented many wonderful designs of species that far exceed any human 
designs in terms of complexity, without any intervention of humans. Although 
nature spends a prohibitively long period of time (for a human designer) to 
“evolve” its designs, the ever-increasing speed and capacity of current 
computer technology provides a possible answer to shorten the time 
consumption to an acceptable range, for a design system that draws on 
principles of design from nature. 

Over the past two decades, computational algorithms based on the 
principles of evolution first formulated by Charles Darwin have developed 
from academic curiosities into practical and effective tools for scientists and 
engineers. Evolutionary computation refers to a class of general-purpose 
search algorithms based on (admittedly very incomplete) abstraction of 
principles of biological evolution and natural selection. These algorithms 
implement biologically inspired computations that manipulate a population of 
candidate solutions (the “parents”) to generate new variations (the 
“offspring”). At each step (or “generation”) in the computation, some of the 
less promising candidates in the population are discarded and replaced by new 
candidates (“survival of the fittest”). The process continues until a satisfactory 
solution to the problem has been found. In this research, genetic programming 
(GP), a special form of evolutionary computation, is taken as the essential 
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mechanism for design automation. While basing a system on evolutionary 
principles is certainly no guarantee that it can create new and innovative 
designs, neither can one reject out-of-hand the possibility that such a system 
could do so without duplicating, or even emulating, the process performed by 
humans. 

Genetic programming is an extension of the genetic algorithm, and it uses 
evolution to optimize actual computer programs or algorithms to solve some 
task (Holland [1975], Goldberg [1989]), typically involving a graph-type (or 
other variable-length) representation. Differences between GP and GA are 
summarized in Table 1.1. The most common form of genetic programming is 
due to John Koza [1992, 1994, 1999a], and uses trees to represent the entities 
to be evolved. Because GP (genetic programming) can manipulate variable-
sized strings, it is especially useful for representing developmental processes. 
Most design methods require a preliminary design, which is a solution with 
enough components and a valid configuration, even if it is not a complete 
solution, in order to define the desired properties of a good solution. A 
developmental design process does not require a preliminary design, but only a 
design embryo, which need not contain all of the necessary components, or the 
necessary number of components, or a valid configuration, but only enough 
information to allow specifying the behaviors desired of the system (defining 
objectives and variables constrained, for example). 

 
Table 1.1. Comparisons between GP and 'classical' GA 

 

Properties GA GP 

genome representation:  
genome size: 
operators: 

String 
Fixed length 
Representation-blind 

Tree 
Variable length 
Representation-specific 

 
It is important to point out that when using passive design tools, designers' 

decision-making is biased by both the capabilities of simulation tools and the 
designer’s experience and intuition. It is hard for the designer to make an 
“imaginative jump or creative leap” from one design candidate to another. But 
active design tools can free designers from this kind of “design fixation” and 
the limitations of conventional wisdom, allowing them to explore a huge 
number of possible candidates for a design problem, and increasingly, the 
probability to discover novel designs uncharted before by human exploration.  
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1.2. REPRESENTATION OF MULTIDISCIPLINARY 

MECHATRONIC SYSTEMS 
 
It is a remarkable fact that models based on apparently diverse branches of 

engineering science can be expressed using the notation of bond graph, based 
on energy and information flow. Using the language of the bond graph, one 
may construct models of electrical, mechanical, magnetic, hydraulic, 
pneumatic, thermal, and other systems using only a rather small set of ideal 
elements as building blocks.  

The bond graph is a modeling tool that provides a unified approach to the 
modeling and analysis for physically-based dynamic systems. Bond graph 
models can describe the dynamic behavior of physical systems by the 
connection of idealized lumped-parameter elements based on the principle of 
conservation of power. Bond graph consist of elements and bonds. There are 
several types of elements, each of which performs analogous roles across 
energy domains. The first type -- C, I, and R elements -- are , in their simplest 
forms, passive one-port elements that contain no sources of power, and 
represent capacitors, inductors, and resistors (in the electrical domain). A 
second type, Se and Sf, are active one-port elements that are sources of power 
and/or boundary conditions, and that represent effort sources and flow sources, 
respectively (for example, sources of specified voltage or current, respectively, 
in the electrical domain). A third type, TF and GY, are two-port elements in 
their simplest forms, and represent transformers and gyrators, respectively. 
Power is conserved in these elements. A fourth type, denoted as 0 and 1 on 
bond graph, represents junctions, which are three-port (or more) power 
conserving elements. They serve to interconnect other elements into 
subsystems or system models. Other types of multiport elements may be 
defined, but will not be used here. 

Some example bond graph models are shown below. Figure 1.2 consists 
of a mechanical system at the left, an electrical system at the right, and a bond 
graph representation at the center. The bond graph representation includes a Se 
, 1-junction, C, I, and R elements, and that same bond graph represents either a 
mechanical mass, spring and damper system, or an RLC electric circuit. Se 

corresponds with force in the mechanical system and voltage in electrical 
system. The 1-junction implies a common velocity for 1) the end of the spring, 
2) the end of the damper, and 3) the mass in the mechanical system, and 
implies that the current in the RLC loop is common in the electrical system. 
The R, I, and C represent the damper, inertia (of mass), and spring in the 
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mechanical system, or the resistor, inductor, and capacitor in the electrical 
circuit. 

 

 

Figure 1.2. Bond graph representation of mixed-domain systems. 

Bond graph have two major advantages for design application – their 
efficiency for evaluation of design alternatives and the natural combinatorial 
features of bond and node components for generating design alternatives.  

The analysis efficiency of the bond graph model results because the causal 
relationships and power flow between elements and subsystems reveal certain 
system properties and inherent characteristics very efficiently. A set of state 
variables is easily determined and the state equations can be generated 
systematically. Particular efficiencies are possible in the classification of 
models as to whether or not they merit dynamic simulation.  

The other characteristic of bond graph as shown in Figure 1.3 is their 
graphical (topological) structure, which allows structural manipulation 
separate from the equations. This means that any system model can be 
generated by a combination of bond and node components, because of their 
free composition and unbounded growth capabilities. Therefore it is possible 
to span a large search space, refining simple designs discovered initially, by 
adding size and complexity as needed to meet complex requirements. 
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Figure 1.3. The combinatorial nature of bond graph generation. 

 
 

1.3. RELATED WORK 
 

1.3.1. Bond graph 
 
Rosenberg and many others have described bond graph methods in detail 

in the literature (see, for example, Karnopp, Margolis and Rosenberg [1999], 
Rosenberg [1992, 1993a, 1993b, 1996]). Prabhu [1989] presents a set of basic 
theorems for using a variant of bond graph in design. They exploit the graph 
nature of bond graph for design. A set of graph-rewriting rules to generate 
bond graph models that represent feasible physical systems is presented in 
Hoover and Rinderle [1989]. An important feature of this work is the 
exploration of all the behaviors a component might have. Stein and Louca 
[1995] develop a two-level-based Component Modeling Procedure to exploit 
the power of several existing model order deduction algorithms. This 
procedure is implemented in a computer program, CAMBAS. CAMBAS uses 
expandable bond graph models and automatically builds global bond graph of 
systems according to the design engineer’s selection of templates. Sharpe and 
Bracewell [1995] present the use of bond graph reasoning for the design of 
interdisciplinary schemes. They describe how conceptual scheme synthesis 
may be assisted and structured by the use of functions-mean trees developed 
by the application of bond-graph-inspired rules. Coelingh et al. [1998] present 
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a computer-based design tool for conceptual design of mechatronic motion 
systems. Youcef-Toumi [1999] introduces an algorithm which identifies 
automatically the physical components and/or subsystems that are responsible 
for zero dynamics. Redfield [1999] demonstrates the value of using bond 
graph as a conceptual or configurational design tool for dynamic systems, 
using as an example a continuously variable transmission. 

 
 

1.3.2. GA/GP 
 
Numerous design-generating tools using GA and GP by members of the 

Genetic Algorithms Research and Applications Group (“GARAGe”) are 
presented by Goodman and his co-authors (Raymer et al. [1996], Goodman 
[1996], Goodman et al. [1997a], Wang et al. [1997b], and Eby et al. [1998]). 
(One of the most powerful and widely used GP systems, Lil-gp, was 
developed in the GARAGe.)  Carlson-Skalak et al. [1998] have developed a 
catalog design method using an evolutionary algorithm, applied to a 
manufacturing floor piping network. This approach allows for simultaneous 
alterations of configurations and components. Koza et al. [1997a, 1997b] 
present a single uniform approach using genetic programming for the 
automatic synthesis of both the topology and sizing of a suite of various 
prototypical analog circuits, including low-pass filters and operational 
amplifiers. Koza et al. [1999b] present a general automated method for 
synthesizing the design of both the topology and parameter values for 
controllers. This method automatically makes decisions concerning the total 
number of processing blocks to be employed in the controller, the type of each 
block, the topological interconnections between the blocks, the values of all 
parameters for the blocks, and the existence, if any, of internal feedback 
between the blocks of the overall controller. It has already shown itself to be 
extremely promising, having produced a number of patentable designs for 
useful artifacts, and is the most closely related approach to that proposed here; 
however, it works in a single energy domain. Danielson, Foster and Frincke 
[1998] use both bond graph and a genetic algorithm to design a 2-stroke 
combustion engine. They start from a preliminary design, find near-optimal 
values for 15 physical parameters for a combustion engine, but without 
allowing topological variation. Tay, Flowers and Barrus [1998] use a genetic 
algorithm to vary bond graph models. This approach adopts a variational 
design method, which means they make a complete bond graph model first, 
then change the bond graph topologically using a GA, yielding new design 
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alternatives. Their goal is to provide a wider range of possible designs, and is 
closely related to that presented here, but within a topologically more limited 
search space.  

 
 

1.3.3. Automated Design Theory and Practice 
 
Reich [1995] presents a critical review of General Design Theory (GDT), 

a mathematical framework for design. He reviews the assumptions (axioms) 
and predictions (theorems) of GDT with respect to design and illustrates them 
with simple examples. Gero [1995] investigates evolutionary systems as 
computational models of creative design and studies the relationships among 
genetic engineering, style emergence, and complex evolution. Kota and Lee 
[1993] present a configuration design technique employing a functional 
reasoning approach. As in traditional catalog design, a configuration is formed 
based on functions, and then components are selected. Chakrabarti and Bligh 
[1994, 1996a, 1996b] describe one approach to synthesis of solutions to a class 
of mechanical design problems; these involve transmission and transformation 
of mechanical forces and motion, and can be described by a set of inputs and 
outputs. The approach involves (1) identifying a set of primary functional 
elements and rules of combining them, and (2) developing appropriate 
representations and reasoning procedures for synthesizing solution concepts 
using these elements and their combination rules. Schmidt and Cagan [1996] 
have used a grammar-based system for design in which the grammar’s 
vocabulary represents functions or subfunctions. Rosen and Peters [1996] seek 
to demonstrate the diversity of applications of topology within engineering 
design. A complementary goal is to introduce the engineering design 
community to topology as a rich, formal, well-established mathematical 
discipline that may be of value for wider study. Whitney [1996] describes 
fundamental reasons, based on natural phenomena that keep mechanical 
design from approaching the ideal of contemporary VLSI design methods. 
Campbell et al. [1999] provide an introduction to a new design methodology 
known as A-Design, which combines aspects of multi-objective optimization, 
multi-agent systems, and automated design synthesis.  

Design automation is undoubtedly a very difficult task. However, we have 
seen some very successful applications in specific areas. For example, 
analog/mixed-signal design is one of the most dynamic and vital research 
areas in both academy and industry. In industry, two leading companies in the 
area, ADA in Canada and Neolinear in the US, have done much breakthrough 
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research and successfully applied their research results in the Electronic 
Design Automation (EDA) industry. Both companies, I believe, have a 
focused application of computational intelligence techniques in their products. 
Take the instance of ADA: the company has gathered many famous 
researchers specializing in computational intelligence as well as analog CAD. 
Madan M. Gupta, an IEEE fellow and pioneer in fuzzy and neural systems, is 
a member of the advisory board. Trent McConaghy, the Chief Scientist of 
ADA, is also a renowned specialist on artificial neural networks, fuzzy logic, 
evolutionary algorithms, pattern recognition, and classification. Neolinear, on 
the other hand, has Rob Rutenbar in its research advisory board. As the 
Director of the Center for Electronic Design Automation (CEDA) at CMU, 
Rutenbar is leading one of the most influential groups in analog/mixed-signal 
CAD. In one of his publications, he explicitly states that he uses Parallel 
Recombinative Simulated Annealing (PRSA), an idea originated from 
Goldberg’s combining of a genetic algorithm and simulated annealing 
optimization. Though striking and quite successful in their first attempts, the 
biggest limitation of these industry-oriented approaches is that they only 
accept fixed topologies. In academic circles, much research has been done on 
design automation of single-domain systems capable of topological 
exploration using an evolutionary computation approach. They could be 
classified into two categories: GA-based and GP-based. Most GA-based 
approaches realize topology optimization via a GA and parameter optimization 
with numerical optimization methods (Grimbleby 1995). Some GA 
approaches evolve both topology and component parameters; however, they 
typically allow only a limited amount of components to be evolved (Lohn 
1999). Using netlists as the representation technique for the circuit, and 
genetic programming as the evolutionary tool, Koza has developed very 
successful approaches to deal with circuit synthesis problems, evolving 
topologies and parameters simultaneously (Koza, 1999). Although their work 
basically achieves good results in analog circuit design, it is not easily 
extendable to interdisciplinary systems like mechatronic systems. 

Mechatronic system design differs from conventional design of electronic 
circuits, mechanical systems, and fluid power systems in part because of the 
need to integrate several types of energy behavior as part of the basic design 
(Coelingh [1998]). Multi-domain design is difficult because such systems tend 
to be complex and most current simulation tools operate over only a single 
domain. In order to automate design of multi-domain systems, such as 
mechatronic systems, a new approach is required. The essential goal of the 
work reported in this book is to develop an automated procedure capable of 
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designing mechatronic systems to meet given performance specifications, 
subject to various constraints. The most difficult aspect of the research is to 
develop a method that can explore the design space in a topologically open-
ended manner, yet find appropriate configurations efficiently enough to be 
useful.  

 
 

1.3.4. The BG/GP Approach  
 
The goal of this thesis is to develop an integrated design tool for the 

purpose of automatic, topologically open-ended synthesis of multi-energy-
domain systems. In order to achieve this goal, a novel approach is needed, to 
satisfy the three principal requirements – multi-energy-domain design, 
automated synthesis, and topologically open-ended design. To date, most 
design approaches have lacked at least one of these characteristics:  domain 
independence, efficient analysis, or broad search. Some do strong search but 
weak analysis, while others do good analysis but weak search. Bond graph are 
domain independent and efficient for classification and analysis of models, 
allowing rapid determination of various types of acceptability or feasibility of 
candidate designs, thereby sharply reducing the time needed for analysis of 
designs which are infeasible or otherwise unattractive. Genetic programming 
is well recognized as a powerful tool for open-ended search. The combination 
of these two powerful methods, called the BG/GP approach, is therefore an 
appropriate target for a better system for synthesis of complex mechatronic 
systems. Figure 1.4 shows a general flow chart of the BG/GP design process. 
Design specifications, including problem descriptions, design objectives, 
design constraints, etc., are first defined. After that, bond graph are used to 
model and represent dynamic systems to be designed. In the BG/GP approach, 
bond graph representations for dynamic systems are used for each design 
candidate of the design population of each generation in a genetic 
programming run. The genetic programming technique is the combinatorial 
basis of the BG/GP approach to realize design automation. It is genetic 
programming that possesses the mechanisms to generate a preliminary 
population of design candidates, to present each design individual for 
evaluation according to a specified fitness function, to reconfigure the 
topologies and/or parameters of design candidates (represented by bond graph) 
in the population, and to guide the design process to the next generation by 
producing a new population of design candidates, typically with better average 
performance. 
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This loop of design generation, evaluation, reconfiguration and guidance 
is typically iterated until at some generation, all design specifications are met 
by one design candidate or a group of design candidates. If so, the design 
process can be ended and design candidate/candidates satisfying design 
specifications can be saved for further analysis and post-processing.  

Table 1.2 summarizes the similarities and differences between the 
proposed BG/GP approach and several others. In this table, parametric 
variation means variation of parameters within a fixed configuration. Limited 
topological variation means the configuration can be changed, but only within 
limited bounds. Open-ended topological variation means the configuration can 
be changed not only topologically, but also by increasing or decreasing the 
number of components and altering their interconnections, without fixed 
bounds. 
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Figure 1.4. General flow chart of the BG/GP design 
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Table 1.2. Comparisons of various design approaches 
 

 
Properties Design with 

Bond graph 

Design 
with  
GA 

Design 
with  GP 

Design 
with  Bond 
graph & 
GA 

BG/GP 
approach 

Multi-domain X   X X 

Open-ended 
Topological variation 

  X  X 

Developmental 
Process 

  X  X 

Automated synthesis  X X X X 

Design 
Optimization 

 X X X X 

Efficient evaluation X   X X 

 
Automatic synthesis means that the iterative analysis and design search 

process can be performed without a designer’s intervention. Developmental 
process means that the designer need only set the embryo design initially 
(thereby defining the measurable quantities specifying the problem to be 
solved), and it evolves, generating a complete design solution. Efficient 
evaluation means that infeasible designs can be rapidly detected without the 
need for full simulation of design performance. 

 
 

1.4. CONTRIBUTIONS OF THE BOOK 
 
With mechatronics emerging as an independent and integrated discipline 

of the 21st century, this book is of significance because it is one of the first 
endeavors to address the challenging issue of design automation of 
mechatronic systems. The main contributions of the book are: 

 
A general framework, the BG/GP approach, for automated conceptual 

design of mechatronic systems, is described. The approach combines 
search capability of genetic programming to explore open-ended 
design space automatically and bond graph to unify representation of 
mixed-domain systems across different physical domains in 
mechatronic systems. 
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The BG/GP approach has been verified in the electrical domain in an 
electrical analog filter design problem, and in the mechanical domain 
in a mechanical printer redesign problem. 

Instructive comparisons between Mechatronic Design Automation (MDA) 
and Electronic Design Automation (EDA) have been made and the 
promise of MDA has been suggested. 

A framework of hierarchical evolutionary synthesis of MEMS has been 
recommended and further research directions have been indicated. 
System level behavioral synthesis of MEMS has been studied and 
implemented using extended BG/GP approach. 

Second level robust layout synthesis of MEMS has been studied and 
implemented using a novel constrained evolutionary algorithm – 
Improved Differential Evolution based on Stochastic Ranking (IDE-
SR). 

The important issue of concurrent design of controller (‘brain’) and plant 
embodiment (‘body’) of mechatronic systems is studied, and verified 
in a case study of vehicle suspension system design. 

 
 

1.5. ORGANIZATION 
 
The early chapters introduce the background and explain the fundamental 

elements of the theory and the later chapters test the theory in various facets 
and discuss insights gained through experiments. Chapter 2 discusses 
advantages of bond graph as a tool for design representation; some 
implementation issues in this research are also addressed. Chapter 3 introduces 
fundamentals of genetic programming and explains its functionality in design 
generation, evaluation, reconfiguration and guidance. The preparatory steps 
needed to apply this technique in the BG/GP approach are also discussed. 
Chapter 4 includes case studies of two real-world engineering design 
problems. Through experiments of an electrical analog filter design, and a 
vibration absorber design for a mechanical printer system design, various 
facets of using the BG/GP approach to facilitate and automate the design 
process for mixed-domain dynamic systems are studied and several insights 
regarding design are gained in the process. While these design cases are 
basically in the macro-world, in Chapter 5, we extend the BG/GP approach to 
a micro-scale domain and discuss the research of hierarchical evolutionary 
synthesis of MEMS. First, we stratify the design process of MEMS into 
several levels. At the system level, after integrating severe topological 
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constraints imposed by the specific application, we show that the BG/GP 
approach can be used to automate system-level design or conceptual design of  
a general class of dynamic systems, exemplified by a MEM filter design 
problem. Chapter 6 extends the MEMS design in the second level, and studies 
robust layout synthesis of MEMS using a novel constrained evolutionary 
algorithm – Improved Differential Evolution based on Stochastic Ranking 
(IDE-SR). Chapter 7 explores the important issue of concurrent design of 
controller (‘brain’) and plant embodiment (‘body’) of mechatronic systems. 
The proposed approach utilizes both co-evolutionary technique and bond 
graph representation of controller design. The effectiveness of the approach is 
verified in a case study of vehicle suspension system design, which 
demonstrates that the approach can produce alternative viable concurrent 
designs of both controller and plant embodiment to the designer. It is argued 
that this approach can support a real mechatronic design philosophy, in 
comparison with the sequential design procedure traditionally followed by 
mechatronic engineers. Chapter 8 provides conclusion and suggestion for 
further research. 

 



 

 
 
 
 
 
 

Chapter 2 
 
 
 

BOND GRAPH 
 
 
The bond graph is a modeling tool that provides a unified approach to the 

modeling and analysis of dynamic systems. Bond graph models can describe 
the dynamic behavior of physical systems by the connection of idealized 
lumped elements based on the principle of conservation of power. These 
models provide very useful insights into the structures of dynamic systems 
(Karnopp, Margolis and Rosenberg [2000], Rosenberg [1992, 1993a, 1993b, 
1996]). Much recent research has explored bond graph as tools for design 
(Sharpe and Bracewell [1995], Tay, et al. [1998], Youcef-Toumi [1999], 
Redfield [1999]).  

The constitutive equations of the bond graph elements are readily 
introduced via examples from the electrical and mechanical domains. The 
nature of the constitutive equations imposes demands on the causality of the 
connected bonds. Bond graph elements are drawn as letter combinations 
(mnemonic codes) indicating the type of element. The bond graph elements 
are the following (Broenink [1999]): 

 
C, storage element for a q-type variable, e.g. capacitor (stores charge), 

spring (stores displacement). 
I, storage element for a p-type variable, e.g. inductor (stores flux linkage), 

mass (stores momentum). 
R, resistor dissipating free energy, e.g. electric resistor, mechanical 

friction. 
Se, Sf, sources, e.g. battery (voltage source), gravity (force source), pump 

(flow source). 
TF, transformer, e.g. an electric transformer, toothed wheels, lever. 



Zhun Fan 18 

GY gyrator, e.g. electromotor, centrifugal pump. 
0, 1, 0– and 1–junctions, for ideal connection of two or more sub-models. 
 
The performance of a dynamic system that is composed of multi-domain 

elements is governed by energy conservation laws, which require that power-
in equals power-out, also known as the power-balance equation. Power is the 
product of effort and flow variables. Table 2.1 summarizes effort and flow 
variables in translational, rotational, electrical and hydraulic domains, 
respectively, with their corresponding bond graph representations. 
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Table 2.1. Flow and effort variables for different domains 
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2.1. CAUSALITY OF BOND GRAPH 
 
One of the important concepts in bond graph theory is causality. If two 

components are bonded together in a bond graph, we can think of one effort as 
causing one component to respond with a flow while the flow causes the first 
component to respond with an effort. Thus the cause-effect relations for efforts 
and flows are represented in opposite directions. A single mark on a bond, 
which is called the causal stroke, indicates how effort and flow simultaneously 
are determined causally on a bond (Figure 2.1).  

 

 

Figure 2.1. The meaning of causal stroke. 

Causal analysis can give insight into the correctness and competency of 
the model. This concept plays a great role in determining the feasibility of a 
design very simply at an early stage.  

Dependent on the kind of equations of the elements, the element ports can 
impose constraints on the connected bonds. There are four different 
constraints, which should be treated before a systematic procedure for causal 
analysis of bond graph is discussed (the reader unfamiliar with these 
constraints is directed to Appendix A for that treatment) (Broenink [1999]). 

 
 

2.2. BOND GRAPH EVALUATION 
 
To take advantage of the causal analysis that is possible for bond graph, a 

two-stage evaluation procedure is executed to evaluate bond graph models. 
The first, causal analysis (Karnopp et al. [2000]), allows rapid determination 
of feasibility of candidate designs, thereby sharply reducing the time needed 
for analysis of designs that are infeasible. Then, for those designs “passing” 
the causal analysis, the state model is automatically formulated. The process is 
illustrated in Figure 2.2. 
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Figure 2.2. Evaluation flow of bond graph models. 

 
 

2.2.1. Causality Analysis 
 
The causality assignment procedure is described as follows (quoting from 

Broenink [1999]) (refer to Figure 2.3):  
 

  1a. Choose a fixed causality of a source element, assign its causality, and 
propagate this assignment through the graph using the causal constraints. 
Go on until all sources have their causalities assigned. 

1b. Choose a not-yet-causally-assigned port with fixed causality (non-
invertable equations), assign its causality, and propagate this assignment 
through the graph using the causal constraints. Go on until all ports with 
fixed causality have their causalities assigned. 

2. Choose a not-yet-causally-assigned port with preferred causality (storage 
elements), assign its causality, and propagate this assignment through the 
graph using the causal constraints. Go on until all ports with preferred 
causality have their causalities assigned. 

3. Choose a not-yet-causally-assigned port with indifferent causality, assign 
its causality, and propagate this assignment through the graph using the 



Zhun Fan 22 

causal constraints. Go on until all ports with indifferent causality have 
their causalities assigned. 

 
Often, the bond graph is completely causally determined after step 2, 

without any causal conflict (all causal conditions are satisfied). If this is not 
the case, then the moment in the procedure where a conflict occurs or where 
the graph becomes completely causally determined, can give insight into the 
correctness and instantiability of the model.” 
 

 

Figure 2.3. Example of causality assignment. 

 
 

2.2.2. Model Insight via Causal Analysis  
 
As Broenink [1999] continues:  
 

“When the bond graph is completely causally determined after step 2, 
without any causal conflict, each storage element represents a state variable, 
and the set of equations is an explicit set of ordinary differential equations 
(not necessarily linear or time invariant). 

When the bond graph is completely causally determined after step 1a, 
the model does not have any dynamics. The behavior of all variables now is 
determined by the fixed causalities of the sources. If  a causal conflict arises 
at step 1a or at step 1b, then the problem is ill posed. The model must be 
changed, by adding some elements. An example of a causal conflict at step 1a 
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is two effort sources connected to one 0-junction. Both sources ‘want’ to 
determine the one effort variable. 

In case of a conflict at step 1b, a possible adjustment is changing the 
model of some  fixed–causality element such that its describing equations 
become invertible, and thus the fixedness of the constraint disappears. When 
a conflict arises at step 2, a storage element receives a non-–preferred 
causality. This means that this storage element does not represent a state 
variable. The initial value of this storage element cannot be chosen freely. 
Such a storage element often is called a dependent storage element. This 
indicates that a storage element was not taken into account during modeling, 
but it should be there from physical systems viewpoint. It can be deliberately 
omitted, or it might have been neglected in the modeling. In a hoisting device 
example, the load of the hoist (I-element) is such a dependent storage 
element. Elasticity in the cable was not modeled. If it had been modeled, a C-
storage element connected to a 0-junction between the cable drum and load 
would have appeared. 

When step 3 of the causality algorithm is necessary, a so-called algebraic 
loop is present in the graph. This loop causes the resulting set differential 
equations to be implicit. Often this is an indication that a storage element that 
should be there from a physical systems viewpoint was not modeled.” 
 
 

2.2.3. State Equation Formulation  
 
For those designs “passing” the causal analysis, the state model may be 

automatically formulated. However, as bond graphs are pictorial descriptions 
of dynamic systems, to obtain the numerical performance of the dynamic 
systems, it is necessary to derive a mathematical model from the pictorial 
description. There is a systematic procedure to transform a bond graph 
representation of a dynamic system to a state equation (Rosenberg, [1971]) or 
transfer function. In our research, we focus on the problem of state equation 
formulation.  The details of this formulation procedure are provided in 
Appendix B.  

 
 

2.3. SIMPLIFICATION OF BOND GRAPH 
 
Bond graph models can be simplified in some cases. This fact is important 

in our research because some seemingly different topologies of bond graph 
models are actually the same after simplification. As comparison of topologies 
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of designs for dynamic systems (represented by bond graph) is useful in many 
applications, it is desirable to develop an algorithm to automatically simplify 
bond graph topology, rather than to do it manually. Currently we have 
implemented three simplification rules as follows:  

 
1. Rule 1, elimination of redundant junctions. Junctions can be removed 

from a graph if the energy flow is not branched at the junction, nor a 
signal bond connected to the junction. Please refer to Figure 2.4 

 

 

Figure 2.4. Elimination of redundant junctions in bond graph. 

 
2. Rule 2, merging of junctions. Two junctions of the same type can be 

joined if there is exactly one power bond between the junctions. The 
simplification is carried out by removing the bond between the 
junctions and transplanting all connections of one junction to the other 
junction. The first junction can then be removed. Please refer to 
Figure 2.5 
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Figure 2.5. Merging of junctions in bond graph. 

 
3. Rule 3, merging of elements. Elements of the same type connected to 

the same junction can be joined. The simplification is carried out by 
calculating the expression for the new parameter value of the element, 
replacing one of the parameters by the new expression and removing 
the other element and its power bond. Please see details in Figure 2.6. 
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Figure 2.6. Merging of elements in bond graph. 
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We implemented this algorithm in the Simplification( ) member function 
of the BondGraph class in our code. Applying simplification for a bond graph 
is very direct, as shown in the simple illustrative example: 

 
BondGraph A; 
A.Simplification( ); 
 
The pseudo code for the simplification algorithm for bond graph is 

listedbelow:  
 

 
 
An example showing a bond graph model before and after simplification 

is shown in Figure 2.7. This is a result taken from a BG/GP run for the filter 
design problem, which is going to be introduced in the Chapter 3 of this book. 
The top figure is the bond graph model is taken from generation 96 of a typical 
BG/GP run for the filter design problem. It is not simplified at the moment, 
with several elements that can be merged highlighted by dashed circles. After 
the simplification algorithm, the resulting simplified bond graph model is 
shown in the bottom figure. The two bond graph models have identical 
dynamic behaviors, but the simplified one has fewer elements and can be 
physically realized with fewer physical components. Another purpose of using 

Input : Bond graph output generated by GPBG  
Output : Simplified bond graph model  
Procedure  
    begin  
      i = 0  
      for all junction(i) 
        apply Rule 1    
        i++                       
      i = 0  
      for all junction(i) 
        apply Rule 2    
        i++                       
      j = 0  
      for all element(j) 
        apply Rule 3    
        j++                       
   end       



Zhun Fan 28 

simplification methodology is that when comparing two structures, these two 
seemingly different topologies are actually the same in terms of dynamic 
behavior. Thus we can more easily draw conclusions about the differences 
between two bond graph if we compare simplified structures.  

 

 

Figure 2.7. An example of bond graph simplification. 
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2.4. STRENGTHS OF BOND GRAPH 
 
In summary, bond graph have three embedded strengths for design 

applications. First, multi-domain systems (electrical, mechanical, hydraulic, 
pneumatic, thermal) can be modeled using a common notation, which is 
especially important for design of mechatronic systems. Second, the graphical 
(topological) structure characteristic of bond graph allows their generation by 
combination of bond and node components, rather than by specification of 
equations. This means that any system model can be generated by a 
combination of bond and node components, because of their free composition 
and unbounded growth capabilities. Therefore it is possible to span a large 
search space, refining simple designs discovered initially, by adding size and 
complexity as needed to meet complex requirements. Third, in causality 
analysis, the causal relationships and power flow among elements and 
subsystems can reveal various system properties and inherent characteristics 
that can make the model unacceptable, and therefore make dynamic simulation 
unnecessary. While the strong typing used in the GP system will not allow the 
GP system to formulate “ill-formed” bond graph, even “well-formed” bond 
graph can have causal properties that make it undesirable or unnecessary to 
derive their state models or to simulate the dynamics of the systems they 
represent. Causality analysis is fast, and can rapidly eliminate further cost for 
many models that are generated by the genetic programming system, by 
performing assignment of effort and flow variables and making checks for 
violations of the appropriate constraints. This simple filtering cuts the 
evaluation workload dramatically. For systems passing causal analysis, state 
equations are easily and systematically derived from bond graph models. Then 
various analyses or simulation based on the state model allow computation of 
the desired performance measures. 

 

 





 

 
 
 
 
 
 

Chapter 3 
 
 
 

EVOLUTIONARY DESIGN 
 
 
As its name implies, evolutionary design uses concepts borrowed from 

Darwin’s concept of evolution to ‘breed’ good solutions to design problems. 
The potential success of this idea is based on the observation that nature is a 
great non-human designer -- without any intervention by humans, nature has 
created many varied species that far exceed any man-made designs in terms of 
complexity, during the last billion years. However, in design of man-made 
artifacts, the engineer cannot afford to wait for the millions of years that the 
evolution of organizations in nature has taken. The much-simplified 
computational model used in evolutionary design and the ever-increasing 
speed and capacity of current computer technology can help to shorten the 
time consumption for design of engineered artifacts to an acceptable range. 

In this research, we focus on a special type of evolutionary computation 
technique, namely genetic programming. Genetic programming is an extension 
of the genetic algorithm, using evolution to optimize actual computer 
programs or algorithms to solve some task (Holland [1975], Goldberg [1989]), 
typically involving a graph-type (or other variable-length) representation. The 
most common form of genetic programming is due to John Koza [1992, 1994, 
1999], and uses trees to represent the entities to be evolved. Genetic 
programming can manipulate variable-size strings and can be used to “grow” 
trees that specify increasingly complex bond graph models, as described 
below. If the scope and analysis efficiency of the bond graph model can be 
successfully integrated with the impressive search capability of genetic 
programming when utilized to its full potential, an extremely capable 
automated synthesis procedure, without need for user intervention, should 
result.  
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3.1. EVOLUTIONARY DESIGN WITH BOND GRAPH 
 

3.1.1. Generation of Design Candidates 

 
Unlike most other approaches, genetic programming will generate a 

population of design candidates at one time, rather than just one single design. 
If we look at designing as a search process for optimized designs, genetic 
programming, as a design automation and optimization approach, starts the 
search not at one single point, but from a ‘population’ of points scattered in the 
search space. Genetic programming takes advantage of the collective 
information acquired from the whole population of design candidates, feeds it 
back to influence the collective behaviors of the population through fitness 
evaluation of each individual, and guides them to search for better 
positions/points by imposing a search pressure. In the process, each individual 
may reconfigure itself through crossover and mutation operations. This is an 
important feature to have the ability to explore a topologically open-ended 
search space. In the next section, we will first discuss how to generate an 
individual design for a dynamic system represented as a bond graph. 

 
 

3.1.2. Bond Graph Construction 
 
A typical GP system evolves GP trees, rather than more general graphs. 

However, bond graph can contain loops, so we do not represent the bond 
graph directly as our GP “chromosomes.”  Instead, a GP tree specifies a 
construction procedure for a bond graph. Bond graph are “grown” by 
executing the sequence of GP functions specified by the tree, using the bond 
graph embryo as the starting point.  

Defining a proper function set to generate candidates is one of the most 
significant steps in preparing a genetic programming run. It may affect both 
the search efficiency of genetic programming and validity of evolved results, 
and is closely related to the selection of building blocks for the designed 
system. We define the GP functions and terminals for bond graph construction 
in Table 3.1. There are four types of functions:  first, add functions that can be 
applied only to a junction and which add a C, I, or R element; second, insert 
functions that can be applied only to a bond and which insert a 0-junction or 1-
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junction into the bond; third, replace functions that can be applied only to a 
node and which change the type of element and corresponding parameter 
values for C, I, or R elements; and fourth, arithmetic functions that specify 
arithmetic operations and are used to determine the numerical values 
associated with components. 

 
Table 3.1. Definition of function set 

 

Name #Args Description 

add_C 
add_I 
add_R 
insert_J0 
insert_J1 
replace_C 
replace_ I 
replace_ R 
+ 
- 
enda 
endi 
endr 
erc 
 

4 
4 
4 
3 
3 
2 
2 
2 
2 
2 
0 
0 
0 
0 

Add a C element to a junction 
Add an I element to a junction 
Add an R element to a junction 
Insert a 0-junction in a bond 
Insert a 1-junction in a bond 
Replace the current element with a C element  
Replace the current element with an I element  
Replace the current element with an R element  
Add two ERCs 
Subtract two ERCs  
End terminal for add element  
End terminal for insert junction  
End terminal for replace element 
Ephemeral random constant (ERC) 

 
Some typical operations -- add_R (a 1-port resistor) and insert_J0 (a 0-

junction) -- are explained in detail as follows. In Figure 3.1, the R element is 
added to an existing junction by the add_R function. This function adds a node 
with a connecting bond. An R element also requires an additional parameter 
value (ERC -- ephemeral random constant). Please note that in the GP tree 
fragment, a single line is used to denote a node site, which is either a 
component or a junction in the bond graph fragment, while a double line is 
used to denote a bond site. The insert_J0 function can be applied only at a 
bond, and performs insertion of a 0-junction at the given modifiable site (refer 
to Figure 3.2). Inserting a 0-junction between node R and a 1-junction yields a 
new bond graph (the right side of Figure 3.2 a). As a result, three new 
modifiable sites are created in the new bond graph. At each modifiable site, 
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various bond growth functions can be applied, in accordance with its type. In 
GP terminology, this is a strongly typed GP.  

 

 

Figure 3.1. Illustration of add_R operator. 
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Figure 3.2. Illustration of insert_J0 operator. 

Figure 3.3 shows an example of a GP tree, generated at random from the 
embryo root node. There are three modifiable embryo sites, denoted "1" (bond 
graph node), "a" (bond), and "2" (bond graph node). Each is denoted by an 
edge of the GP tree. Following edge 1 first, shows that an I element (I3 in 
Figure 3.4) is added by the add_I to the 1-junction (11) of the bond graph, 
together with the I element’s parameter value and a new bond. The result is to 
preserve modifiable site "(1)" and to add modifiable sites "(b)" and "(3)". The 
next set of operations under add_I in the GP tree shows that all three sites 
happen to have been made unmodifiable in the example tree by appending of 
end functions. 

Turning next to the edge labeled "a", we see that the first function applied 
to it is “end.” That bond site is thereby made unmodifiable. On the other hand, 
site "(2)" is the locus of additional bond graph growth. A C element, C4 in 
Figure 3.4, is added by add_C to the 0-junction (02). In the next operation, 
insert_J1, a 1-junction (15) is inserted between the 0-junction (02) and C4. 
After the remaining operations, the bond graph of Figure 3.4 is generated from 
the GP tree of Figure 3.3. 
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3.1.3. Reconfiguration of Designs 
 
Reconfiguration of design candidates is performed mainly through 

crossover and mutation operations embedded in the genetic programming 
technique (refer to Figure 3.5).  

 

 

Figure 3.3. An example of a GP tree. 
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Figure 3.4. The bond graph model generated by the GP tree of Figure 3.3. 

 

 

Figure 3.5. Illustration of crossover operator and mutation operator. 
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Figure 3.6. The extensible search capability of GP for an unbounded design space. 

Although crossover and mutation operators are both implemented in the 
genotype, namely the genetic programming tree, the result of executing the 
genotype generates the phenotype, a bond graph representation of a design. As 
the tree depths of genetic programming trees are not fixed and theoretically not 
limited, the possibilities of the shapes and parameters of resulting bond graph 
models (after the genotype-to-phenotype mapping) are actually unbounded. In 
this way, the combined capabilities of genetic programming to do efficient 
search in topologically unbounded space and bond graph to model and 
represent mixed-domain dynamic systems lead to a powerful design synthesis 
approach for general open-ended multiport dynamic systems. 
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3.1.4. Fitness Evaluation 
 
Fitness evaluation involves defining an objective or fitness function 

against which each individual is tested for suitability for matching the design 
specifications under various design constraints. As the algorithm proceeds, we 
would expect the individual fitness of the "best" individual, or design 
candidate in the particular case of our research, to increase, as should the total 
fitness of the population as a whole. An actual definition of fitness function is 
quite dependent on problem domain. Each application may have a different 
definition of the fitness function. More importantly, as design is the art of 
making products for a changing world, and the creation of new products is an 
ever-adapting and interactive process of integrating new information, new 
technologies and new biases from the marketplace, the fitness function may 
therefore be adaptive itself, enabling it to reflect changing design 
environments or preferences.  

 
 

3.1.5. Selection 
 
We need to select individuals from the current population for 

reproduction, or in other words, to create another population of design 
candidates in the next generation. By comparing the population of design 
alternatives, the best ones are selected to propagate to the next iteration while 
the remaining ones are discarded to make room for new solutions If we have a 
population of size 2N, the selection procedure picks out two parent 
individuals, based on their fitness values, which are then used by the crossover 
and mutation operators to produce two offspring for the new population. This 
selection/crossover/mutation cycle is generally repeated until the new 
population contains 2N individuals. A rule of thumb for selection is, the higher 
the fitness value, the higher the probability of that individual being selected for 
reproduction. This principle of selection pressure is called “survival of the 
fittest,” which is the primary motivating factor for finding successful designs. 

 
 

3.1.6. Premature Convergence 
 
Premature convergence is often a tough problem to be addressed by 

practitioners of evolutionary computation. There is no guarantee that, for an 
arbitrary function to be optimized,  approaches using finite populations and 
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search times, based on evolutionary computation (EC), will always find a 
globally optimal solution. In fact, in practice, they often do not. Premature 
convergence is one underlying reason for this phenomenon. The EC-based 
approach may cease to search effectively for better solutions because all 
individuals in the population converge to one region of the search space – 
offspring tend to be only minor modifications of their parents. In the case of 
genetic programming, if the population is converged, simple tuning of 
parameters or adjusting of ad-hoc operators is not sufficient to make much 
difference, so few new individuals out of crossover and mutation operations 
will survive even if mutation rates are increased. As a result, the whole 
population tends to get stuck in one place and the evolutionary computations 
are not able to do further search in the search space. Many approaches have 
been proposed to combat the problem of premature convergence to sustain a 
continuing search pressure for better solutions.  

A Hierarchical Fair Competition (HFC) model is developed and is the 
major topic of another dissertation in our group. It suggests a building block 
assembly line structure for continuing evolutionary machines. In this model, 
individuals are organized into different levels according to their fitnesses. 
Random individuals are continuously incorporated into the lowest fitness 
level, while new individuals at any level with fitnesses higher than others in 
that level progressively move out to higher levels. This kind of hierarchical 
organization of individuals allows new individuals with promising new 
building blocks to “grow up” gradually, without the severe competition from 
highly developed individuals. The hierarchy of fitness serves as a repository 
for different levels of implicit building blocks. As this is the major part of 
another parallel research effort, it is not elaborated on further here, but is used 
throughout the experimental runs. Interested readers may refer to (Hu, et al. 
[2002]). 

 
 

3.2. OVERALL DESIGN PROCEDURE 
 
Now it is time to summarize our overall design procedure. As with any 

fairly general system for design automation, the user must, as part of the 
specification of the problem to be solved, indicate the target performance that 
is desired and how it is to be evaluated. That generally includes identifying 
some input variable(s) or driver(s) and some output(s) which are used to 
observe the behaviors. The desired behaviors must be specified. For a system 
to be represented as a bond graph, this amounts to specifying an “embryonic” 
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physical model for the target system, which will remain invariant during the 
design process. That embryo should include any exogenous inputs, usually 
specified as sources of effort or flow (e.g., voltages, currents, forces, 
velocities, pressures, etc.). It must include any outputs required to evaluate 
fitness (for example, voltages across a given load resistance or flow rates 
through pipes). That these components should NOT be allowed to be 
changed/eliminated during design evolution is obvious – the problem is not 
defined without their presence. When the user has formulated the problem 
(i.e., the external boundaries of the physical model with its environment and 
the performance measures to be used), the user must specify it as an 
embryonic bond graph model and a “fitness” function. The user also specifies 
one or more “sites” in the embryo model where modifications/insertions are 
allowed. Then an initial population of GP trees is created at random, using that 
embryo as a common starting point. For each GP tree (“individual”), the bond 
graph is generated and analyzed. This analysis, including both causal analysis 
and (under certain conditions) state equation analysis, results in assignment of 
fitness to the individual. Then genetic operations – selection, crossover and 
mutation – are performed on the evaluated population in the GP tree domain, 
generating new individuals (designs) to be evaluated. The loop, including bond 
graph analysis and GP operation, is iterated until the termination condition is 
satisfied. The result is one or more “best” bond graph that satisfy predefined 
specifications and ready for physical realization. There is, of course, no basis 
for asserting the global optimality of any solution that arises – it is simply the 
best generated, and the procedure is considered successful if the quality of that 
design is adequate for the designer’s purposes.  

It is also important to point out that it is possible to get an idea of the 
design domain from “good” design candidates, not just “the best”. For 
example, the designer may notice that a group of “good ” design candidates 
share commonality of design topology and most component parameters. The 
only difference among those design candidates is the sizing for one particular 
component (for example, a C component). Then the designer can get a piece of 
heuristic knowledge that this C component may be very vital to the 
optimization of the design, and can focus on choosing a “best” parameter for 
this C component to further optimize the whole design.  

The flow of the complete algorithm described above is shown in Figure 
3.7. This loop of bond graph analysis and GP operation is iterated until a 
termination condition is satisfied. The final step in instantiating a physical 
design would be to realize the highest-fitness bond graph in physical 
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components. We are going to illustrate this design procedure in several case 
studies in our research. 

 

 

Figure 3.7. The overall design procedure of BG/GP approach. 

 
 



 

 
 
 
 
 
 

Chapter 4 
 
 
 

CASE STUDIES OF BG/GP APPROACH 
 
 
To test the ability of BG/GP approach for topologically open-ended design 

automation for mixed-domain dynamic systems, we choose two design 
problems mainly belonging to two different physical domains. They are 1). A 
passive analog filter design problem that belongs to the electrical domain, and 
2) a printer design problem that mainly belongs to the mechanical domain. 

 
 

4.1. ANALOG FILTER DESIGN PROBLEM 
 
Automatic synthesis of analog circuits is of great significance for 

electronic systems design, which involves the determination of the topology of 
circuits and sizing/parameterizing of their components. Many techniques have 
been used for such problems. Some methods incorporate heuristics; some 
predefine the topology, and then let the automated procedure optimize the 
parameters of the circuits. Some divide the design into two stages -- topology 
optimization via a GA and parameter optimization with numerical 
optimization methods (Grimbleby, [1995]). Some genetic algorithm 
approaches also evolve both topology and component parameters; however, 
they typically allow only a limited amount of components to be evolved 
(Lohn, [1999]). Using netlists as the representation technique for the circuit, 
and genetic programming as the evolutionary tool, Koza has developed very 
successful approaches to deal with circuit synthesis problems, evolving 
topologies and parameters simultaneously (Koza, [1999]). However, those 
applications are currently confined to the electrical domain, and exhibit very 
heavy demand for computing resources. 
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4.1.1. BOND GRAPH REPRESENTATION OF CIRCUITS 
 
In the context of circuit design, a bond graph consists of the following 

types of elements: 
 
C, I, and R elements, which are passive one-port elements that contain no 

sources of power, and represent capacitors, inductors, and resistors. 
Power source elements including Se and Sf, which are active one-port 

elements representing sources of voltage or current, respectively. In 
addition, when the current of a current source is fixed as zero, it can 
serve as an ideal voltage gauge. Similarly, when the voltage of a 
voltage source is fixed as zero, it can serve as an ideal current gauge 

Transformer (TF) and gyrator (GY), which are two-port elements, and 
represent transformers and gyrators, respectively. Power is conserved 
in these elements.  

0-junctions and 1-junctions, which are multi-port elements for 
representing series and parallel relationships among elements. They 
serve to interconnect elements into subsystem or system models 

Bonds, which are used to connect any two elements in the bond graph. 
 
A unique characteristic of bond graph is their use of 0- and 1-junctions to 

represent the series and parallel relationships among components in circuits. In 
fact, it is this concept that led to the foundation of the bond graph field 
(Paynter, [1991]). Junctions transform common circuits into a very clean 
structure with few loops, which can otherwise make circuits appear very 
complicated. Figure 4.1 shows the comparison of a circuit and a corresponding 
bond graph. The evaluation efficiency of the bond graph model is further 
improved due to the fact that analysis of causal relationships and power flow 
between elements and subsystems can reveal certain system properties and 
inherent characteristics. This makes it possible for us to discard infeasible 
design candidates even before numerically evaluating them, thus reducing time 
of evaluation to a large degree. In addition, as virtually all of the circuit 
topologies created is valid, our system does not need to check validity 
conditions of individual circuits to avoid singular situations that could 
interrupt the running of a program evaluating them.  
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Figure 4.1. Bond graph representation of an electrical circuit. 

 
 

4.1.2. Problem Definition 
 
Three kinds of filter designs were chosen to verify our approach - high-

pass, low-pass, and band-pass filters. The embryo electric circuit and 
corresponding embryo bond graph model used in our filter design are shown in 
Figure 4.2. We used converted Matlab routines to evaluate frequency response 
of the filters created. As Matlab provides many powerful toolboxes for 
engineering computation and simulation, it facilitates development of source 
codes for our genetic programming evaluation dramatically. In addition, as all 
individual circuits passed to Matlab code for evaluation are causally valid, the 
occurrence of singularities is excluded, which enables the program to run 
continuously without interruption. The fitness function is defined as follows:  
within the frequency range of interest, uniformly sample 100 points; compare 
the magnitudes of the frequency response at the sample points with target 
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magnitudes; compute their differences and obtain the squared sum of 
differences as raw fitness. Then normalized fitness is calculated according to: 

 

)100(
100)( 


Error

FilterFitness  

 
The GP parameters used for eigenvalue design were as follows: 
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Figure 4.2. Embryo of electrical circuit and its bond graph model. 

 
 

4.1.3. Results 
 
To illustrate an intermediate step in the evolution of a high-pass filter with 

a target cutoff frequency of 1000Hz, the performance of the best design 
evolved at generation 10 is shown in Figure 4.3. It is clear that this design is 
far inferior to that evolved by the end of the run (fewer than 100 generations), 
as shown in Figure 4.4. Figure 4.5 gives the frequency response of an evolved 
low-pass filter with the same cut-off frequency. It shows that this result is also 
quite satisfactory. Figure 4.6 gives the frequency response of an evolved band-
pass filter with cutoff frequencies at 10Hz and 1000Hz. Obviously, it is the 
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most difficult of the three filter design problems. The evolved high pass filter 
circuit and bond graph are shown in Figures 4.7 and 4.8.  

The statistical results of 10 runs each for high-, low- and band-pass filters 
are shown in Table 4.1. The distance errors between ideal frequency output 
and the output obtained, together with fitness values, are summarized. With 
the exception of some of the band-pass results, most were quite acceptable. 
Figure 4.9 shows the fitness history of a typical high-pass filter run. 
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Figure 4.3. Frequency response of a high-pass filter design with fitness value of 0.917. 

 

Figure 4.4. Frequency response of a high-pass filter design with fitness value of 0.992. 
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Figure 4.5. Frequency response of a low-pass filter design with fitness value of 0.980. 

 

Figure 4.6. Frequency response of a band-pass filter design with fitness value of 0.884. 
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Figure 4.7. Evolved bond graph model for high-pass filter. 

 



Zhun Fan 52 

 

FiFigure 4.8. Evolved electrical circuit for high-pass filter design. 

Table 4.1. Summary results (errors, fitnesses) for filter designs 
 

Run No. 

Low-pass High-pass Band-pass 

Error Fitness Error Fitness Error Fitness 

1 2.334 0.977 3.349 0.968 9.067 0.917 

2 3.428 0.967 2.031 0.98 12.861 0.886 

3 2.202 0.978 1.159 0.989 12.698 0.887 

4 3.032 0.971 2.337 0.977 12.672 0.888 

5 2.162 0.979 0.828 0.992 8.662 0.92 

6 3.427 0.967 2.86 0.972 12.864 0.886 

7 3.026 0.971 3.287 0.968 13.1 0.884 

8 2.951 0.971 0.725 0.993 13.09 0.884 

9 2.154 0.979 1.141 0.989 6.003 0.943 

10 1.988 0.981 1.917 0.981 13.049 0.885 

Best 1.988 0.981 0.725 0.993 6.003 0.943 

Worst 3.427 0.967 3.349 0.968 13.1 0.884 

Avg 2.67 0.974 1.963 0.981 11.407 0.898 

S.D 0.53 0.005 0.936 0.009 2.541 0.021 
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Figure 4.9. Fitness history for a typical high-pass filter run. 

 
 

4.2. DESIGN OF VIBRATION ABSORBER FOR 
MECHANICAL PRINTER 

 

4.2.1. Problem Formulation 
 
The original design problem was presented by C. Denny and W. Oates of 

IBM, Lexington, KY, in 1972. Figure 4.10 shows a closed-loop control system 
to position a rotational load (inertia) denoted as JL. The system includes 
electric voltage source, motor and mechanical parts. Bond graph are used for 
modeling the system (please refer to Figure 4.10 and Figure 4.11). 

The problem with the design is the position output of the load JL for a step 
input in voltage has intense vibrations (see figure 4.12). The design 
specification is to reduce the vibration of the load to an acceptable level, given 
certain command conditions for rotational position. We want the settling time 
to be less than 70ms when the input voltage is stepped from zero to one. Note 
that the settling time of the original system is about 2000ms. The time scale in 
Figure 4.12 is 4000 ms. 
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Figure 4.10. The schematic of the original printer system. 

 

 

Figure 4.11. Bond graph model for the original printer system. 
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Figure 4.12. Simulation result of the original printer drive subsystem..By analyzing the 
model, we conclude that the critical part for the design is a subsystem that involves the 
drive shaft and the load (Figure 4.13). The input is the driving torque, Td, generated 
through the belt coupling back to the motor. 

By analyzing the model, we conclude that the critical part for the design is 
a subsystem that involves the drive shaft and the load (Figure 4.13). The input 
is the driving torque, Td, generated through the belt coupling back to the 
motor. 
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Figure 4.13. The critical printer drive subsystem. 

This subsystem was deemed a logical place to begin the design problem. 
The questions left to the designer now are: 1) at which exact spots of the 
subsystem new components should be inserted, 2) which types of components 
and how many of them should be inserted, in which manner, and 3) what 
should be the values of the parameters for the components to be added?  The 
approach reported in this paper is able to answer these three questions in one 
stroke in an automated manner, once the embryo system has been defined. 

 
 

4.2.2. Embryo of Design 
 
To search for a new design using the BG/GP design tool, an embryo 

model is required. The embryo model is the fixed part of the system and the 
starting point for GP to generate candidates of system designs by adding new 
components in a developmental manner. The embryo used for this example, 
expressed in bond graph language, is shown in Figure 4.14, with the 
modifiable sites highlighted. The modifiable sites are places that new 
components can be added. The choice of modifiable sites is typically easy for 
the designer to decide. Note that modifiable sites are only possible spots for 
insertion of new components; the search may not use all of them. In this 
particular example, designers need have no idea whether assemblies of new 
components will be inserted at modifiable site (1), or at modifiable site (2), at 
site (3), or at any combinations of them. Instead, the algorithm will answer 
these questions in an automatic way, without intervention by the human 
designer. 
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Figure 4.14. The design embryo of printer subsystem. 

 
The parameters for the embryo model are: 
 

 
 
For simplicity and without loss of generality, both K and MSe gain are set 

to be unit.  
A notable difference exists between this design embryo and that of the 

filter design problem as discussed in the last session. While the embryo for the 
filter design was quite simple, the embryo for the printer redesign is much 
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more complex. This is because in the printer redesign problem, most parts of 
the printer system are fixed. The designer only wants to insert or reconfigure 
components at a few positions in the original system, in an effort to form a 
mechanical vibration absorber subsystem. This difference of embryos 
manifests the major difference of solving design and redesign problem using 
BG/GP approach. In a design problem, the approach should generate and 
evolve a design from scratch, so the embryo is left to be simple and trivial. 
While for the redesign problem, the major part of the system is required to be 
intact. The modifiable part of the system, on the other hand, becomes 
relatively minor part of the whole system. As a result, in a redesign problem, 
we are more apt to see a nontrivial embryo for the design, which means we are 
going to spend more time in analyzing and defining a suitable embryo in a 
redesign problem before we start a genetic programming run. 

The following cases were run on a single Pentium III 1GHz PC with 
256MB RAM. The GP parameters were as shown below. 

 

 
 
Three major code modules were created in our work. The algorithm kernel 

of HFC-GP was a modified version of an open software package developed in 
our research group -- lilgp. A bond graph class was implemented in C++. The 
fitness evaluation package is C++ code converted from Matlab code, with 
hand-coded functions used to interface with the other modules of the project. 
The commercial software package 20Sim was used to verify the dynamic 
characteristics of the evolved design. 

The GP program obtains satisfactory results on a Pentium-IV 1GHz in 
5~15 minutes, which shows the efficiency of our approach in finding good 
design candidates. 

 
 

Number of generations:  100  
Population sizes: 200 in each of 15 subpopulations  
Initial population:  half_and_half 
Initial depth:  3-6 
Max depth:  17 
Selection:  Tournament (size=7) 
Crossover:  0.9 
Mutation:  0.1 
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4.2.3. Results 
 
Ten runs of this problem have been done and most of the runs produced 

very good solutions. The fitness history of a typical run is shown in Figure 
4.15. Two competing design candidates with different topologies, as well as 
their performances, are provided in Figure 4.16 to Figure 4.21 (evolved 
components are circled). We can see from the output rotational position 
responses that they all satisfy the design specification of settling time less than 
70ms. Note that the time scale of the plots is 100 ms. 

One of the designs is shown in Figure 4.16. It is generated in only 20 
generations with 200 designs in each of 15 subpopulations, and has a very 
simple structure. Three elements, one each of 0-junction, C, and R, are added 
to modifiable site 1 of the embryo model (Figure 4.16). The performance of 
this model is shown in Figure 4.18. The position response for step function 
input quickly converges in about 50msec, which was an acceptable timeframe. 
Physical realization of the bond graph model is shown in Figure 4.17. A spring 
and a damper are added and coupled to the original printer subsystem as 
shown in Figure 4.13.  
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Figure 4.15. Fitness history for a typical printer drive redesign run. 

 

Figure 4.16. The evolved bond graph model I. 
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Figure 4.17. The physical realization of evolved bond graph model I. 

 

Figure 4.18. Simulation result of evolved bond graph model I. 
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Figure 4.19. The evolved bond graph model II. 

 

 

Figure 4.20. The physical realization of evolved bond graph model II. 
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Figure 4.21. Simulation result of evolved bond graph model II. 

Another design is shown in Figure 4.19. Four elements, 0-junction with C, 
1-junction with R are added to modifiable site 2 and one R is added to 
modifiable site 3. The physical realization of the design is shown in Figure 
4.20. Figure 4.21 displays the performance of this model. 

Table 4.2 represents the statistical results of 10 runs for the printer drive.  
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Table 4.2. Summary results of fitness for printer 
 

Run Fitness of Printer 

No. Distance Fitness 
1 15.076 0.985 

2 15.818 0.984 

3 15.188 0.985 

4 16.72 0.983 

5 15.053 0.985 

6 14.085 0.986 

7 15.122 0.985 

8 15.502 0.985 

9 15.132 0.985 

10 15.881 0.984 

Best 14.085 0.986 

Worst 16.72 0.984 

Avg 15.358 0.985 

S.D 0.6903 0.000669 

 
 

4.3. DISCUSSION 
 
Two design examples show the feasibility of the proposed BG/GP 

approach in various aspects. First, the two design examples belong to different 
physical domains. Filter design problem is the design of an electrical system, 
while printer redesign problem is basically a design problem for a mechanical 
vibration absorber. This fact simply demonstrates the mixed-domain design 
capability of BG/GP approach. Second, the result of the passive high-pass 
analog filter design demonstrates both effectiveness and efficiency of our 
approach combining bond graph and genetic programming. It shows that the 
approach is capable of evolving very satisfactory results in a moderate period 
of time on a single personal computer. To get the results shown in section 4.1, 
a typical program ran in a P-III 1GHz for 44.8 minutes. It took the genetic 
programming algorithm 100 generations to evolve it. This result is considered 
to be acquired in an efficient manner because for an evolutionary computation 
algorithm to evolve designs with similar complexity, it usually takes a much 
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longer time and consumes much more computational resources, such as 
clusters of computers (Koza et al. [1997a]). No one single factor stands out as 
the sole reason for this efficiency -- we believe several factors contribute. 
First, the bond graph representation of dynamic systems has strong topological 
expression capability. Second, the genetic operators used promote efficient 
generation and reconfiguration of bond graph topologies. Third, causality 
analysis of the bond graph model before evaluating design candidates in detail 
helps to discard a large volume of improper designs without requiring full 
evaluations, thus reducing computation time and resources. In summary, the 
printer redesign problem demonstrates the strong topological exploration 
ability of BG/GP approach. In a very short period of time, BG/GP approach 
successfully identified a variety of design candidates satisfying design 
specifications for further analysis and tradeoff by design engineers. 

 
 





 

 
 
 
 
 
 

Chapter 5 
 
 
 

EVOLUTIONARY SYNTHESIS OF MEMS 
 
 
Even though the successful case studies discussed in the previous chapter 

show that the BG/GP approach can be a useful tool for dynamic systems 
design, one is still driven to ask, “Why is mechanical systems design not more 
like VLSI design?” As is well known, Electronic Design Automation (EDA) 
has achieved tremendous success in both industry and academia. However, 
similar success has not been achieved in design automation of mechanical 
systems. One fundamental reason for this is that mechanical systems lack 
highly modularized components that have clearly specified interfaces among 
each other, as VLSI components do. Fortunately, mechatronic systems, which 
are increasingly replacing conventional mechanical systems, can transfer 
energy and information flows among their components through electric wires, 
thus can be modularized far more than mechanical systems. This feature 
makes mechatronic systems generally more amenable to design automation 
approaches and it is expected that next generation mechatronic systems will 
become increasingly modularized. Accordingly, Mechatronic Design 
Automation (MDA), as an emerging research area, holds great promise. In 
particular, Micro-Electro-Mechanical-Systems (MEMS), actually micro-
mechatronic systems, might be the first type of mechatronic systems to 
achieve success comparable to that already attained by EDA, due to its close 
affinity with VLSI. MEMS actually evolved from microelectronics and 
inherited many fabrication techniques of VLSI.  

This chapter starts with an analysis of both the challenges and promises of 
MEMS design and synthesis. A structured design automation method is 
strongly recommended, by which the design process is deliberately divided 
into several levels. Each level has its own design focus and objectives, as well 
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as its own design automation and optimization approaches. After following a 
top-down design process, a bottom-up verification process is also carried out 
to verify that at each level the design specifications are exactly satisfied. The 
BG/GP approach discussed in the previous chapters is very suitable to be 
extended and applied to the first level, or system-level design for MEMS. The 
feasibility of the extended BG/GP approach is demonstrated through an 
example of MEMS design in a particular domain of RF MEM devices, 
namely, micromechanical bandpass filter design level. Then at the second 
level, the physical layout synthesis problem is formulated as a constrained 
optimization problem and treated with a special type of constrained genetic 
algorithm presented by Deb, [2000]. Finally, some implementation 
considerations to extend the approach across various design levels are also 
identified and discussed. 

 
 

5.1. INTRODUCTION TO MEMS DESIGN AND SYNTHESIS 
 
Simply put, MEMS are electromechanical systems built on a very tiny 

length scale. Figure 5.1 shows two typical MEMS. The left one shows a gear-
mechanism with a length scale of millimeters, while the right one shows a 
combination of parallel comb-driven resonators with a length scale of 
micrometers.  

The comb driven resonators, which have a length scale of micrometers, 
can hardly be seen clearly by the naked eye. Design of systems on such a tiny 
scale is very difficult. The following is a paragraph quoted from Professor G. 
K. Fedder, a pioneer and specialist in MEMS design and synthesis. 

 
“No rapid design process is available today for MEMS… this is very 

expensive… Full verification of designs requires months of effort, and design 
optimization is not realistic in all but the simplest of cases.” 
 

–G.K. Fedder et al., 1999 
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Figure 5.1. Examples of MEMS. 

 
 

5.2. PROMISES AND CHALLENGES OF MEMS DESIGN 
AND SYNTHESIS 

 
Some people may be surprised that MEMS design and synthesis is so 

difficult. Their argument is that MEMS evolved from microelectronics, so 
should have similar design tools available. A strong relationship between Very 
Large Scale Integrated circuits (VLSI) and MEMS does exist. Actually, 
MEMS has borrowed or inherited the fabrication process of VLSI. As is 
known, VLSI has such successful and highly structured "toolkits" for design 
automation that the whole new industry of Electronic Design Automation 
(EDA) has been created based on them. It seems that a similar design 
automation approach for MEMS should be very promising. 

However, one major difference between VLSI and MEMS makes design 
of MEMS much more difficult. MEMS are intrinsically a hybrid system with 
both electrical parts and mechanical parts, while VLSI is basically a single-
energy-domain system comprised of only electronic or electrical components. 
The mechanical subsystems of MEMS give rise to many difficulties and 
design problems. For example, the interface between an electrical subsystem 
and a mechanical subsystem is still not well studied and definitely needs 
further investigation, because a large portion of design and fabrication 
problems arise in the interface zone where signal and energy transitions across 
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physical domains occur very frequently. Another example of a difficulty is that 
the mechanical subsystem often includes moving parts, like vibrating beams or 
shifting combs. These moving parts are usually more fragile than fixed parts 
under external pressure loads or environmental changes (e.g. temperature 
changes). Design of these moving parts requires considerations not required of 
electronic parts, and is more complicated. 

Due to the complexity and intricacy involved in MEMS design, designing 
MEMS still remains an art in most applications, requiring a large investment 
of human resources, time and money. Much of the investment is consumed in 
the iterative trial-and-error design process. As a result, we have only seen a 
handful of successful commercial MEMS products – those that the market has 
demanded in large quantities, including automotive accelerometers and 
gyroscopes, pressure sensors, ink-jet print heads and a few others. Prevalence 
of design and fabrication of MEMS application-specific integrated circuits 
(ASICs) analogous to electronic ASICs is still not seen.  

Despite the numerous difficulties presented in automated synthesis of 
macro-mechanical systems, MEMS holds the promise of being amenable to 
structured automated design due to its similarities with VLSI, provided that the 
synthesis is carried out in a properly constrained design domain. However, it 
turns out that translating the key insights of the successful silicon evolution 
into MEMS technologies is a much more challenging task than most people 
had expected. Major research topics to be addressed include: 

 
1. developing a broad base of building blocks in MEMS technologies so 

that huge networks of micro-devices can be assembled into arbitrary 
architectures with desirable functionalities,  

2. abstracting design hierarchies to stratify and conquer design 
complexity, thus making the design more amenable to an automated 
process,  

3. improving models of computation and extending current synthesis 
methodologies to facilitate generation of viable design candidates and 
smoother transitions from conceptual and embodied designs to 
process fabrication, and 

4. combining MEMS component layout extraction and lumped-
parameter bond graph (or other multi-domain) simulation and design 
synthesis to provide MEMS designers with VLSI-like environments 
enabling faster design cycles and improved design productivity. 
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This chapter seeks to partially address the above challenges, especially the 
first two. The proposed hierarchical and evolutionary design framework for 
MEMS aims to eliminate tedious and repetitive design tasks, facilitate 
hierarchical problem decomposition, and combine the power of multiple 
evolutionary computation algorithms working simultaneously to identify better 
product designs and process solutions. In particular, we divide design 
representations of MEMS design into two levels, the system-level behavioral 
macromodel and the detailed-level physical geometric layout model. At the 
system level, we use a combination of genetic programming and bond graph to 
automatically generate and search for viable design candidates represented by 
behavioral macromodels satisfying high-level design specifications. At the 
second detailed (layout) level, constrained genetic algorithms are used to 
optimize the geometric parameters that relate the physical device model to the 
behavioral macromodel and satisfy more detailed design constraints  

 
 

5.3. HIERARCHICAL MEMS DESIGN METHODOLOGY  
 
In MEMS, there are a number of levels of designs that need to be 

synthesized (Fedder and Jing [1999]). Usually the design process starts with 
basic capture of the schematic of the overall system, and then goes on through 
layout and construction of a 3-D solid model. So the first design level is the 
system level, which includes selection and configuration of a repertoire of 
planar devices or subsystems. The second level is 2-D layout of basic 
structures like beams to form the elementary planar devices. In some cases, if 
the MEMS is basically a result of a surface micro-machining process and no 
significant 3-D features are present, design at this level will end one cycle of 
design. More generally, modeling and analysis of a 3-D solid model for 
MEMS is necessary. However, even if we have obtained an optimized 3-D 
device shape, it is still very difficult to produce a proper mask layout and 
correct fabrication procedures. Automated mask layout and process synthesis 
tools would be very helpful to relieve designers from considering the 
fabrication details and allow them to focus on the functional design of the 
device and system (Ma and Antonsson [2000]). After a “top-down” design 
path, a “bottom-up” verification process usually follows to guarantee that at 
each design level the design specifications are met exactly as defined (Figure 
5.2). The ultimate goal is to develop tools for MEMS design to ensure first-
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pass success by having a well-defined “top-down” design path and “bottom-
up” verification path.  

 

 

Figure 5.2. Hierarchical design of MEMS. 

 
 

5.4. SYSTEM-LEVEL SYNTHESIS OF MEMS 
 
For system-level design, hand calculation is still the most popular method 

in current design practice. This is largely for the following reasons:  1) The 
MEMS systems we are considering, or designing, are relatively simple in 
dynamic behavior -- especially the mechanical parts -- largely due to 
limitations in fabrication capability. 2) There is no powerful and widely 
accepted synthesis approach to automated design of multi-domain systems. In 
addition, most MEMS system-level design is accomplished by modeling entire 
microelectromechanical systems as single behavioral entities having no lower 
hierarchical level in design. If there is any change in geometric parameters or 
topology, a whole new model must be created, and this substantially lengthens 
design cycles. 

The BG/GP approach, which combines the capability of genetic 
programming to search in an open-ended design space and the merits of bond 
graph for representing and modeling multi-domain systems elegantly and 
effectively, proves to be a promising method to do system-level synthesis of 
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multi-domain dynamical systems (Fan et al. [2001][2002]). At the first or 
higher level of system synthesis of MEMS, the BG/GP approach can help to 
obtain a high-level description of a system that assembles the system from a 
library of existing components in an automated manner to meet a predefined 
design specification. Then at the second or lower level, other numerical 
optimization approaches (Zhou, [1998]), as well as evolutionary computation, 
may be used to synthesize custom components from a functionality 
specification. It is worthwhile to point out that for the system designer, the 
goal of synthesis is not necessarily to design the optimum device, but rather to 
take advantage of rapid prototyping and "design reuse" through component 
libraries; while for the custom component designer, the goal may be maximum 
performance. These two goals may lead to different synthesis pathways as well 
as different results. Figure 5.3 shows a typical structured MEMS synthesis 
procedure; the BG/GP approach aims to solve the problem of system-level 
synthesis in an automated manner at the first level. 
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Figure 5.3. Structured MEMS design flow. 

However, in trying to establish an automated synthesis approach for 
MEMS, we should take cautious steps. Due to the limitations of fabrication 
technology, there are many constraints in design of MEMS. Unlike VLSI, 
which can draw on extensive sets of design rules and programs that 
automatically test for design-rule violations, the MEMS field lacks design 
verification tools at this time. This means that no design automation tools are 
available at this stage capable of designing and verifying any kind of 
geometrical shapes of MEMS devices. Thus, automated MEMS synthesis tools 
must solve sub-problems of MEMS design in particular application domains 
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for which a small set of predefined and widely used basic electromechanical 
elements are available, to cover a moderately large functional design space.  

 
 

5.4.1. Bond Graph 
 
The reason we used bond graph in research on MEMS synthesis is 

because MEMS are intrinsically multi-domain systems, unlike electronic 
systems. We need a uniform representation of MEMS so that designers can not 
only shift among different hierarchies of design abstractions but also can move 
around design partitions in different physical domains without difficulty. The 
bond graph is a modeling tool that provides a unified approach to the modeling 
and analysis of dynamic systems, especially hybrid multi-domain systems 
including mechanical, electrical, pneumatic, hydraulic components, etc. It is 
the explicit representation of model topology that makes the bond graph a 
good candidate for use in open-ended design search. Figure 5.4 shows an 
example of a single bond graph model that represents a resonator unit in any of 
three different application domains. It is also very natural to use bond graph to 
represent a dynamic system, such as a mechatronic system, with cross-
disciplinary physical domains and even controller subsystems (Figure 5.5). 
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Figure 5.4. One bond graph represents resonators in different application domains. 

 

 

Figure 5.5. Bond graph representing a mechatronic system with mixed energy domains 
and a controller subsystem. 
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5.4.2. Combining Bond Graph and Genetic Programming 
 
As was discussed in Chapter 3, the most common form of genetic 

programming (Koza [1994]) uses trees to represent the entities to be evolved. 
Defining a proper function set is one of the most significant steps in using 
genetic programming. It may affect both the search efficiency and validity of 
evolved results and is closely related to the selection of building blocks for the 
system being designed. In this work, the genotypes assembled from the 
function sets are constructors which, upon execution, specify a bond graph. In 
other words, when the genotype is executed, it generates the phenotype in a 
developmental manner. In this research, we have an additional dimension of 
flexibility in generating phenotypes, because bond graph are used as modeling 
representations for multi-domain systems, serving as an intermediate 
representation between the mapping of genotype and phenotype, and those 
bond graph can be interpreted as systems in different physical domains, chosen 
as appropriate to the circumstances. Figure 5.6 illustrates the role of bond 
graph in the mappings from genotypes to phenotypes and Figure 5.7 gives a 
particular example in the domain of electrical circuits.  

 

 

Figure 5.6. Genotype-Phenotype mapping. 
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(A) 
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(B) 

Figure 5.7. A) Example of genotype-phenotype mapping in the electrical circuit 
domain. B) The bond graph model realized to the phenotype - the electrical circuit 
model. 
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5.4.3. Filter Topology 
 
Automated synthesis of an RF MEM device, a micro-mechanical bandpass 

filter, is used as an example in this research (Wang and Nguyen [1999]). 
Through analyzing two popular topologies used in surface micromachining of 
micro-mechanical filters, we found that they are topologically composed of a 
series of concatenated Resonator Units (RUs) and Bridging Units (BUs) or 
RUs and Coupling Units (CUs). Figure 5.8 shows the layout of a typical 
resonator unit widely used in microsystems, along with its equivalent circuit 
representation and bond graph representation. Figure 5.9 and Figure 5.10 
illustrates the layouts and bond graph representations of two widely accepted 
filter topologies, labeled I and II. Their corresponding bond graph 
representations are also shown. 

 

 

Figure 5.8. Resonator unit and its representations as both bond Graph and Equivalent 
circuit. 
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Figure 5.9. MEM filter topology I. 
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Figure 5.10. MEM filter topology II. 

 
 

5.4.4. Realizable Function Set 
 
The most common form of genetic programming uses trees to represent 

the entities to be evolved. Defining of a proper function set is one of the most 
significant steps in using genetic programming. It may affect both the search 
efficiency and validity of evolved results and is closely related to the selection 
of building blocks for the system being designed. In this research, a basic 
function set and a higher-complexity, modular function set are presented and 
listed in Tables 5.1 and 5.2. Operators in the basic function set aim to 
construct primitive building blocks and assemble them into a system, while 
operators in the modular function set purport to utilize relatively modular and 
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predefined building blocks composed of primitive building blocks, assembling 
them into a system. Notice that numeric functions are included in both 
function sets, as they are needed in both cases. In other research, we 
hypothesize that usage of modular operators in genetic programming has some 
promise for improving its search efficiency (Seo et al. [2003]). However, in 
this research, we concentrate on another issue, proposing the concept of a 
realizable function set. By using only operators in a realizable function set, we 
seek to guarantee that the evolved design is physically realizable and has the 
potential to be manufactured. This concept of realizability may include 
stringent fabrication constraints to be fulfilled in some specific application 
domains.  

Examples of operators, namely insert_BU and insert_RU, are illustrated in 
Figures 5.11 and 5.12. Examples of basic operators are available in our earlier 
work (Fan et al. [2001]). Figure 5.11 explains how the insert_BU function 
works. A Bridging Unit (BU) is a subsystem composed of three capacitors 
with the same parameters, attached together with a 0-junction in the center and 
1-junctions at the left and right ends. After execution of the insert_BU 
function, an additional modifiable site (2) appears at the rightmost newly 
created bond. As illustrated in Figure 5.12, a resonator unit (RU), composed of 
one I, R, and C component all attached to a 1-junction, is inserted in an 
original bond with a modifiable site through the insert_RU function. After the 
insert_RU function is executed, a new RU is created and one additional 
modifiable site, namely bond (3), appears in the resulting phenotype bond 
graph, along with the original modifiable site bond (1). The newly-added 1-
junction also has an additional modifiable site (2). As components C, I, and R 
all have parameters to be evolved, the insert_RU function has three 
corresponding ERC-typed sites, (4), (5), and (6), for numerical evolution of 
parameters.  
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Table 5.1. Operators in Basic Function Set 
 

Basic Function Set 
add_C Add a C element to a junction 
add_I Add a I element to a junction 
add_R Add a R element to a junction 
insert_J0 Insert a 0-junction in a bond 
insert_J1 Insert a 1-junction in a bond 

replace_C Replace the current element with a C 

replace_I Replace the current element with a I 

replace_R Replace the current element with a R 

+ Sum two ERCs 
- Substract two ERCs 
enda End terminal for add functions 
endi End terminal for insert functions 
endr End terminal for replace functions 
erc Ephemeral Random Constant (ERC) 

Table 5.2. Operators in Modular Function Set 
 

Modular Function Set 

insert_RU Insert a Resonator Unit 

insert_CU Insert a Coupling Unit 
insert_BU Insert a Bridging Unit 
add_RU Add a Resonator Unit 

insert_J01 
Insert a 0-1-junction compound 
witelements 

insert_CIR Insert a special CIR compound 
insert_CR Insert a special CR compound 
Add_J Add a junction compound 
+ Sum two ERCs 
  - Subtract two ERCs 
endn End terminal for add functions 
endb End terminal for insert functions 
endr End terminal for replace functions 
erc Ephemeral Random Constant (ERC) 
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Figure 5.11. Operator to insert bridging unit. 

 

 

Figure 5.12. Operator to insert resonator unit. 
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BG/GP is a quite general approach to automate synthesis of 
multidisciplinary systems. Using a basic set of building blocks, BG/GP can 
perform topologically open composition of an unconstrained design. However, 
engineering systems in the real world are often limited by various constraints. 
So if BG/GP is to be used to synthesize real-world engineering systems, it 
must enforce those constraints. 

Unlike our previous designs with basic function sets, which impose fewer 
topological constraints on design, MEMS design features relatively few 
devices in the component library. These devices are typically more complex in 
structure than those primitive building blocks used in the basic function set. 
Only evolved designs represented by bond graph matching the dynamic 
behavior of those devices belonging to the component library are expected to 
be manufacturable under current or anticipated technology. Thus, an important 
and special step in MEMS synthesis with the BG/GP approach is to define a 
realizable function set that, throughout execution, will produce only 
phenotypes that can be built using existing or expected technology. 

As is already known, if we analyze the system of MEM filters of (Wang 
and Nguyen [1999]) from a bond graph viewpoint, we find that the filters are 
basically composed of Resonator Units (RUs) and Coupling Units (CUs). 
Another popular MEM filter topology includes Resonator Units and Bridging 
Units (BUs). A realizable function set for these design topologies often 
includes functions from both the basic set and modular set. In many cases, 
multiple realizable function sets, rather than only one, can be used to evolve 
realizable structures of MEMS. In this research, we used the following 
function set, along with traditional numeric functions and end operators, for 

creating filter topologies with coupling units and resonator units.  
 

}__,__,__,__

,__,1__,_{1

IaddfRaddfCaddfCUinsertf

RUinsertfJinsertftreef
 

 

}__,__,__,__

,__,1__,_{2

IaddfRaddfCaddfBUinsertf

RUinsertfJinsertftreef
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5.4.5. Design Embryo 
 
All individual genetic programming trees create bond graph from an 

embryo. Selection of the embryo is also an important topic in system design, 
especially for multi-port systems. In our filter design problems, we use the 
bond graph shown in Figure 5.13 as our embryo. 

 

 

Figure 5.13. Design embryo of the MEM filter. 

 
 

5.4.6. Adaptive Fitness Function 
 

Within the frequency range of interest, ],[ maxmin fff range  , 

logarithmically  sample 100 points. Here, rangef  = [0.1, 1000K] Hz. 

Compare the magnitudes of the frequency response at the sample points 
with target magnitudes, which are 1.0 within the pass frequency range of [316, 
1000] Hz, and 0.0 otherwise, between 0.1 and 1000KHz. 
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Compute their differences and get a sum of squared differences as raw 

fitness, defined as rawFitness . If the initial raw fitness value 
0

rawFitness < 

Threshold, change rangef  to ],[ *
max

*
min

* fff range   Usually rangerange ff *
. 

Repeat the above steps and obtain a new raw fitness value
1

rawFitness . We 

obtain a final raw fitness value as sum of the two, represented by 
10

rawrawraw FitnessFitnessFitness  . 

Then normalized fitness is calculated according to: 
 

)(5.0
raw

norm FitnessNorm
NormFitness   

 
The reason to use adaptive fitness evaluation is that after a GP population 

has reached a fairly high fitness value as a group, the differences of frequency 
responses of individuals need to be centered on a more constrained frequency 
range. In this circumstance, if there is not sufficient sampling within this much 
smaller frequency range, the GP may lack sufficient search pressure to push 
the search forward. The normalized fitness is calculated from the sampling 
differences between the frequency response magnitudes of the synthesized 
systems and the target responses. Therefore, we adaptively change and narrow 
the frequency range to be heavily sampled. The effect is analogous to 
narrowing the search window onto a smaller yet most significant area, 
magnifying it, and continuing to search this area with closer scrutiny.  

 
 

5.4.7. Experimental Setup 
 
We used a strongly-typed version of lilgp to generate bond graph models. 

The major GP parameters were as shown below. 
 

 

Population size:  500 in each of thirteen subpopulations 
Initial population:  half_and_half 
Initial depth:  4-6 
Max depth:  50    Max_nodes  5000  
Selection:  Tournament (size=7) 
Crossover:  0.9    Mutation:  0.3 
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Three major code modules were created in this work. The algorithm 
kernel of HFC-GP was a modified version of an open software package 
developed in our research group -- lilgp. A bond graph class was implemented 
in C++. The fitness evaluation package is C++ code converted from Matlab 
code, with hand-coded functions used to interface with the other modules of 
the project. The commercial software package 20Sim was used to verify the 
dynamic characteristics of the evolved design. 

 
 

5.4.8. Experimental Results 
 
The GP program obtains satisfactory results on a Pentium-IV 1GHz in 

1000~1250 minutes. Experimental results show the strong topological search 
capability of genetic programming and feasibility of our BG/GP approach for 
finding realizable designs for micro-mechanical filters. Although significant 
fabrication difficulty is currently presented when fabricating a micro-
mechanical filter with more than 3 resonators, it does not invalidate our 
research and the topological search capability of the BG/GP approach BG/BP 
shows potential for exploring more complicated topologies of future MEMS 
design and the ever-progressing technology frontiers of MEMS fabrication. 
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Figure 5.14. Fitness improvement curve. 

In Figure 5.14, K is the number of resonator units appearing in the best 
design of the generation on the horizontal axis. As fitness improves, the 
number of resonator units, K, grows – unsurprising because a higher-order 
system with more resonator units has the potential of better system 
performance than its low-order counterpart. The plots of corresponding system 
frequency responses at generations 27, 52, 117 and 183 are shown in Figure 
5.15. 
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Figure 5.15. Frequency responses of a sampling of design candidates, which evolved 
topologies (and associated parameter sets) with larger numbers, K, of resonators as the 
evolution progressed. All results are from one genetic programming run of the BG/GP 
approach. 

A layout of a design candidate with four resonators and three coupling 
units as well as its bond graph representation is shown below in Figure 5.16. 
Notice that the geometry of resonators may not show the real sizes and shapes 
of a physical resonator and the layout figure only serves as a topological 
illustration.  

Using the BG/GP approach, it is also possible to explore novel topologies 
of MEM filter design. In this case, we may not necessarily use a strictly 
realizable function set. Instead, a semi-realizable function set may be used to 
relax the topological constraints, with the purpose of finding new topologies 
not realized before but still realizable after careful design. Figure 5.17 gives an 
example of a novel topology for a MEM filter design evolved using such a 
semi-realizable function set. An attempt to fabricate this kind of topology is 
being carried out at the University of California, Santa Barbara [Shaw, 2004].  
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Figure 5.16. Layout and bond graph representation of a design candidate from the 
experiment, with four resonator units coupled by three coupling units. 
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Figure 5.17. A novel topology of MEM filter and its bond graph representation as 
evolved by the BG/GP approach using a semi-realizable function set. 

 
 

5.5. SECOND-LEVEL PHYSICAL LAYOUT SYNTHESIS 
 
For the second level -- two-dimensional layout designs of cell elements -- 

layout synthesis usually takes into consideration a large variety of design 
variables and design constraints. Layout synthesis automatically generates 
valid or optimized geometric sizing parameters for cell components, which in 
most cases are commonly used micromechanical devices with fixed 
topologies, according to engineering design objectives. In this research, the 
cell component is a resonator device in the MEMS domain. The design 
objectives come from either high-level specifications such as behavioral model 
parameters that need to be satisfied, or from layout-level objectives such as 
minimum areas occupied. Our approach is to model this lower-level design 
problem as a formal constrained optimization problem, and then solve it with 
powerful optimization techniques, resulting in a tool that automates the design 
synthesis of MEMS structures. Two categories of optimization techniques are 
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used: one category includes stochastic algorithms such as genetic algorithms, 
and the other category includes deterministic algorithms such as nonlinear 
programming. For both categories, the process of solving the optimization 
problem involves determining the design variables, the design constraints, and 
the design objectives.  

 
 

5.5.1. Formulation of Layout Synthesis as an 
Optimization Problem 

 
In this research, we decided to use 14 design variables for an example cell 

component, a folded-flexure comb-drive microresonator fabricated in a 
polysilicon surface microstructural process (Figure 5.18). Design variables and 
their constraints are listed as follows (Figure 5.19) (Fedder and Mukherjee 
[1996]): 
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Figure 5.18. A folded-flexure comb-drive microresonator fabricated in a polysilicon 
surface microstructural process A) Layout; B) Cross-section A-A’. (Fedder and 
Mukherjee [1996]). 

 

 

 
Figure 5.19. Major design variables for microresonators. (Fedder and Mukherjee 

[1996]). 
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Note that the first 13 design variables have units of m . The fourteenth 

design variable has units of volts. 

In addition, we assume dgwt c  in our design for simplicity. 

Some design variables are predefined for this technology: they are 11baw , 

14caw , 4 , 10N . 

There are also a number of design constraints for the microresonator cell 
component, including both geometric constraints and functional constraints. In 
this paper, without loss of generality, we consider the following constraints: 

 

 
 
Among them, the first three are linear constraints, and the fourth is a 

nonlinear constraint because the term dispx  is highly nonlinear. 

xxedisp KQFx /, , where gtNVF xe /12.1 2
0,  , 

2/ xxx BKMQ  . 

Suppose that in the system-level synthesis, we get a set of behavioral 
parameters for the cell component of a microresonator as  
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Then we have three additional equation constraints. Equations to relate the 

design variables and the three behavioral model parameters are as follows: 
 



Evolutionary Synthesis of MEMS 97

222

222

3

3

36414

36142

bbtt

bbtt

b

b
x

LLLL

LLLL

L

EtW
K







  

 
where  
 

3)/( bt WW  

 

]))(5.05.0[( 11

g

A
AAAB c

dbtsx    

 

btsx MMMM 35
12

4
1   

 
where 
 

ss AM  , tt AM  , bb AM   

 

sysysasas LwLwA 2  

 

cycat LwA 2 ,  

 

)22(28 battbbb wwLwwLA   

 
As an alternative, we can also put reformulations of these three constraint 

equations into our design objectives, expressing them as differences to be 
minimized. In that case, we actually deal with a multi-objective constrained 
optimization problem. We take the objective function with the following 
normalized Sum of Squared Error (SSE) format: 
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Finally, it is important to note the role of feature size in VLSI and MEMS 

design. Feature size, which is often represented as  , means the minimum 
size or size difference a particular design can achieve, based on specific 
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fabrication procedures. In addition, the actual sizes of geometric shapes should 

be integer multiples of the feature size  , such as  , 2 , 5 , 10 … etc. 

In this research, we set  = 0.09 m . 

While it is very difficult for many numerical optimization approaches (for 
example, gradient-based approaches) to include considerations of feature size 
constraints (Fedder and Mukherjee [1996]), it is quite convenient for genetic 
algorithms to do so. We need to modify the objective function only slightly, 
mapping real values of design variables to integer multiples of the feature size

  before using them in formulations of constraints and objectives. No 
modifications to the genetic algorithm are needed.  

 
 

5.5.2. Solving the Optimization Problem Using GA 
 
In trying to solve constrained optimization problems using genetic 

algorithms or classical deterministic optimization methods, penalty function 
methods have been the most popular approach, because of their simplicity and 
ease of implementation. In this chapter, we use a special constrained GA that 
exploits pair-wise comparisons in a tournament selection operator to devise a 
penalty function approach that does not require any penalty parameter (Deb 
[2000]). Careful comparisons among feasible and infeasible solutions are 
made so as to provide a search direction towards the feasible region. Once 
sufficient feasible solutions are found, a niching method (along with a 
controlled mutation operator) is used to maintain diversity among feasible 
solutions. This allows a real-parameter GA’s crossover operator to 
continuously find better feasible solutions, gradually leading the search nearer 
to the true optimum solution.  

The parameters for setting the constrained GA are as follows: 
 

 
 
In ten runs of the genetic algorithm using different random seeds, we 

obtained the sizing parameters and values of the objective function (to be 
minimized) listed in Table 5.3. It can be seen that during the ten GA runs 

Variable Boundaries:  Rigid               Population size: 500 
Total no. of generations: 100            Crossover probability: 0.9000 
Mutation probability (real): 0.15    Niching parameter: 0.9000 
Exponent (n for SBX): 2.00            Exponent (n for mutation): 50.00 
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using different seeds, the GA performs very steadily. Almost all runs achieved 
objective values, namely, the Normalized Squared Sum of Errors (NSSE), 
within the range of 1.0E-6. The mean value of NSSE is 3.4E-6, while the 
standard deviation of NSSE is 3.86E-6. The biggest NSSE is 1.4E-5. However, 
the normalized squared sum of errors of 1.4E-5 is still considered very good 
result. It also appears that there are many alternative and rather different ways 
in which parameters can be set and still produce behavior rather close to that 
desired. 

 
 
 



Zhun Fan 100 

Table 5.3. Layout parameters obtained in ten GA runs (different random seeds) 
 

Run No. 1 2 3 4 5 6 7 8 9 10 

Lb(m) 261.63 261.45 261.09 262.44 262.35 260.82 261.72 261.9 262.62 259.47 

Wb(m) 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 

Lt(m) 3.87 4.32 3.87 3.6 8.46 2.43 2.52 5.13 6.84 11.88 

Wt(m) 2.7 2.25 2.52 2.52 2.25 1.98 1.98 2.88 3.33 1.98 

Lsy(m) 3.69 2.88 2.07 4.41 1.98 1.98 3.6 1.98 2.79 2.79 

Wsy(m) 14.13 12.6 15.93 11.52 10.8 9.99 11.52 15.3 12.6 14.31 

Wsa(m) 18.63 18.18 10.98 11.7 11.34 11.16 10.17 11.7 14.58 10.8 

Wcy(m) 146.16 151.83 122.31 141.12 137.25 56.61 110.7 76.14 247.5 173.16 

Lcy(m) 15.66 20.79 23.85 17.37 23.85 30.69 22.68 21.96 8.91 20.79 

Lc(m) 199.26 187.29 174.06 202.41 181.89 154.71 188.19 162.09 161.91 183.6 

Wc(m) 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 

Lsa(m) 2.25 2.16 2.52 2.43 2.88 1.98 2.7 2.7 6.3 2.7 

Xo(m) 10.26 96.12 24.66 34.92 10.35 14.94 30.87 20.34 25.83 4.86 
V (volt) 66.06 70.29 75.51 64.98 72.27 85.14 69.93 81.09 81.27 71.55 
Obj. 
Value 4E-006 3E-006 3E-006 1E-006 1E-006 

1.4E-
005 2E-006 2E-006 1E-006 3E-006 
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The Figure 5.20 shows a typical GA run with Normalized SSE vs. 
Generation. It is noted that the logarithmic value of NSSE reduces at a nearly 
linear rate in accordance to generation number. At generation 91, the NSSE 
reduces to the value of 1.0E-6. 

 

 

Figure 5.20. Curve of normalized SSE vs. generation. 

 
 

5.6. CONCLUSION 
 
In MEMS, there are two or three levels of designs that need to be 

synthesized. Usually the design process must start with synthesis of a 
schematic design of the overall system, including topology and behavior-
related parameters, and then goes on through layout and construction of a 3-D 
solid model. So the first design level is the system level, which includes 
selection and configuration of a repertoire of planar devices or subsystems. 
The second level is 2-D layout of basic structures like beams to form the 
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elementary planar devices. In some cases, if the MEMS is basically a result of 
a surface-micro machining process and no significant 3-D features are present, 
design of this level will end one cycle of design. More generally, modeling 
and analysis of a 3-D solid model for MEMS is necessary.  

This chapter has suggested a design methodology for automatically 
synthesizing hierarchical designs for MEMS. While there has been much 
research using evolutionary computation techniques to synthesize MEMS (Ma 
and Antonsson [2000]) (Zhou and Agogino [2001]), this is the first work 
reported to seek to automate the hierarchical MEMS synthesis process in an 
integrated framework. Our first step is to synthesize system-level behavioral 
models using a combination of genetic programming and bond graph. Then as 
the second step, we use a constrained genetic algorithm to automatically 
optimize the geometric sizing parameters for the cell components. An example 
of MEM filter design with coupling of multiple microresonators is used to 
illustrate the approach. Extension of this work can lead to a composable design 
and synthesis environment for micromechatronic systems (Paredis et al. 
[2001]). In addition, target cascading in optimal system design needs to be 
investigated in depth to propagate the desirable top-level design specifications 
to appropriate specifications for the various subsystems and components in a 
consistent and efficient manner (Kim and Papalambros [2000]). More work is 
underway to improve the efficiency of genetic programming to explore 
topologically open-ended design spaces, and the robustness of the constrained 
genetic algorithm to solve real-world constrained optimization problems. 

The third level design calls for FEA (Finite Element Analysis). FEA is a 
computational method used for analyzing mechanical, thermal, electrical 
behavior of complex structures. The underlying idea of FEA is to split 
structures into small pieces and determine behavior of each piece. It is used for 
verifying results of hand calculations for simple models, but more importantly, 
for predicting behavior of complex models where 1st-order hand calculations 
are not available or insufficient. It is especially well suited for iterative design. 
As a result, it is quite possible that we can use an evolutionary computation 
approach to evolve a design using evaluation by means of FEA to assign 
fitness. Much work in this area has already been reported and it should also be 
an ideal analysis tool for use in the synthesis loop for final 3-D structures of 
MEMS. However, even if we have obtained an optimized 3-D device shape, it 
is still very difficult to produce a proper mask layout and correct fabricate 
procedures. Automated mask layout and process synthesis tools will be very 
helpful to relieve designers from having to consider the fabrication details, 
allowing them to focus on the functional design of the device and system 
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instead (Ma and Antonsson [2000]). Our long-time task of research is to 
include computational synthesis for different design levels, and to provide 
support for design engineers in the whole MEMS design process. 

 
 
 





 

 
 
 
 
 
 

Chapter 6 
 
 
 

ROBUST SYNTHESIS OF MEMS 
 
 
As we know from the last chapter, micro-electro-mechanical systems 

(MEMS) are tiny mechanical devices that are built upon semiconductor chips 
and are measured in micrometers. They usually integrate across different 
physical domains a number of functions, including fluidics, optics, mechanics 
and electronics, and are used to make numerous devices such as pressure 
sensors, gyroscopes, engines, and accelerometers etc. Many designs of MEMS 
are made through engineering experience and back of the envelop calculations, 
and are highly dependent on designers’ knowledge and experience.  

One reason for this is the complexity involved in the modeling, design and 
fabrication of MEMS – there are many constraints in designing and fabricating 
MEMS devices due to the limitations of current fabrication techniques. 
However, as process technologies become more stable, research emphasis can 
be shifted from developing specific process technologies towards the design of 
systems with a large number of reusable components, such as resonators, 
accelerometers, gyroscopes, and micro-mirrors. It greatly benefits the MEMS 
designers if the routine design of frequently used components can be 
optimized automatically by computer programs, while the designers can take 
more time in contemplating the more creative conceptual designs.  

It has been shown that performance of individual components influences 
the quality of the whole system. For example, frequency stability of a MEMS 
resonator can directly affect the quality of the MEMS RF system in which it 
serves as a component of a filter or an oscillator (Liu [2002]). Because micro-
resonators are basically 2.5 dimensional devices, design automation of micro-
resonators boils down to a layout synthesis problem, which has been carried 
out by many researchers. Some notable research uses deterministic numeric 
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approaches and meta-heuristic approaches such as evolutionary computation 
and simulated annealing. 

It is notable that with current micromachining techniques, the fabrication 
process variation in MEMS is inevitable when devices are miniaturized to the 
point of process limitations (Liu [2002]). For example, it is reported in (Hong 
[2000]) that the width of a typical suspension beam has a fabrication tolerance 
of about 10%. How to design MEMS that is most insensitive to fabrication 
process variation is therefore an important issue in MEMS design. This work 
also addresses this important issue, i.e. incorporating uncertainty in MEMS 
design through robust optimization. 

Many approaches exist in the literature to incorporate uncertainty in a 
design formulation. Taguchi (Taguchi, [1993]) introduced the concept of 
robust design to improve the quality of products with significant variations in 
their manufacturing process, by reducing the sensitivity of the design 
performance to possible sources of variations without an attempt to eliminate 
the sources. Robust design has been developed and applied in many areas. 
Some examples include robust optical coating design (Wiesmann [1998]), 
robust design of a vibratory micro gyroscope (Hwang [2003]), an active 
micro-mixer (Park [2008]), and a brushless DC motors (Low [2001]). 

In this chapter, we present a robust optimization approach for designing 
MEMS subject to process-induced geometrical uncertainties. In this approach, 
we first formulate the robust design problem as a multi-objective constrained 
optimization problem (Sedivec [2002]), and then solve it using an improved 
differential evolution (DE). DE is a strong and efficient optimization algorithm 
capable of handling nonlinear non-differentiable and multi-modal objective 
functions (Storn [1997]). A case study based on layout synthesis of comb-
driven micro-resonator shows that the robust designs nominally meet the target 
performance and are less sensitive to geometric uncertainties. It is also 
demonstrated that the algorithm proposed in this chapter can not only obtain 
better results than standard DE algorithm, but also outperform some other 
state-of-the-art algorithms in constrained optimization. 

The remainder of the chapter will be organized as follows. Section 6.2 
introduces the formulation of the general robust optimization problem that is 
used to formulate the MEMS layout synthesis problem in this paper. Section 
6.3 describes the method of modeling uncertainty in MEMS fabrication 
process and explains in details the improved differential evolution algorithm 
used to do the robust layout synthesis. Section 6.4 gives the description of the 
case study of comb-driven micro-resonator design and Section 6.5 presents 
experimental results. Section 6.6 concludes the chapter with a brief summary. 
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6.1. FORMULATION OF THE ROBUST 
OPTIMIZATION PROBLEM 

 
This paper considers the application of a general robust optimization 

problem that can be formulated as the following (Sedivec [2002]):  

Let  nxxxx ,, 21 

  be an array of design variables of a given design 

problem. We assume that the uncertainty, },,,{ 21 n 

 , can be 

characterized as a random vector with the following statistics 
 

10)( nx 


 (6.1) 

 
nxnT  )( 


 (6.2) 

 
where   is the covariance matrix and is positive semi-definite. If the 

uncertainties are uncorrelated then   is diagonal, otherwise the off-diagonal 
entries are non-zero when correlation exists. 

Given a function ),( 


xf  describing the performance of a design merit, 

the robust design problem that we aim to solve is to minimize the expected 
value of the squared error between the actual and target performance. We can 
write this as:  
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 subject to 0)( xgi


 (6.3) 

 

where f is the target performance, and the expectation is taken over the 

random vector


. In addition, 0)( xgi


represents a list of constraints to be 

satisfied. 
The problem posed in (6.3) is a difficult robust optimization problem to 

solve in general. To simplify the problem, we choose to approximate ),( 


xf

with a first order Taylor series expansion in 


 as  
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where )0,(xf


 is the gradient of ),( 


xf  with respect to 


. Using 

this approximation, we can expand the expression of  2),( fxf 


into  
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 (6.5) 
 
Taking the expectation of the above equation, we can get  
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 (6.6) 
 
By reducing equation (6.6), based on our assumptions about the mean and 

covariance of 


 according to (6.1) and (6.2), we obtain 
 

    )0,()0,()0,(),(
22

xfxffxffxf T 
   (6.7) 

 
Substituting the approximation in (6.7) back into the original design 

problem posed in (6.3) yields 
 

  )0,()0,()0,(min
2

xfxffxf T

x


   subject to 0)( xgi


 (6.8) 

 

To normalize the cost function, we decide to divide through by 2f . We 

then refer to the following expression as our robust design problem 
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 subject to 0)( xgi



 (6.9) 
 
It is now easy to see that the expression we want to minimize has two 

distinct terms. For notational convenience, we will label the two terms as  
 

2
)0,(

)( 






 


f

fxf
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 (6.10) 
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)0,()0,(
1

),(
2

xfxf
f

xD T 
   (6.11) 

 
With the above definitions the robust design problem posed in (6.9) 

becomes 
 

),()(min  xDxN
x


 subject to 0)( xgi


 (6.12) 

 

The first term, )(xN


, penalizes deviation of the nominal solution, 

)0,(xf


, from the target, f , while the second term, ),( xD


, penalizes the 

sensitivity of the design with respect to 


. The first term is a performance 
index, while the second term is a robustness index. Since there are two 
objectives in the formation of the cost function to be minimized, a trade-off is 
usually needed to be made by the designer to either focus on minimizing the 
squared error of the nominal design or on reducing the sensitivity. 

 
 

6.2. MODELING UNCERTAINTY IN MEMS 
FABRICATION PROCESS 

 
We assume that the uncertainty in the fabrication process is introduced by 

etch-induced or lithograph-induced variations in line-width, and the structure 
is etched uniformly.  

Figure 6.1 illustrates the two uniform etch scenarios on a structure – over-
etch and under-etch. Take the under-etch situation for example, after process 
variation is introduced, some design variables may increase (such as L1 and 
L2), other design variables (such as L3) may decrease, while some others may 
stay unchanged (such as L4). 

We can model the geometric process variations using a simple additive 
uncertain model  

 




 xx~  (6.13)
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where x~  is the uncertain (actual) design vector and for the above simple 

example  
4321

,,, LLLL  


. 

 

 

Figure 6.1. Under- and over-etch of a MEMS structure. 

Since the structure is etched uniformly, if we define   to be a normal 

random variable with zero mean and standard deviation of  , then we can 
write  

 

 


 (6.14) 

 

where  T0,1,1,1  ,  and is called a variation vector. Note that in the 

condition of under-etch, L1 and L2 increase, L3 decreases, and L4 is not 
changed. Also note that in this case,   is positive, the above facts can easily 

be verified by (6.14).  
Because   is a normal random variable, it can also be used to model the 

over-etch situation, in which   will take a negative value. 

According to (6.2), we can obtain 
 

  TT  2


 (6.15) 
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6.3. ROBUST OPTIMIZATION USING IMPROVED 

DIFFERENTIAL EVOLUTION ALGORITHM 
 
Many types of evolutionary approaches have been developed and 

implemented as design optimization tools. Genetic algorithms with a robust 
solution searching scheme was first presented by Tsutsui (Tsutsui [1997]), and 
later discussed by Deb (Deb [2005]). Jin & Branke made a thorough survey of 
applying evolutionary computation in uncertain environments (Y. Jin, [2005]). 
One advantage of using genetic algorithms is its convenience to solve the 
optimization problem with both discrete and continuous design variables. 
While it is very difficult for many numerical optimization approaches (for 
example, gradient-based approaches) to include considerations of feature size 
constraints in MEMS design (Fedder [1996]), it is quite convenient for genetic 
algorithms to do so. We need to modify the objective function only slightly, 
mapping real values of design variables to integer multiples of the feature size 
before using them in formulations of constraints and objectives. No 
modifications to the genetic algorithm are needed. In this research, we always 
set the feature size as 0.09 m . It is also very convenient for evolutionary 

computation to integrate integer design variables such as the number of comb 
fingers used in a micro-resonator.  

An improved DE algorithm based on Stochastic Ranking, IDE-SR was 
developed, and used to solve the robust layout synthesis problem in this work. 
The succeeding sections will first introduce the standard DE algorithm, and 
then explain the novel mechanisms developed in IDE-SR in details.  

 
 

6.3.1. Standard DE 
 
DE is one of the most recent EAs for solving real-parameter optimization 

problems. In each iteration, DE creates one new offspring individual by 
combining one parental individual and differences of several other individuals 
in the same population. The generated offspring individual replaces the 
parental individual only if it is better. In general, DE has three  parameters that 
can impact its performance significantly: scaling factor F , crossover control 

parameter CRp , and population size PN .  

The population of DE contains PN  n -dimensional individuals: 
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},,,{ ,,,2,,1,, GniGiGiGi xxxx 


 , PNi ,2,1  (6.16) 

 

where G  denotes the generation number. Because it is considered 
beneficial to the search process if the initial population can be statistically 
evenly distributed over the entire search space, each variable of all individuals 
in the initial population is randomly decided by a uniform distribution between 
lower and upper bounds predefined for each variable. 

At each generation, a target vector Gix ,


 is first selected randomly, and 

then a mutant vector Giv ,


 is created by disturbing the target vector using a 

mutation operation, after that, a trial vector Giu ,


 is formed by applying 

crossover operation between the target vector and mutant vector. Finally, a 
selection operation is executed between the trial vector and target vector to 
decide which vector goes to the next generation. The procedure is repeated 

PN  times to create all individuals for an offspring generation. The main 

procedure for DE is shown in Figure 6.2 and explained in detail as follows. 
 

1) Mutation Operation 

For each target vector Gix ,


 at generation G , an associated mutant vector 

},,,{ ,,,2,,1,, GniGiGiGi vvvv 


  can be created by using one of the mutation 

strategies. The most commonly used strategies are: 
 

“rand/1”: )( ,3,2,1, GrGrGrGi xxFxv


  

“best/1”: )( ,2,1,, GrGrGbestGi xxFxv


  

“current to best/1”: )()( ,2,1,,,, GrGrGiGbestGiGi xxFxxFxv


  

“best/2”: )()( ,4,3,2,1,, GrGrGrGrGbestGi xxFxxFxv


  

“rand/2”: )()( ,5,4,3,2,1, GrGrGrGrGrGi xxFxxFxv


  

 

where the indexes 1r , 2r , 3r , 4r  and 5r  represent the random and 

mutually different integers generated between 1 and PN , Gbestx ,


 is the best 

individual at generation G . Different strategies have different features for 
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different applications. It is also possible to use a combination of two or more 
strategies to better cope with certain application. 

 
2) Crossover Operation 

After mutation, a “binary” crossover operation is applied to form the final 

trial vector Giu ,


, according to its corresponding target vector Gix ,


 and mutant 

vector Giv ,


.  

 





 


,

,

,,

,,

,,
otherwisex

jjorprandifv
u

Gji

randCRGji

Gji 




 (6.17) 

 

where PNi ,,2,1  , nj ,,2,1  , index randj  is a randomly chosen 

integer within the range ],1[ n . By making use of randj , it can be guaranteed 

that the trial vector Giu ,


 will differ from its target vector Gix ,


 by  at least one 

parameter. 
 

3) Selection Operation 

After evaluating the target vector Gix ,


 and the corresponding trial vector 

Giu ,


, a “knock-out” competition is played between them and the vector with 

smaller objective function value is selected and added to the next population. 
 



 

 otherwisex

xfufifu
x

Gi

GiGiGi
Gi

,

,,,
1,

)()(





 (6.18) 

 
Because each individual has both value of objective function, and value of 

constraint violation for comparison, it is important to use some rules for the 
purpose of comparison. According to our empirical experience, different rules 
of handling constraints used can actually lead to very different results in 
constrained optimization algorithms. 
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6.3.2. Different Rules of Handling Constraints 
 
Very few constraint handling techniques have been reported in differential 

evolution. Two very important and similar techniques are proposed by 
Lampinen (J. Lampinen, [2002]) and Becerra and Coello (R. L. Becerra, C. A. 
C. Coello [2006]). Both techniques use three rules for the replacement during 
the selection procedure, and first two are the same. They are: 

 
A feasible individual is always better than an infeasible individual. 
If both individuals are feasible, the one with better value of the objective 

function is selected for the next generation. 
 
The third rule, regarding the situation when both individuals are 

infeasible, is different. In Lampinen’s approach, the comparison is made in the 
Pareto sense in the constraint violation space. It can be expressed as: 

 
If both individuals are infeasible, the parent is replaced if the new 

individual has lower or equal violation for all the constraints. 
 
In Becerra and Coello’s approach, a sum of normalized constraint 

violation is used for comparison, and can be written as: 
 
If both individuals are infeasible, the individual with less level of 

constraint violations is better. The level of constraint violation is 
measured with normalized constraints with the expression of 





constr

c c

c
j g

xg
xviol

1 max

)(
)( , where )(xgc are the violated constraints of 

the problem, and cgmax the largest violation of the constraint )(xgc

found so far. 
 
It is worthwhile to point out that both approaches bear some resemblance 

with an approach proposed by Deb (Deb K., [2000]), previously, even though 
Deb’s approach is not based in differential evolution. They key difference also 
lies in the comparison for the case of two infeasible individuals: Lampinen’s 
method makes the comparison in the Pareto sense, Deb’ method sums all the 
constraint violations and compares a single value, Becerra and Coello’s 
method makes normalization for the constraints violations before summing 
them together.  
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Like selection of mutation strategies, selection of proper constraint 
handling techniques is highly dependent on applications. In our work, Becerra 
and Coello’s approach was selected because it outperformed the others. 

 

 

Figure 6.2. Pseudo-code of iterative search procedure of DE. 

 
 

6.3.3. IDE-SR: An Improved Differential Evolution Based on 
Stochastic Ranking 

 
The ‘rand/1’ mutation strategy used in standard DE provides no 

information of direction towards the global optimum. If the information of 
direction can be obtained and utilized in the search process, the performance 
of the algorithm has a potential to be improved. To avoid the search to be 
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stuck in local minimum, however, the direction information should not be 
local, but global. To define a ‘global direction’ information for the whole 
population is not an easy task, especially when each individual has actually 
two features to compare with others in a constraint optimization problem – one 
feature is objective value, the other is level of constraint violation. How to 
optimally balance them in the comparison procedure presents a challenge. 

Stochastic Ranking (SR) (T. P. Runarsson and X. Yao, [2000]) provides a 
convenient and powerful mechanism to balance the dominance in ranking the 
whole population with both objective value and constraint violation as 
comparison criteria. The pseudo code of SR is provided in Figure 6.4.  

The improved DE algorithm, IDE-SR is designed with a focus on a 
modified mutation strategy, which can be described in more details as the 
following: for generation of trial vectors, the whole population is first made to 
undergo a stochastic ranking procedure. Then the ranked population is divided 
into two parts – upper part and lower part. The upper part comprises of the 
‘better’ individuals who have been ranked high after stochastic ranking 
procedure. For each individual trial vector, the upper part contributes two 
‘good’ randomly selected individuals, and the lower part contributes one 
randomly selected individual that is ‘less-good’. The three individuals then 
make a mutation operation according to ‘rand/1’ strategy, with the difference 
vector obtained through extracting one ‘good’ individual with the ‘less-good’ 
individual. It is notable that in this way the difference vector will always be 
directed towards the upper part of the population, thus leading the population 
to search upwards (refer to Figure 6.3). This procedure is repeated until the 
whole population of trail vectors is obtained. The rest of the algorithm is 
almost the same as standard DE, with the exception that the scaling factor F 
can become a random variable as a variation of the algorithm. The overall 
procedure of the IDE-SR algorithm can be illustrated using the pseudo-code 
listed in Figure 6.5.  
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Figure 6.3. Illustration of the modified mutation strategy in IDE-SR. Note that the 
population ranked by SR is divided into upper part Q1 and lower part Q2. Difference 
of one randomly selected individual r2 from Q1 and one randomly selected individual 
r3 from Q2 form a differential vector pointing towards r2.  

 
 

6.4. CASE STUDY  
 
The same case study used in Chapter 5 was carried out to verify the 

effectiveness of the above robust optimization method using the improved 
differential evolution IDE-SR. The design problem is a comb-drive micro-
resonator, with fifteen mixed-type design variables. Unlike in previous 
chapter, this time altogether twenty four design constraints are considered, 
both linear and nonlinear. The following list gives all the constraints 
considered in the case study. 

 

:)(1 xg 0)22(  ccy wgL
 

:)(2 xg 070022  ccy wgL
 

:)(3 xg 0)22(  tbsy wLL
 

:)(4 xg 070022  tbsy wLL
 

r1 r2 

r3 

   321 , rrNr  

Q2 

Q1 
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:)(5 xg 0)22243( 0  cacycsyt wwxLwL
 

:)(6 xg 070022243 0  cacycsyt wwxLwL
 

:)(7 xg 0200)( 0  dispc xxL
 

:)(8 xg 0)(4 0  dispc xxL
 

:)(9 xg    0212  cyccc LgNWN
 

:)(10 xg   0700212  cyccc LgNWN
 

:)(11 xg   040  dispxx
 

:)(12 xg 02000  dispxx
 

:)(13 xg   02/)(4  bsydispt WWxL
 

:)(14 xg 02002/)(  bsydispt WWxL
 

:)(15 xg 02/)2(2  sabasy WWL
 

:)(16 xg 02002/)2(  sabasy WWL
 

:)(17 xg 02  dispx
 

:)(18 xg 0100 dispx
 

:)(19 xg 05 Q  
:)(20 xg 051  eQ  

:)(21 xg 0/  bdisp Lx
 

:)(22 xg 01.0/ bdisp Lx
 

:)(23 xg 0/,  yye KK
 

:)(24 xg 03/1/, yye KK
 

 
More details of the equations governing the variables in the constraints 

please refer to (Fan Z., [2009]). The design objective of comb-driven micro-
resonator is to robustly match the natural frequency of the comb-driven micro-
resonator with a predefined natural frequency. In other words, in this particular 

case study, the definition of )0,(xf


 in equation (6.10) can be expressed as 

 

)0,()0,( xxf n

   (6.19) 
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f can be predefined by users. In this paper, without loss of generality, 

KHzf 200 . 

 

 

Figure 6.4. Pseudo-code of stochastic ranking (T. P. Runarsson and X. Yao, [2000]). 
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Figure 6.5. Pseudo-code of iterative search procedure of improved DE based on SR: 
IDE-SR.  

 
 

6.5. EXPERIMENTS 
 
As is shown in (6.10) and (6.11), there are two design objectives to 

minimize in the robust design problem. The first objective relates to the design 
performance, while the second objective reflects robustness of the design. To 
verify that involving the robustness consideration in the optimization process 
can help to reduce the sensitivity of the resulting designs to variations of the 
design variables, we carry out a comparative study. In the first set of runs of 
IDE-SR, we only consider the first design objective, i.e. the performance 
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objective. In the second set of runs of IDE-SR, we consider both performance 
objective and robustness objective. 

To verify that the performance of IDE-SR is competitive, a comparison 
study was also made among IDE-SR, standard DE and two other state-of-the-
art approaches in constrained evolutionary approaches. 

 
 

6.5.1. Results of Non-Robust Layout Synthesis 
 
In the first set of runs, we only considered the performance objective

)(xNfobj


 as described in (10). Ten runs of experiments using IDE-SR 

algorithm were repeated with KHzf 200 . The parameters of the 

constrained genetic algorithm are listed in Table 6.1.  
 

Table 6.1. List of Parameters Used by IDE-SR 
 

Symbol Meaning of Parameter Value 

NP Population size 100 

pf A parameter used in stochastic ranking 0.45 

 Mean value of the randomized scaling factor 1 

 Standard deviation of the randomized scaling factor 0.25 

pCR Crossover probability 0.8 

y Size of the upper part of the population 0.7 
 
The experimental data was obtained in Table 6.2. It is noted that ten 

results represent ten different designs that all satisfy the design constraints, and 

have natural frequencies very closely matching to the target KHzf 200 .  
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Table 6.2. Results of non-robust layout synthesis of comb-driven micro-resonator 
 

RUN NO. 1 2 3 4 5 6 7 8 9 10 

Lb(m) 305.73 323.37 316.44 329.76 294.66 274.77 320.4 306.63 299.97 290.88 

Wb(m) 15.75 20.07 16.56 19.8 19.62 17.1 20.07 17.82 15.84 15.57 

Lt(m) 198.36 201.78 134.91 190.17 199.71 181.71 201.33 188.37 133.38 121.59 

Wt(m) 14.49 2.07 15.48 2.07 2.07 9 2.07 2.07 15.21 14.85 

Lsy(m) 59.49 47.79 36.09 36.09 104.85 119.34 53.64 67.86 69.57 88.29 

Wsy(m) 18.27 10.08 202.95 42.3 16.47 70.47 10.53 50.4 60.57 112.32 

Wsa(m) 33.48 15.93 10.08 10.08 67.32 93.33 27.36 34.47 43.47 31.5 

Wcy(m) 10.44 10.08 12.51 11.43 10.08 10.08 10.17 10.08 47.16 15.12 

Lcy(m) 652.68 644.94 657.27 253.35 314.28 617.67 607.41 636.93 649.89 649.44 

Lc(m) 12.06 12.06 12.06 12.06 12.06 12.06 12.15 12.06 29.34 12.15 

Wc(m) 10.17 12.33 9.36 10.62 9.63 9.9 11.97 13.77 8.82 9 

Lsa(m) 398.07 399.51 382.59 29.07 104.85 20.34 239.94 27.99 244.08 96.03 

Xo(m) 6.03 6.03 6.03 6.03 6.03 6.03 6.12 6.03 21.51 6.03 

V (volt) 50 50 50 50 50 50 49.99 50 49.99 49.99 

NC 33 27 36 22 26 33 27 24 38 37 

|fx-200k| 
|  200k| 

8.55E-04 5.99E-04 2.49E-04 3.30E-04 3.24E-04 3.85E-04 3.34E-04 1.57E-04 2.20E-04 1.29E-04 

D(x, ) 1.31E-02 7.99E-03 6.96E-03 9.37E-03 7.31E-03 6.37E-03 8.35E-03 8.03E-03 8.26E-03 3.22E-03 
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6.5.2. Results of Robust Layout Synthesis 
For robust layout synthesis of the comb-driven micro-resonator, we need 

to consider both objectives in (6.10) and (6.11). To calculate the robustness 
index in (6.11), we need to know the variation vector according to (6.15). By 
examining the layout schematic of the comb-driven micro-resonator, we found 
that the variation vector can be set as follows: 

 

 001110111111010  .  

 
According to (6.15), to obtain robustness index in (6.11), we also need to 

make an assumption about . In this paper, we assume m 1.0 .  

In the robust layout synthesis, we took the robustness index as the 

optimization objective ),(  xDfobj


. In addition, another constraint

60.1)(  exN


 is added to the constraint list. Ten runs of experiments using 

IDE-SR algorithm were repeated, with the same parameters defined in Table 
6.1. The experimental data was listed in Table 6.3. It can be seen from Table 

6.2 and Table 6.3 that the values of the objective ),( xD


are smaller in the 

case of robust designs than those in the case of non-robust designs. The next 

section demonstrates that reduced objective values of ),( xD


lead to more 

robust designs.  
 



Zhun Fan 124 

Table 6.3. Results of robust layout synthesis of comb-driven micro-resonator 
 

RUN NO. 1 2 3 4 5 6 7 8 9 10 

Lb(m) 305.73 323.37 316.44 329.76 294.66 274.77 320.4 306.63 299.97 290.88 

Wb(m) 15.75 20.07 16.56 19.8 19.62 17.1 20.07 17.82 15.84 15.57 

Lt(m) 198.36 201.78 134.91 190.17 199.71 181.71 201.33 188.37 133.38 121.59 

Wt(m) 14.49 2.07 15.48 2.07 2.07 9 2.07 2.07 15.21 14.85 

Lsy(m) 59.49 47.79 36.09 36.09 104.85 119.34 53.64 67.86 69.57 88.29 

Wsy(m) 18.27 10.08 202.95 42.3 16.47 70.47 10.53 50.4 60.57 112.32 

Wsa(m) 33.48 15.93 10.08 10.08 67.32 93.33 27.36 34.47 43.47 31.5 

Wcy(m) 10.44 10.08 12.51 11.43 10.08 10.08 10.17 10.08 47.16 15.12 

Lcy(m) 652.68 644.94 657.27 253.35 314.28 617.67 607.41 636.93 649.89 649.44 

Lc(m) 12.06 12.06 12.06 12.06 12.06 12.06 12.15 12.06 29.34 12.15 

Wc(m) 10.17 12.33 9.36 10.62 9.63 9.9 11.97 13.77 8.82 9 

Lsa(m) 398.07 399.51 382.59 29.07 104.85 20.34 239.94 27.99 244.08 96.03 

Xo(m) 6.03 6.03 6.03 6.03 6.03 6.03 6.12 6.03 21.51 6.03 

V (volt) 50 50 50 50 50 50 49.99 50 49.99 49.99 

NC 33 27 36 22 26 33 27 24 38 37 

|fx-200k| 
| 200k| 9.981E-04 9.997E-03 9.998E-04 9.888E-04 9.990E-04 9.943E-04 9.946E-04 1.0E-03 9.999E-04 9.999E-04 

D(x, ) 1.691E-03 9.277E-04 1.786E-03 2.011E-03 2.197E-03 2.201E-03 1.001E-03 9.682E-04 1.935E-03 2.096E-03 
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6.5.3. Comparison of Robust and Non-Robust Results 
 
It is noted that in the robust design process, we minimized the robustness 

objective. To verify doing this help the resulting designs to increase their 
insensitivity to geometric uncertainties, we designed a comparative study as 
the following: we put two designs in one group for comparison, by selecting 
one design from the robust design group, and the other from the non-robust 
design group. We then ran Monte Carlo simulations to model uncertain 
MEMS fabrication processes. We introduced the same variations to the design 
variables of both designs to emulate uniform over-etch and/or under-etch 
situations. To represent the variations in the process we generated 10,000 
Gaussian random vectors with a standard deviation,  of 0.1 m . The natural 

frequencies of both the robust design and the non-robust design were 
calculated, and histograms of them plotted as shown in Figure 6.6. 

According to Figure 6.6, we can see that robust design has a much tighter 
distribution of natural frequencies, and therefore is much less sensitive to 
geometric variations. Tests of other design candidates from both robust design 
group and non-robust design group revealed similar results. Figure 6.7 and 6.8 
drawn with SUGAR (N. Zhou, [1998]) show layout of two exemplar non-
robust and robust designs respectively. 
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Figure 6.6(a) histogram of natural frequencies of the non-robust design of comb-driven 
micro-resonator subject to uncertainties. 

 

Figure 6.6(b) histogram of natural frequencies of the robust design of comb-driven 
micro-resonator subject to uncertainties. 
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Figure 6.7. (a) Layout of non-robust solution I with natural frequency of 200KHz. 

 

Figure 6.7. (b) Layout of non-robust solution II with natural frequency of 200KHz. 
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Figure 6.8. (a) Layout of robust solution I with natural frequency of 200KHz. 

 

Figure 6.8. (b) Layout of robust solution II with natural frequency of 200KHz. 
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6.5.4. Comparison of Different Optimization Algorithms 
 
A comparison study was also made to compare the performance of IDE-

SR with standard DE and two other state-of-the-art evolutionary constraint 
optimization algorithms, ISRES (T. P. Runarsson and X. Yao, [2000]) and 
NSGA-II (K. Deb, [2002]). For each algorithm, 50 independent runs were 
carried out, with the best, mean, worst, and standard deviation of obtained 
results all recorded in Table 6.4 for comparison purpose. Bolded values in 
Table 4 indicate the best results among different algorithms. 

 
Table 6.4. Comparing IDE-SR with other algorithms 

 

  DE ISRES NSGA-II IDE-SR 

best 1.74E-03 9.68E-04 1.00E-03 9.277E-04 

mean 2.02E-03 1.69E-03 1.61E-03 1.569E-03 

worst 2.46E-03 2.25E-03 2.94E-03 1.823E-03 

SR 50(50) 45(50) 50(50) 50(50) 

PS 100 200 100 100 

SR: success rate; PS: population size. 
 
It is clear from Table 6.4 that IDE-SR outperforms DE, ISRES and 

NSGA-II in terms of best, mean and worst results. The most important 
criterion to be compared is the best result, because usually we choose the 
design vector related to the best result to make the design. It is also important 
to note that DE, NSGA-II, and IDE-SR all performed very stably, and could 
successfully find feasible solutions that satisfy all the constraints every time 
out of 50 independent runs. Due to their stochastic nature, evolutionary 
algorithms cannot guarantee convergence every time. But the above three 
algorithms show very good consistency in this particular problem. ISRES 
however, failed to do so in 5 times out of 50 independent runs. It is also 
notable that if we use a population size of 100 in ISRES, it could not find 
feasible solution. The reported results for ISRES were obtained with a 
population size of 200, which is double the population size used in other 
algorithms.  

Figure 6.9 shows the curves of objective values vs. generation number 
recorded in one exemplar evolutionary process of both algorithms IDE-SR and 
standard DE. It can be seen that IDE-SR has a stronger capability to find better 
objective values. 
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Figure 6.9. Curves of objective value vs. generation of both DE and IDE-SR. 

 
 

6.6. CONCLUSION 
 
Layout synthesis is an important stage for structured design of MEMS, 

after the stage of the system-level design. Due to uncertainty induced in the 
fabrication process, robust synthesis becomes an important issue and is 
addressed in this chapter. The chapter develops a novel constrained 
optimization algorithm, IDE-SR, which is an improved differential evolution 
based on stochastic ranking, and reports a method of robust layout synthesis of 
MEMS based on it. The method transforms the robust design problem into a 
multi-objective constrained optimization problem, and then solves it by using 
IDE-SR. Simulation results based on the case study of layout synthesis of a 
comb-driven micro-resonator show that the  design solutions obtained using 
the method proposed in this chapter are much less sensitive to process induced 
uncertainties. The work also shows that the IDE-SR algorithm can not only 
obtain better results than standard DE algorithm, but also outperform some 
other state-of-the-art evolutionary constrained optimization algorithms. As 
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next step of the work, it will be very interesting to fabricate the synthesized 
designs and test their physical performance. 

 
 





 

 
 
 
 
 
 

Chapter 7 
 
 
 

BODY-BRAIN COEVOLUTIONARY SYNTHESIS 

OF MECHATRONIC SYSTEMS 
 
 
In order to support the concurrent design processes of mechatronic 

subsystems, unified mechatronics modeling and cooperative body-brain 
coevolutionary synthesis are developed. In this paper, both body – passive 
physical systems, and brain – active control systems, can be represented using 
the bond graph paradigm. Bond graph are combined with genetic 
programming to evolve low-level building blocks into systems with high-level 
functionalities including both topological configurations and parameter 
settings. Design spaces of coadapted mechatronic subsystems are 
automatically explored in parallel for overall design optimality. A quarter-car 
suspension system case study is provided. Compared with conventional design 
methods, semi-active suspension designs with more creativity and flexibility 
are achieved through this approach. 

 
 

7.1. INTRODUCTION 
 
Mechatronics is a natural stage in the evolution of modern products, many 

containing components from different engineering domains, such as 
mechanical, electrical, and control systems. At early design stages, important 
decisions need to be made to determine which portions of an engineering 
design problem are best solved in each of these domains given the current state 
of technology. Decisions required include which parts should be designed as 
mechanical subsystems, which should be electronic, where actuators and 



Zhun Fan 134 

sensors should be located, and how these subsystems should combine to 
achieve overall design optimality. In concurrent engineering practice, 
mechatronics represents a synergistic system design philosophy to optimize 
the system as a whole simultaneously (Isermann R. [2003]). However, this 
ideal integrated design philosophy is still not formally carried out in practice 
due to the lack of system-level support for mechatronics conceptual design. 
First, design in different engineering disciplines in general speaks different 
languages. There is the lack of a unified approach that integrates design and 
synthesis across multiple engineering domains. Second, there is the lack of a 
concurrent design process across mechatronic subsystems. Mechatronic 
systems are controlled electro-mechanical systems. In many cases, the time 
when a mechanical or electro-mechanical design is specified is also the time 
when many restrictions are inherently placed on the control system design. 
This may not lead to overall design optimality since subsystems in different 
domains are not designed concurrently. Third, there is the challenge of 
exploring various design alternatives automatically and creatively. While 
computers have a definite advantage over humans in memory, accuracy, 
speed, and storage capability, their inability to make informed and intuitive 
decisions causes many to believe that they are not capable of embodying the 
innovative process of design synthesis. This perspective, however, has 
gradually changed with advances in the establishment of formalized design 
representation and design synthesis as computational search of the design 
space (Campbell M, [2000]). 

Recently, there have been substantial successes in research on 
computational synthesis, especially using evolutionary algorithms (Bentley 
PJ., [1999]) (Lipson H, [2003]), to address some of the problems and 
challenges mentioned above. Among various approaches, genetic 
programming is of particular interest due to its great potential for open-ended 
search of both design topologies and associated parameters. Much research has 
been carried on about design automation of analog electrical circuits using 
schematic diagrams (J. R. Koza [1997a]), controller design using block 
diagrams (J. R. Koza [1999b]), and mechatronic design using bond graph 
(Goodman E. D. [2000]). While engineering systems in different domains can 
be described using different model representations, for mechatronic product 
design involving multiple domains, a unified formal model representation is 
more desirable. The bond graph, a domain-neutral formal schematic paradigm, 
has gained wide recognition for representation and analysis of energetically 
coupled physical systems. Bond graph modeling maintains power conservation 
and explicitly shows interactions among a succinct set of elements, which 
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allows for graphical analysis and readily leads to computer-based 
manipulation. 

Exploring multiple design choices for passive mechatronic systems 
combining bond graph and genetic programming has been initiated and 
explored for design of analog filters, printers, MEMS, etc, which are described 
in previous chapters. Since in many cases mechatronic systems also 
incorporate active control elements, bond graph modeling has been broadened 
to represent controller schemes as well, thus unifying active control systems 
and passive physical systems for whole system design (Wang, J. 
[2003][2004]). Built upon the previous work and inspired by symbiosis 
phenomena from nature, a useful extension to the more traditional 
evolutionary algorithms, coevolution, is applied to this work. This approach 
cooperatively evolves coadapted mechatronic subsystems in parallel and 
generates alternative design concepts that are comparable or even superior to 
those generated using conventional methods, with more flexibility and better 
performance. 

The remaining sections are arranged as follows. Section 7.2 provides the 
foundation for unified physical systems modeling and control using bond 
graph. Section 7.3 explains how computational synthesis of mechatronic 
systems is achieved by combining bond graph and genetic programming. 
Section 7.4 illustrates the coevolutionary synthesis framework for integrated 
mechatronics design. A quarter-car suspension design case study is given in 
Section 7.5. Conclusions are provided in Section 7.6, highlighting the value 
and future plans for the proposed approach. 

 
 

7.2. UNIFIED PHYSICAL SYSTEMS MODELING 
AND CONTROL 

 
While bond graph were developed mainly to study energy interaction of 

passive physical systems, they are seldom applied to the synthesis of control 
systems due to the richness and completeness of well-established control 
system design methodologies in pure mathematical settings. However, it is 
argued that the mathematical control methods distill out system-specific 
features and physical insight that could have aided in the design procedure 
using engineering intuition (Harman WW and Lytle DW, [1962]). The 
postulate of “physical equivalence” states that for every controlled system 
there exists a pure physical system with no controller whose dynamical 
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interaction behavior is identical; thus, it is possible to describe a controlled 
system as an equivalent pure physical system. In other words, all a controller 
can do is to alter the behavior of one physical system such that it emulates the 
behavior of another physical system, provided that ideal actuators and sensors 
can be placed at any point in the original physical system (Hogan N, [1985]). 
Accordingly, controller design based on physical models is proposed, where 
engineering insight from the physical domain is brought to bear directly onto 
the control design problem (Sharon A, Hogan N, and Hardt DE. [1991]), 
(Gawthrop PJ. [1995]).  

According to the definition of network passivity (Newcomb RW, [1966]), 
a passive system only dissipates or stores energy, while an active system relies 
on the use of an external power source, together with sensors, controllers and 
actuators within a physical structure, to provide energy to the system. Based 
on whether the actuator and the sensor are located at the same place, control 
methods can be classified as collocated control and non-collocated control.  

Collocation means to physically locate the sensors and the actuator in the 
same position such that the effort and flow variables are energetically 
conjugated. Non-collocated control means to locate the sensor and the actuator 
in different positions, so that there is a structural resonance between the sensor 
and the actuator. Collocated control is of particular interest when using bond 
graph, since it can be represented as an effort-flow one-port element, including 
all sensor, controller and actuator effects, in the bond graph paradigm. The 
active effort source is generated by the corresponding flow signal 
measurement through controller modulation, and vice versa. One simple 
example of collocated control can be illustrated in Figure 7.1. One the left 
hand side, the bond graph represents a closed-loop feedback control system 
with plant, sensor, controller and actuator, and its block diagram 
representation is shown on the right hand side. It is recognized that bond graph 
are condensed block diagrams, since there is a close correspondence between 
bond graph and their equivalent block diagrams (Karnopp DC, Margolis DL, 
Rosenberg RC, [2000]).  
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Figure 7.1. Controller as impedance in bond graph and block diagrams. 

In the physical domain, all one-port elements, such as dampers and 
springs, are positive real, thus passive. Collocated controls with positive-real 
elements are intrinsically passive. They provide negative feedback and hence 
lead to better stability than use of non-collocated control, with respect to 
uncertainty (Preumont A, [2002]). A collocated control structure with positive-
real elements may be implemented either passively or actively. This allows for 
an active implementation of a passive control law. Collocated controls with 
negative-real elements are positive feedback control methods. They can only 
be implemented actively since there is no physical correspondent of negative 
one-port elements. 

Non-collocated control can also be represented as a one-port element in 
bond graph, while the effort and flow variables associated with one power 
bond are actually separated to appear at two different physical locations for 
measurement and actuation. 

In order to design either a collocated or non-collocated control in the 
physical domain, the controller can be represented by various combinations of 
bond graph C, I, and R elements, to represent various control schemes, such as 
P, PI, PD, PID controllers or lead and lag compensators. This approach 
facilitates separation of controller representation issues from implementation 
issues, thus providing guidance at the high-level design stage in selecting the 
proper overall system architecture for a given design task.  

Table 7.1 shows part of the controller schemes in bond graph generating 
controlled effort from flow input, together with their corresponding block 
diagrams and transfer functions. The various controller schemes are typical 
modular structures consisting of basic bond graph elements. 
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Table 7.1. Controller schemes in bond graph and block diagrams 
 

 
 
Figure 7.2 demonstrates the use of bond graph as a unified mechatronics 

modeling tool. The apparently different systems in different domains, when 
represented in bond graph, are the same (Broenink, [1999]). The bond graph 
diagram shows a one-junction joining I, R, and C elements. It is a second-order 
system functioning as a resonator. This resonator can be mapped to a 
mechanical realization using a spring, a damper and a mass; or to an electrical 
realization using a capacitor, a resistor and an inductor. It can also be mapped 
into a micro-electro-mechanical system (MEMS) realization using 
microstructures fabricated with C, I and R properties.  

Most importantly to this work, bond graph have also been broadened to 
represent controllers. For collocated control with sensors and actuators located 
at the same place, if velocity signal is measured, negative velocity feedback is 
equivalent to a damping R action; negative position feedback is equivalent to a 
spring C action. The PI controller, which consists of one R and one C element, 
is realized by measuring the velocity signal and generating a force 
proportional to both the position and the velocity of the mass I. The force input 
is realized through an actuator that provides modulated power to the system. 
Since the power flow direction of the actuating bond is reversed, the 
modulated force becomes negative, thus forming a negative feedback loop.  
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Figure 7.2. Resonator in bond graph and various domain realizations. 

Our work takes a further step in advancing the physical domain design 
methodology by designing the passive physical structures and the active 
controller strategies of a mechatronic system concurrently and 
computationally. By using bond graph as unified representation across 
domains, it is expected to achieve co-design of physical systems and 
controllers without a priori partitioning of the system into different domains. 
This gives designers flexibility to investigate different possibilities for 
designing subsystems in different domains to verify the entire system 
optimality.  

 
 

7.3. BOND GRAPH AND GENETIC PROGRAMMING 
 
In this work, computational synthesis of mechatronic systems using bond 

graph benefits from their simple and unified representation across multiple 
energy domains. The graphical and topological characteristics of bond graph 
allow their generation by flexible combination of bonds and elements, to form 
high-level functionality and complexity from lower-level building blocks. 

The program trees evolved by genetic programming may be employed in 
many different ways. In the first approach, genetic programming is used to 
automatically create a computer program to solve a problem. The program tree 
is simply executed, for example, to generate an algebraic function to 
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approximate a certain input-output pattern using standard arithmetic operators 
and operands. A second approach is a developmental approach, in which the 
program tree is interpreted as a set of instructions for constructing a complex 
structure from a very simple embryonic structure. This approach has been used 
to generate electrical circuits, including several previously patented circuits 
and human-competitive results (J. R. Koza, F. H. Bennet, D. Andre, M. A. 
Keane, [1999a]). This approach has also been used to evolve analog circuits, a 
printer, and MEMS structures using bond graph (Goodman ED, Seo K, 
Rosenberg RC, Fan Z, Hu J, Zhang B, [2000]). A third approach is to let 
program trees represent modular building blocks, linked by direct lines 
representing the flow of information. This approach has been used to evolve 
robust controllers for a given plant (J. R. Koza et al., [1999b]).  

In the context of this work, we chose to apply the first approach. Bond 
graph are treated as binary tree-based structures with elements interconnected 
through junctions. The result of executing the program tree is the impedance 
function of an effort-flow pair in a bond graph joined by 0- and/or 1- junctions 
that can be used directly for impedance calculation. 1-junction, 0-junction, R, 
C and I elements are mapped to operators relating to bond graph elements. 
Arithmetic addition and subtraction are mapped to arithmetic operators to 
manipulate ephemeral random constants (ERC) (J. R. Koza, [1994]). ERCs are 
mapped to operands with their numerical values interpreted in a logarithmic 
scale to represent numbers ranging over ten orders of magnitude (J. R. Koza, 
[1994]). Due to the introduction of negative one-port element, the ephemeral 
random constant (ERC) can be set to both positive and negative values. The 
impedance calculation process is similar to arithmetic operations. Table 7.2 
defines the function and terminal primitive set of genetic programming to 
construct bond graph in this work.  

Once the evolutionary computation converges or terminates, the resulting 
genetic programming tree structures will be simplified to reduce redundant 
branches and nodes for further analysis and verification. 
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Table 7.2. GP function and terminal primitive set 
 

  Name and description Symbol 

   
Basic Function Set 0 – Junction f0 

1 – Junction f1 
R Element R 
C Element C 
I Element I 
Arithmetic +: add two ERCs ADD 
Arithmetic –: Subtract two ERCs SUB 

Terminal Primitive Ephemeral Random Constant (ERC) E 

 
 

7.4. COOPERATIVE COEVOLUTIONARY SYNTHESIS 
 
In order to successfully apply the BG/GP approach to solve increasingly 

complex mechatronic design problems, an explicit notion of modularity is 
introduced to provide reasonable opportunities for solutions to evolve in the 
form of co-adapted subsystems. Cooperative co-evolution is a natural 
symbiosis phenomenon that has aroused a growing interest in its application to 
solve various problems with interacting modules. It is argued that in nature the 
body and brain of a creature are tightly coupled and survive together (Pollack 
JB, Lipson H, Funes P, Hornby G, [2001]). Initial research on evolving 
artificial life forms with both body and brain for a particular task has proved to 
be successful. Robot morphology and a controller have been encoded directly 
(Lipson H, Pollack JB, [2000]), using a generative graph structure (Hornby 
GS, Pollack JB, [2001]), or with a hybrid structure consisting of genetic 
programming for evolving the controller and genetic algorithms for evolving 
the body parameters (Lund HH, [2003]).  

While many of the above-mentioned coevolutionary robotics approaches 
use neural network controllers, in this work, the body and brain coevolutionary 
synthesis of mechatronic systems uses unified bond graph trunk modules 
encoded in genetic programming across all subsystems. The whole system 
needing to be designed is first decomposed based on engineering judgment 
into co-adapted subsystems in the analysis phase, and then all subsystems are 
coevolved cooperatively in the synthesis phase. The decomposition is not for 
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dividing the system into separate engineering domains, only into subsystems. 
Using bond graph to represent each subsystem, it benefits from exploring 
concurrent design of mechatronic subsystems without first dividing them into 
specific domains. For example, if an evolved subsystem can be implemented 
either passively or actively, a decision may be made at a later point of time 
such that it is part of the “body” design rather than part of the “brain” design. 

We use generalized cooperative coevolution architecture for evolving 
ecosystems consisting of two or more interacting co-adapted species (Potter 
MA, De Jong KA, [2000]). The species are genetically isolated as in nature—
i.e., individuals from one species only mate with individuals from the same 
species. The species interact with one another within a shared domain model 
and have a cooperative relationship. Figure 7.3 shows the general architecture 
of the cooperative coevolutionary synthesis framework.  
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Figure 7.3. Cooperative coevolutionary synthesis framework. 

Since any given individual from one species represents only a 
subcomponent of the problem, collaborators need to be selected from other 
species in order to assess fitness. Each generation, all individuals belonging to 
a particular species have their fitness evaluated by selecting some set of 
collaborators from other species to form a complete solution. There are several 
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issues needing to be addressed for applying co-evolutionary algorithms to 
evolve interdependent subcomponents (Wiegand RP, Liles WC and De Jong 
KA, [2001]). 

 
1. The degree of greediness of choosing a collaborator (collaborator 

selection pressure): The last evaluated fitness scores of the individuals 
in the alternative subpopulations are used to bias how to choose 
collaborators. There are greedy, random, and worst methods to select 
the best, random, and the worst representative collaborators from the 
previous generation, respectively. 

2. The number of collaborators per subpopulation to use for a given 
fitness evaluation (collaboration pool size): The number of 
collaborators can clearly affect the success of the coevolutionary 
algorithm. Increasing the number of collaborators can significantly 
increase overall computation time, a problem which is combinatorial 
with the number of subpopulations. Commonly in practice, 1-5 
collaborators are selected for experimentation. 

3. The method of assigning fitness value given multiple collaborations 
(collaboration credit assignment): the optimistic method assigns an 
individual fitness score based on the value of its best collaboration; 
the hedge method assigns an individual fitness score based on the 
average value of its collaboration; the pessimistic method assign an 
individual fitness score based on its worst collaboration. All 
experiments in this work used the optimistic method for credit 
assignment. 

 
In this work, the coevolutionary design synthesis started from the desired 

system specification. The fitness of a complete solution combining individuals 
from all the species is evaluated according to how accurately it approximates 
the desired overall system specification. We use Open Beagle as our 
evolutionary computation platform. It is a well-structured object-oriented 
framework including support for genetic algorithms, genetic programming, 
evolution strategies, and coevolution (Gagné C, Parizeau M, [2002]). 
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7.5. CASE STUDY: QUARTER-CAR SUSPENSION 
 

7.5.1. Problem Description 
 
Suspension systems are important subsystems of most wheeled vehicles. 

From a system design point of view, there are two main types of disturbances 
acting on a vehicle, namely, road and load disturbances. Road disturbances 
have the characteristics of large magnitudes at low-frequency (such as hills) 
and small magnitudes at high-frequency (such as road roughness). Load 
disturbances include the variations of loads induced by accelerating, braking 
and cornering. A good suspension design is concerned with disturbance 
rejection from both these disturbances to the outputs (e.g., vertical position of 
vehicle mass). In general, a suspension system needs to be “soft” to follow the 
road smoothly for a comfortable ride as well as to insulate against high-
frequency road disturbances, and to be “hard” to insulate against any load 
disturbances (Wang, F, [2001]).  

Suspension systems have been widely applied to vehicles to isolate body 
vibration from road and load disturbances. They may include passive physical 
designs as well as active control designs. In the literature, the three common 
classifications of suspension systems are passive, active, and semi-active, 
depending on the amount of external power required for the suspension to 
perform its function (Chalasani RM, [1986]).  

A quarter-car schematic model is illustrated in Figure 7.4. The sprung 
mass ms (kg), consists of the main vehicle body supported by the suspension. 
The unsprung mass mu (kg), consists of hub, wheel and tire. The tire is 
modeled as a spring with stiffness kt (N/m). zs, zu, and zr are the vertical 
positions of the sprung mass, the unsprung mass and the road disturbance 
input, respectively. Force Fs is the load force disturbance input. Force u 
represents any possible suspension force. Fr represents the force between the 
road and the tire. This case study is adapted from Smith (Smith MC, [1995]). 
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Figure 7.4. Quarter-car schematic model. 

The following equations describe the system motion. 
 

 (7.1) 

 

 (7.2) 

 

where 
 

From the point of view of a multi-port mechatronics network, the quarter-
car suspension system can be viewed externally as a two-port network. Its 
corresponding mixed immittance matrix specification G is defined as:  

 

 (7.3) 
 
When both road and load disturbance rejection are considered, it requires 

that in Eq. (7.3),  G12(s) and G22(s) be set “soft” for road disturbance rejection 
while G11(s) and G21(s) be set “hard” for load disturbance rejection. To 
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achieve such behavior, the desired system performance is specified in the 
immittance matrix for a combination of soft and hard suspensions as follows: 

 

 (7.4) 

 
In this work, the desired system is specified as an ideal “double skyhook” 

configuration as shown in Figure 7.5, which has been frequently used for 
target suspension force. It is depicted as the additional dashed system, 
consisting of a spring ks between the sprung mass and the unsprung mass, a 
virtual sky-hook damper cs for the sprung mass, and a virtual sky-hook damper 
cu for the unsprung mass. The ideal suspension force 

. 

The experimentation below uses the following parameters for the quarter-
car model: ms = 250kg, mu = 35kg, kt = 150  103 N/m. The desired frequency 

response for road disturbance is specified in  using a double skyhook 

configuration with a soft damper and spring parameterization: 

. The desired load 

disturbance frequency response is specified in  using another double 

skyhook configuration with a hard damper and spring parameterization: 

.  
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Figure 7.5. Quarter car with double skyhook suspension configuration. 

The desired  and  can be calculated as follows: 
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Their Bode plots are shown in Figure 7.6. 
There is one degree of freedom available for the response to each of the 

road and load disturbances. They can be determined independently if two 
suitable measurements are available for feedback – for example, suspension 
deflection and sprung mass velocity (Smith MC, [1995]). The suspension 
design with two such measurements, as depicted in a bond graph, is shown in 
Figure 7.7. 
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Figure 7.6. Desired road and load disturbance response. 
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Figure 7.7. Quarter-car suspension control with both road and load disturbances. 

The control law is taken to be: 
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controller with relative velocity feedback, k2(s) is a non-collocated controller 
with absolute velocity feedback. With k1(s) and k2(s), the actual road and load 
disturbance response can be calculated as: 

 

 
 

 
 
Due to conflicting specifications for road and load disturbance 

performance requirements, the performance cannot be achieved by a passive 
suspension alone. Extra energy must be introduced using active suspension 
(Smith MC and Walker GW, [2000]). From the system point of view, it is 
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desirable to explore both controller strategies concurrently for possible passive 
and active realization of the suspension system to achieve overall optimal 
system performance and energy efficiency.  

 
 

7.5.2. Controller Coevolution 
 
Controller k1(s) and k2(s) are both represented in bond graph encoded in 

genetic programming. They belong to two coevolved individual GP species 
cooperating with each other to form a complete solution for the quarter-car 
suspension design. Table 7.3 summarizes the key features of the problem of 
coevolving two suspension controllers.  

 
Table 7.3. Tableau for suspension controllers 

 
Objective: Design a suspension system composed of two 

controllers. 
Test fixture and 
embryo: 

Two-input, two-output initial suspension system with 
a sprung mass, an unsprung mass, and a spring.  

Program architecture: Two result-producing GP species, k1 and k2, with 
common attributes (below). 

Function set for the 
result-producing 
branches: 

For construction-continuing subtrees: Fccs-rpb-initial = 
{f0, f1, R, C, I}. 
For arithmetic-performing subtrees: Faps = {ADD, 
SUB}. 

Terminal set for the 
result-producing 
branches: 

For arithmetic-performing subtrees: Taps = {E}. 

Fitness Cases: 41 frequency values in an interval of four decades of 
frequency values between 0.1Hz and 1,000Hz. 
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Raw Fitness: Taking the desired road and load disturbance rejection 

responses and  as evaluation criteria, the 

raw fitness of a combined solution including 
individuals from both species is  
 

calculated as: 
n

errerr
Fitness

n

i
raw

2

1
21 )(




  

 
n is the number of logarithmically sampled frequency 
points; err1 and err2  are the absolute difference of 
magnitude between the evolved and the desired road 
and load disturbance rejection frequency response, 
respectively. 

212121 )()(  jGjGerr s ; 
211112 )()(  jGjGerr h  

Normalized Fitness: 

0.1

0.1




raw
norm Fitness

Fitness  

Parameters: Each species: 10 subpopulations of 100 individuals; 
Migration interval: 10 generations; Migration size: 2 
individuals 
Crossover rate: 0.85; Mutation rate: 0.15; initializing 
tree depth: 2-4; maximum tree depth: 10-17 

Result designation: Best-so-far individual from max fitness species and 
matching individual from another species.  

Termination: When either species reaches max fitness value 0.99. 
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Figure 7.8. Coevolved controller structure in bond graph for k1(s). 

As shown in Figure 7.8, k1(s) measures velocity difference between the 
sprung mass and the unsprung mass, and provides u1, part of force u between 
the two masses. Note that R8, C12, R13, C9, R10 and C11 have negative 
values, thus need to be implemented actively.  

The genotype for controller k1(s) is:  
 
f1(f1(f1(f0(R(-2536.01), C(-2.91685e-05)), C(7.29305e-06)), f1(f0(R(-

28144.44), C(-1.23919e-05)), f0(R(-465.871), C(-9.565442e-05)))), 
R(2104.298)) 

 
A one-port bond graph structure can be represented in impedance form 

and transformed to a transfer function (Redfield, RC. and Krishnan, S. [1993]).  
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Figure 7.9. Coevolved controller structure in bond graph form for k2(s). 

As shown in Figure 7.9, the input to controller k2(s) is the sprung mass 
velocity; the output of controller k2(s) is u2, which provides another part of 
force u acting between the sprung mass and the unsprung mass.  

The genotype for controller k2(s) is:  
 
f1(f0(f1(f0(R(317.927), C(5.33948e-07)), R(28639.9)), f0(f1(C(8.3877e-

06), R(10490.4)), f1(I(48.0437), C(5.9036e-06)))), R(1890.49)) 
 

 
 
k1(s) and k2(s) can also be calculated algebraically using conventional 

control methods, to match the desired load and road disturbance responses, 
with the following results (Smith MC, [1995]).  
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Comparison of the two results shows that controller k1(s) is of lower order 

and less complexity than the controllers obtained from algebraic calculation. 
This demonstrates that by applying genetic programming to coevolve 
controller structures encoded in bond graph, it is possible to discover equal or 
better control strategies in comparison to those obtained through conventional 
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methods. The Bode plots of the coevolved controllers are compared with those 
of the calculated controllers, as shown in Figure 7.10. They have almost the 
same frequency responses. However, controllers represented only in transfer 
functions give no physical insight as whether certain parts of the controller 
may be implemented passively. 

In this approach, the controllers are evolved in the physical domain with 
bond graph representation. The resulting bond graph structures give designers 
insight in choosing among different physical realizations using active or 
passive subsystems. Analyzing the collocated controller k1(s), R2 and C4, 
joined by a 1-junction, are positive-real, thus can be implemented passively as 
a spring-damper parallel pair, while R8, C12, R13, C9, R10 and C11 are 
negative-real and need to be implemented actively. This is shown in Figure 
7.11, with the following parameters: R2 = 2104.298 Ns/m, C4 = 137116.9 

N/m, .  

 

 

Figure 7.10. Evolved k1 and k2 compared to calculated k1 and k2. 
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Figure 7.11. physical realization of suspension control with road and load disturbances. 

 
 

7.5.3. Incorporating Physical System Consideration 
 
The advantage of using bond graph for mechatronic system design is that 

they can explore the whole system configuration with both passive and active 
systems simultaneously for concurrent synthesis. In the experiments of the last 
section, there are no initial constraints as to whether the coevolved controllers 
are to be implemented actively or passively. Coevolutionary computation is 
used to discover useful controller structures, including possibly emergent 
passive physical structures between the sprung mass and the unsprung mass. 
Emergent passive physical structures are beneficial in terms of energy 
efficiency in comparison to a fully active suspension system. Instead of relying 
on generating passive physical structures emergently, constraints can be 
explicitly incorporated into the coevolution requiring that certain parts of the 
suspension system be passive, and that the physical structures have no inertia 
component. This approach adds pressure to discover physically meaningful 
structures for a semi-active suspension design. 

When taking explicit physical systems into consideration, our coevolution 
of controllers involves three species. The collocated controller k1 in the last 
section is split into two parts joined by a one-junction: passive k1p, and active 
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k1a. k1p is part of the suspension that is physically realizable; k1a corresponds to 
active controller k11 in Section 7.5.2. k2 is the same as in Section 7.5.2. They 
are all represented as bond graph.  

Using the same parameter settings as before, coevolutionary computation 
on this problem generated the following three best structures after 
simplification, having the same active control configuration as shown in 
Figure 7.11. 

 
1) Design Alternative 1 

The bond graph of the physical system and its mechanical implementation 
are illustrated in Figure 7.12. 

 

 

Figure 7.12. Suspension passive physical structure design alternative 1. 

 
2) Design Alternative 2 

The bond graph of the physical system and its mechanical implementation 
are shown in Figure 7.13. 
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Figure 7.13. Suspension passive physical structure design alternative 2. 

 
3) Design Alternative 3 

The bond graph of the physical system and its mechanical implementation 
are shown in Figure 7.14. 

 

 

Figure 7.14. Suspension passive physical structure design alternative 3. 
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Figure 7.15. Coevolved controller k1 compared to calculated k1. 

The three alternative coevolutionary results yield different configurations 
of the passive part of the suspension system. The one shown in Figure 7.12 has 
the simplest physical structure and is also close to the passive physical systems 
obtained in Section 7.5.2. Taking k1 = k1p+k1a, the Bode plots of the coevolved 
controller k1 compared to the calculated controller k1 are shown in Figure 7.15. 
They also have similar frequency responses. 

In summary, a passive suspension system has the ability to store energy 
via a spring and to dissipate it via a damper. Its parameters are generally fixed, 
being chosen to achieve a certain level of compromise between road following 
and load carrying. An active suspension system has the ability to store, 
dissipate and introduce energy to the system, with extra flexibility to achieve 
improved design performance. In this work, by designing controllers in the 
physical domain, it enables coevolving both passive physical structures and 
active controllers simultaneously. It should be noted that in this work, we have 
assumed that the sensor and the actuator have perfect dynamics. The 
suspension design will be considerably modified if such assumptions do not 
hold well. 
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7.5.4. Coevolutionary Experimental Analysis 
 
In the experimentation from section 7.5.2, there are two species, controller 

k1 and k2. For each species, two representative collaborators are chosen to pair 
with individuals in the other species for their fitness evaluation. The two 
representative collaborators are the best individual and one random individual 
from the previous generation. The termination criterion for this coevolutionary 
process is when either of the species reaches its maximum fitness value (0.99). 
Since the two species are quite inter-related, the fitness improvement for each 
species shows many dynamics with sharp-edged curves. This is typically 
different from single-species evolution, which normally has smoother fitness 
improvement curves. The coevolution average and max fitness improvement 
curves are shown in Figure 7.16 and Figure 7.17 for a typical run, respectively.  

 

 

Figure  7.16. Suspension controller k1 and k2 coevolution average fitness improvement. 
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Figure 7.17. Suspension controller k1 and k2 coevolution max fitness improvement. 

In the experimentation from section 7.5.3, there are three species: passive 
physical system k1p, collocated active controller k1a, and non-collocated 
controller k2. The experimental configuration setting is similar to the 
coevolution with two species. The average and max fitness improvement 
curves for one typical coevolutionary run with three species are shown in 
Figure 7.18 and Figure 7.19 for a typical run, respectively.  

 

 

Figure  7.18. Suspension k1p, k1a, k2 coevolution average fitness improvement. 
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Figure  7.19. Suspension k1p, k1a, k2 coevolution max fitness improvement. 

 
 

7.6. CONCLUSION 
 
This paper describes an integrated system-oriented coevolutionary 

synthesis approach for open-ended mechatronics design using bond graph. The 
combination of bond graph and genetic programming provides a mechanism 
for bridging the field of mechatronics design with computational intelligence. 
This work takes a further step upon previous work by designing truly 
mechatronic systems including active control systems. It integrates control 
system design with multi-domain physical system design, and achieves 
synergy for whole system design through concurrent computational synthesis 
of mechatronic subsystems. The design philosophy and formal design 
methodology have been demonstrated in the quarter-car suspension case study. 
The emergent passive physical structures are more energy efficient than a fully 
active suspension system. 

While this is not the first approach to body-brain coevolution, it is the first 
to use the same bond graph representation to coevolve mechatronic 
subsystems that can consist of both passive and active components. Using the 
same design representation, we have the flexibility of choosing different ways 
of physically implementing the system. The integrated coevolutionary 
synthesis procedure can assist the designers in reviewing a wider range of 
potential innovative and overall optimal design options, and having more 
flexibility and insight to determine a final solution.  

0

0,2

0,4

0,6

0,8

1

1,2

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451

fi
tn

es
s

generation

Coevolution max fitness improvement

Series1 Series2 Series3
k1p k1a



Body-Brain Coevolutionary Synthesis of Mechatronic Systems 163

There is a great deal of work that needs to be done to further advance this 
approach. Mechatronics design integrates various disciplines and tools. At the 
conceptual design stage with bond graph modeling, it only considers energy 
flows and signal flows. However, at the detailed design level, the design 
process should be accomplished in the context of global optimization with 
multidisciplinary constraints and multiple objectives, for more realistic 
implementation and economic trade-off analysis. 

For simplicity, this paper focuses only on linear systems. However, the 
overall integrated design philosophy using bond graph can readily 
accommodate nonlinear systems. The bond graph methodology easily allows 
one to model components that have nonlinear constitutive laws. Mechatronic 
system design with nonlinear characteristics will be investigated in future 
work. 

 
 





 

 
 
 
 
 
 

Chapter 8 
 
 
 

CONCLUSION 
 
 

8.1. CONTRIBUTIONS 
 
With mechatronics emerging as an independent and integrated discipline 

of the 21st century, the research results presented in this book are of particular 
significance because it is one of the first endeavors to address the challenging 
issue of design automation of mechatronic systems. In this research, we have 
developed and applied a general framework, namely, the BG/GP approach, for 
automated conceptual design of mechatronics systems. The BG/GP approach 
combines both bond graph as a modeling tool to unify representations of 
mixed-domain subsystems across different physical domains in typical 
mechatronic systems, and genetic programming as a strong search tool to 
explore the open-ended design space of mechatronic systems. We have 
verified the effectiveness and efficiency of the BG/GP approach through a set 
of case studies, including electrical passive analog filter design, mechanical 
typewriter redesign, system-level and layout synthesis of MEMS, and vehicle 
suspension system design. 

An interesting and instructive comparison is made between Electronic 
Design Automation (EDA) and Mechatronic Design Automation (MDA). 
Because energy and information flow between modules of mechatronic 
systems can be transferred through electric wires, mechatronic systems can be 
modularized more easily than conventional mechanical systems, and are thus 
more amenable to modular design automation approaches. It is believed that 
MDA holds great promise and may be the next big wave after EDA. In 
particular, micromechatronic (microelectromechanical) systems (MEMS) have 
the potential to be the first type of mechatronic systems that can achieve 



Zhun Fan 166 

comparable success to that achieved in Electronic Design Automation. A 
structured and hierarchical design methodology for MEMS is recommended 
and studied in this research. The preliminary results of both system-level 
behavioral synthesis and second level layout synthesis show that automated 
synthesis of MEMS is a very promising research area.  

Because block diagrams could be mapped to bond graph, bond graph can 
also be used to represent designs of controllers. This feature of bond graph is 
important for mechatronics research because a typical modern mechatronic 
system not only includes a plant consisting of mechanical, electrical, and/or 
hydraulic subsystems, etc., but also includes a critical controller part that 
regulates and coordinates movements and functionalities of various physical 
subsystems in the plant. It has been proved that the BG/GP approach is 
capable of concurrent design of both controllers and plants of mechatronic 
systems in a joint research project on vehicle suspension system design 
(Wang, Fan et al. [2004]).  

 
 

8.2. FUTURE WORK 
 
There are many research directions to undertake in the future to extend the 

current BG/GP framework. 
One direct enhancement is to include more complex multi-port 

components in the component library as the building blocks for design 
configurations. For example, in the current implementation of case studies in 
Chapter 4, basic components used to construct design candidates include 1-
port C, 1-port I and 1-port R elements. These components can be generalized 
to multiport C-field, I-field and R-field (Karnopp, [2000]). Actually, in 
Chapter 5, the modular bridging unit component can be represented by a 2-
port C-field. However, in this book, multiport fields were not investigated in 
depth. More study of multiport fields is underway and integration of multiport 
fields into the BG/GP framework is the next research task of the author.  

Since most mechatronic systems are actually hybrid systems, involving 
both continuous and discrete-event dynamics, it is therefore important to 
enhance the traditional bond graph so that it can accommodate discrete events 
and control as well. Some work has been done in my student, Jean-Francois 
Dupuis’s PhD project. We chose not to involve this part now, but to extend the 
work and possibly involve it in the next version of the book. 

In the current BG/GP framework, and particularly in the case studies of 
Chapter 4, we focus our research on generating conceptual designs of 
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mechatronic systems that satisfy predefined design specifications. Detailed 
design, as well as design hierarchy, is discussed in Chapter 5. More work to 
build a composable design and simulation environment is needed so that 
designers can migrate among different design levels conveniently. In a 
composable design and simulation environment, any component involved in 
design not only has a high-level behavioral model, but also one or more 
detailed physical form models (Diaz-Calderon, [1999]). 

Design robustness is a very important research topic to bridge the gap 
between academic research results and industrial application tools. In 
industrial practice, the design parameters, system structure, and the overall 
system behavior may have many more constraints than those in the academic 
research environment. Fabrication and measurement errors make it difficult for 
component parameters of a real-world product to match the design parameters 
exactly. In addition, changes in working environments such as temperature 
fluctuation and/or electromagnetic interference may easily introduce noise to 
the working system and make its components’ equivalent parameters deviate 
from their designed values. Robust design (Sanchez, [1994]) aims to address 
the issue of making designs that are insensitive to those noise and parameter 
variations. Even though the issue of robust design of MEMS is studied in 
Chapter 6, how to approach robust design in a more general manner is an 
interesting research topic that the author will continue to investigate in his 
future career. 

In industrial practice, the designer is often faced with more than one 
objective to extremize. Sometimes these objectives are weighted and summed, 
and sometimes some of them are converted into constraints. However, in some 
circumstances, it would be advantageous to treat both as independent 
objectives, using any of a variety of evolutionary multi-objective optimization 
methods (Deb, [2003]) to identify a Pareto surface of desirable solutions. 

To increase scalability of evolutionary synthesis, another line of research 
has drawn much attention recently. By augmenting experimental biology with 
computer models of development, biologists are building a greater 
understanding of how developmental processes construct the staggering 
complexities of living organisms (Kumar and Bentley, [2003]). Taking 
advantage of this understanding, I expect to enhance the capability of the 
current evolutionary synthesis approach to reach designs that are far more 
complex than current evolved designs in terms of functional complexity. 
Related research topics include morphogenesis, cell signaling and 
regeneration, investigations of synthetic developmental mechanisms, and their 
implications in automated synthesis of engineering systems. 



Zhun Fan 168 

 
 
 



 

 
 
 
 
 
 
 
 
 
 

APPENDIX A: CAUSAL CONSTRAINTS 
 
 

FIXED CAUSALITY 
 
Fixed causality holds at a port when the equations only allow one of the 

two port variables to be the outgoing variable. This occurs at sources: an effort 
source (Se), by definition, always has its effort variable as signal output, and 
has the causal stroke outwards. This causality is called effort-out causality or 
effort causality. A flow source (Sf) clearly has a flow-out causality or flow 
causality. 

Another situation where fixed causality occurs is at nonlinear elements, in 
cases in which the equations for that port cannot be inverted (for example, 
potentially yielding division by zero). This is possible at R, GY, TF, C and I 
elements. Thus, there are two reasons to impose a fixed causality: 

 
1. There is no relationship between the port variables. 
2. The equations are not invertable (‘singular’). 
 
 

CONSTRAINED CAUSALITY 
 
At TF, GY, 0– and 1–junctions, relationships exist between the causalities 

of the various ports of the element. These relations are causal constraints, since 
the causality of a particular port imposes the causality of the other ports. At a 
TF, one of the ports has effort-out causality and the other has flow-out 
causality. At a GY, either both ports have effort-out causality or both have 
flow-out causality. At a 0–junction, where all efforts are the same, exactly one 
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bond must bring in the effort. This implies that 0–junctions always have 
exactly one causal stroke on junction side of their ports. The causal condition 
at a 1–junction is the dual of the 0-junction. The flows must sum to zero, thus 
exactly one bond can have its value determined by the junction, implying that 
exactly one bond has the causal stroke away from the 1–junction. [Zhun, I 
think that what you had said was wrong, but please check that what I said is 
correct for bond graph. This would represent a major error if uncorrected. 
Where did this language come from?]. 

 
 

PREFERRED CAUSALITY 
 
At the storage elements, the causality determines whether an integration or 

differentiation with respect to time will hold. Integration has preference over 
differentiation in causal assignment. In the integrating form, an initial 
condition must be specified. Integration with respect to time is a process that 
can be realized physically. Differentiation is not always physically realizable, 
since information at future time points is needed. Another drawback of 
differentiation is that when the input contains a step function: the output then 
becomes infinite. Therefore, integrating causality is seen as the preferred 
causality. This implies that C–elements have effort-out causality and I–
elements have flow-out causality as their preferred causal assignments. 

We will present an example to illustrate this. When a voltage u is imposed 
on an electrical capacitor (a C–element), the current i is the result of the 
constitutive equation of the capacitor: 

 

dt

du
Ci   

 
A differentiation is thus happening. We have a problem when the voltage 

instantly steps to another value, since the current required to achieve that will 
be infinite (the derivative of a step is infinite). This is not the case when the 
current is imposed on a capacitor. Now, an integral is used: 

 

 idtuu 0  
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The first case is flow-out causality (effort imposed, flow the result), and 
the second case is effort–out causality, which is the preferred causality. 
Furthermore, an effort–out causality also results in a state variable with an 
initial condition, u0. 

In an inductor, the dual form of the C–element is used: flow-out causality 
will result in integral causality, and is the preferred assignment. Step changes 
in voltage produce integral changes in current. 

 
 

INDIFFERENT CAUSALITY 
 
Indifferent causality is used when there are no causal constraints. At a 

linear R, it does not matter which of the port variables is the output (or 
response). Consider an electrical resistor. Imposing a current (flow) yields: 

 

iRu   
 
It is also possible to impose a voltage (effort) on the linear resistor: 
 

R

u
i 

 
 
There is no difference in feasibility between choosing the current as 

stimulus variable and the voltage as response variable, or the other way 
around. 

In summary, the Se and Sf have fixed causalities, the C and I have 
preferred causalities, the TF, GY, 0 and 1 have constrained causalities, and the 
R has an indifferent causality (provided that the equations characterizing these 
basic elements are all invertable). When the equations are not invertable, a 
fixed causality must be used. 

 
 





 

 
 
 
 
 
 
 
 
 
 

APPENDIX B: STATE-SPACE FORMULATION 

FOR BOND GRAPH MODELS 
 
 
The problem of state-space formulation for bond graph models can be 

formulated as follows. Given a bond graph composed of elements from the 
basic set {C, I, R, Se, Sf, TF, GY, 0, 1}, find a method of generating state-space 
equations of the form  

BUAXX 


 (B.1) 
 
or 
 

),( UXX 


 (B.2) 

 
where 
 
C – capacitance 
I – inertance  
R – dissipation 
Se-- source of effort 
Sf-- source of flow 
TF – modulated transformer 
GY – modulated gyrator 
0 – zero junction 
1 – one junction 
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A bond graph can be organized into a form consisting of storage field, loss 
field, source field and junction structure. The storage (energy) field is a 
collection of C and I elements. The loss (dissipation) field is composed of R 
elements. The source field is composed of source elements Se and Sf. The 
collection of elements from the set {TF, GY, 0, 1} forms the junction 
structure, which is a power-preserving multi-port subsystem. Any bond graph 
composed of elements from the basic set may be organized into the form 
shown in the Figure B.1 describing the system division.  

 

 

Figure B.1. Basic fields of multiport systems: acausal form. 

After causality is assigned to the bond graph according to the systematic 
approach described above, Figure B.1 becomes Figure B.2. The graph is said 
to have integral causality. In particular, this means that every C-field port and 
every I-field port is as shown in Figure B.2. According to causality, Figure B.2 
identifies for the port of each characteristic field the input and output 
variables, namely, loss, storage and source. An R port can have either e in and 
f out, or the reverse, depending upon causality. C and I ports are always 
defined as shown. The variable x in the storage field is the true energy 
variable, and its derivative dx/dt is taken as input, with the co-energy variable 
z as output. The outputs of the source field are the independent driving 
functions u (e for Se, f for Sf), and the inputs to the source elements are the 
complementary bond variables v.  
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Figure B.2. Symbolic form for integration causality. 

Based on the definitions given for each field port in Figure B.2, the entire 
system may be represented in causal form as shown in Figure B.3. Each of the 
arrows represents a vector of variables, and the vector sets are paired 
according to the field types.  

 

Figure B.3. Significant vectors for systems having integration causality. 

Then, the linear field equations in standard form in the dissipation field 
can be given by 

 

inout DLD  , (B.3) 

 
For the case of storage field, we have 
 

Junction Structure 

               {TF, GY, 0, 1} 

          Source {Se,  Sf} 
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dx/dt 

Z 

Di

Dou

U V 



Zhun Fan 176 

XSZ   (B.4) 
The junction structure yields expressions for the dx/dt and Din vectors in 

terms of the inputs to the junction structure, namely, Z, Dout, and U. Provided 
the elements TF and GY all have constant modulus, we have  

 

UJDJZJX SUoutSLSS 


 (B.5) 

 

UJDJZJD LUoutLLLSin   (B.6) 

 
where J matrices are the constraints imposed by the junction structure 

between sets of ports. Reduction of the four equations (B.3) through (B.6) to a 
single state-space equation of the desired form may be accomplished quite 
directly. Substituting (B.4) into (B.5), we get 

 

UJLDJZJX SUinSLSS 


 (B.7) 

 
Then substituting (B.6) into (B.7), we obtain 
 

UJUJDJZJLJZJX SULUoutLLLSSLSS 


)(  (B.8) 

 
Equation (B.4) and (B.6) may be combined and solved to give  
 

UJLJILZJLJILD LLLLLSLLout
11 )()(    (B.9) 

 
Substituting (B.3) into (B.9), we get 
 

UJLJILSXJLJILD LLLLLSLLout
11 )()(    (B.10) 

 
Substituting (B.10) into (B.8), we get 

UJLJILJJXSJLJILJSJX LULLSLSULSLLSLSS ])([])([ 11 



 (B.11) 

 
This can be written as  
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BUAXX 


 (B.12) 
 
where 
 

SJLJILJJA LSLLSLSS ])([ 1  (B.13) 

 

])([ 1
LULLSLSU JLJILJJB   (B.14) 
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