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Abstract

This paper proposes a novel constraint-handling mechanism, namely the angle-
based constrained dominance principle (ACDP), to solve constrained multi-
objective optimization problems (CMOPs). In this work, the mechanism of
ACDP is embedded in a decomposition-based multi-objective evolutionary al-
gorithm (MOEA/D). ACDP uses the angle information among solutions of a
population and the proportion of feasible solutions to adjust the dominance re-
lationship, so that it can maintain good convergence, diversity and feasibility
of a population, simultaneously. To evaluate the performance of the proposed
MOEA/D-ACDP, fourteen benchmark instances and an engineering optimiza-
tion problem are studied. Six state-of-the-art CMOEAs, including C-MOEA/D,
MOEA/D-CDP, MOEA/D-Epsilon, MOEA/D-SR, NSGA-II-CDP and SP, are
compared. The experimental results illustrate that MOEA/D-ACDP is signif-
icantly better than the other six CMOEAs on these benchmark problems and
the real-world case, which demonstrates the effectiveness of ACDP.
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1. Introduction

Multi-objective optimization problems (MOPs) involve the optimization of
more than one objective function. In the real world, many optimization prob-
lems involve a number of constraints and multiple conflicting objectives. In
general, a CMOP can be described mathematically as follows:5





minimize F(x) = (f1(x), . . . , fm(x))
T

subject to gi(x) ≥ 0, i = 1, . . . , q

hj(x) = 0, j = 1, . . . , p

x ∈ Rn

(1)

where F (x) = (f1(x), f2(x), . . . , fm(x))T ∈ Rm is an m-dimensional objective
vector, gi(x) ≥ 0 is the ith inequality constraint, and hj(x) = 0 is the jth

equality constraint. x ∈ Rn is an n-dimensional decision vector. The feasible
region S is defined as the set {x|gi(x) ≥ 0, i = 1, . . . , q and hj(x) = 0, j =
1, . . . , p}.10

In CMOPs, there are usually more than one constraint. To capture the
degree of constraint violation, these constraints are commonly summarized into
a scalar value as follows:

φ(x) =

q∑

i=1

|min(gi(x), 0)|+
p∑

j=1

|hj(x)| (2)

When φ(x) = 0, the solution x is feasible; otherwise it is infeasible.
For any two feasible solutions xa ∈ Rn and xb ∈ Rn of a CMOP, it can be15

said that xa dominates xb if the following condition is met:

∀i fi(xa) ≤ fi(xb) and ∃j fj(xa) < fj(x
b) (3)

where i, j ∈ {1, 2, ...,m}. If there exists a solution x∗ ∈ S that is not dominated
by any other solution in S, x∗ can be said to be a Pareto optimal solution. The
set of all Pareto optimal solutions is called a Pareto set (PS). The set of the
vectors in the objective set to which the PS maps is called the Pareto front20

(PF), which can be defined in the form PF = {F (x)| x ∈ PS}.
Maintaining a balance among convergence, diversity and feasibility of a

population is very critical when solving CMOPs. There are two basic as-
pects of maintaining the balance of these three metrics in constrained MOEAs
(CMOEAs). One is the multi-objective optimization method and the other25

is the constraint-handling technique. Multi-objective evolutionary algorithms
(MOEAs) are widely used to solve MOPs, because MOEAs can, in a single
run, evolve a set of non-dominated solutions that approach the global optimum
and are well distributed. According to the selection strategy used in the evolu-
tionary process, MOEAs can be classified into three different types. The first30

type is the dominance-based MOEA, which uses a selection strategy based on
Pareto domination. A popular MOEA of this type is NSGA-II [1], which adopts
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a non-dominated sorting and elitism-preserving strategy. Other representative
dominance-based algorithms include NSGA [2], MOGA [3], SPEA [4], PAES-II
[5], SPEA-II [6] and NPGA [7]. The second type is the decomposition-based35

MOEA. A representative example is MOEA/D [8], which decomposes an MOP
into a number of single-objective optimization problems(SOPs). In recent years,
decomposition-based MOEAs have attracted much attention, and many variants
of MOEA/D have been proposed, including MOEA/D-DE [9], MOEA/D-M2M
[10], EAG-MOEA/D [11], MOEA/D-SAS [12] and so on. The third type of40

MOEA is the indicator-based MOEA. A classic example of this type is IBEA,
which uses a scalar metric index to assist the selection[13]. Other representative
examples of this type include SMS-EMOA [14], HypE [15] and FV-MOEA [16].

The constraint-handling technique is the other key component in CMOEAs.
In general, constraint-handling methods can be classified into four types. The45

first type is the feasibility-driven method, which tends to preserve feasible so-
lutions in a population. Coello Coello and Christiansen [17] proposed a simple
method, in which infeasible solutions are all ignored during the evolutionary
process. Deb et al. proposed a constrained dominance principle(CDP) [18] to
compare two arbitrary solutions. CDP has three basic rules: 1) When two feasi-50

ble solutions are compared, the one dominating the other in terms of objectives
is better. 2) When a feasible solution is compared with an infeasible one, the
feasible one is better. 3) When two infeasible solutions are compared, the one
with a smaller degree of constraint violation is better. Powell and Skolnick [19]
proposed a constraint-handling technique named superiority of feasible solution55

(SF). For an infeasible solution, its fitness is defined as the sum of the objective
value of the worst feasible solution (fworst) and the constraint violation φ(x) of
the infeasible solution, whereas the fitness of a feasible solution is simply equal
to its objective value. Therefore, feasible solutions are always better than infea-
sible solutions. The above feasibility-driven constraint-handling methods have60

not taken full advantage of the useful information contained in the infeasible
solutions, which may lead them to become trapped in local optima.

The second type trades off the feasibility and convergence of a population
simultaneously. Jimsenez et al. proposed a min-max formulation [20], which
drives infeasible solutions to evolve toward feasible ones, and drives the fea-65

sible solutions to evolve toward the global optimum. Young proposed a non-
dominated ranking method [21] which blends the ranks of a solution in both
objective and constraint spaces. Singh proposed an infeasibility-driven evo-
lutionary algorithm (IDEA), which maintains a small proportion of infeasible
solutions in the population to improve the convergence [22]. In [23], a stochastic70

ranking method (SR) was proposed, in which solutions are compared based on
objectives or constraints randomly with a probability Sr. Takahama et al. pro-
posed an ε constraint-handling method [24]. When the constraint violation of a
solution is smaller than ε, it is regarded as a feasible solution. In [25], an adap-
tive ε constraint-handling method was proposed. Ning proposed a constrained75

non-dominated rank based on the constraint violation and Pareto rank [26] to
balance the feasibility and convergence. Most constraint-handling methods of
this type do not explicitly consider a mechanisms to maintain diversity of the
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population, especially for solving CMOPs with large infeasible regions.
The third type is the penalty-based method. Woldesenbet et al. proposed80

an adaptive penalty function, which consists of a distance value and two penalty
values [27]. Jan and Zhang proposed a penalty function for MOEA/D. It adopts
two types of penalty functions [28]. However, the ideal penalty factors are
difficult to set in advance.

The fourth type is the hybrid method, which combines parts of several85

constraint-handling methods to deal with constraints. Wang et al. proposed
the adaptive tradeoff model (ATM) [29]. In ATM, the evolutionary process
is classified into three phases. In each phase, a different constraint-handling
method is adopted. Qu et al. proposed an ensemble method to deal with
constraints[30]. It has several sub-populations, and each sub-population uses a90

different constraint-handling method.
It can be concluded that most of the existing constraint-handling methods

emphasize treating convergence and feasibility during the evolutionary process,
while diversity is usually not explicitly considered and well maintained. In this
paper, we propose a new constraint-handling method named ACDP, which can95

maintain good diversity as well as convergence and feasibility of a population
simultaneously. The method uses the angle information among solutions of a
population and the proportion of feasible solutions to adjust the dominance
relationship.

The rest of this paper is organized as follows: Section 2 briefly introduces100

MOEA/D, NSGA-II and six representative CMOEAs. Section 3 introduces
the details of the angle-based constrained dominance principle embedded in
MOEA/D. Section 4 gives comprehensive experimental results of the proposed
algorithm MOEA/D-ACDP and six other CMOEAs on LIR-CMOPs and the
I-beam optimization problem. Finally, conclusions are made in section 5.105

2. Related Work

2.1. Decomposition-based CMOEAs

In the original framework of MOEA/D [8], given a series of uniformly dis-
tributed weight vectors, a MOP is decomposed into N scalar subproblems
(SOPs), and each SOP relates to one solution. In MOEA/D, a set of N uni-110

formly spread weight vectors λ1, . . . , λN is initially generated forN subproblems.
A weight vector λi satisfies the following conditions:

m∑

k=1

λik = 1 and λik ≥ 0 for each k ∈ {1, . . . ,m}. (4)

There are several approaches to decompose a MOP into a number of scalar
optimization subproblems [8, 31]. Three decomposition approaches, including
the weighted sum [31], Tchebycheff [31] and boundary intersection approaches115

[8] are commonly used. In this paper, the Tchebycheff decomposition method
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is used in the MOEA/D framework. The j-th subproblem is defined as follows:

minimize gte(x|λj , z∗) = max
1≤i≤m

{
1

λji
|fi(x)− z∗i |

}

subject to x ∈ S (5)

where z∗ = (z∗1 , . . . , z
∗
m) is the ideal point, and z∗i = min{fi(x)|x ∈ S}.

Decomposition-based CMOEAs combine the MOEA/D with different constraint-
handling mechanisms. In this paper, we introduce four representative decomposition-120

based CMOEAs including C-MOEA/D [25], MOEA/D-CDP [32], MOEA/D-
Epsilon [33], and MOEA/D-SR [32].

• C-MOEA/D [25] uses a variant of the epsilon constraint-handling tech-
nique. In this technique, the epsilon level is set to handle constraints
according to the constraint violation and the proportion of feasible solu-125

tions in the current population. When comparing any two solutions, if
overall constraint violations of the solutions are both less than the epsilon
level, the one with a better aggregation value dominates the other. Oth-
erwise, the one with a smaller overall constraint violation dominates the
other.130

• MOEA/D-CDP [32] uses CDP to judge the dominance relationship be-
tween two arbitrary solutions. The comparison between two solutions is
based on the following two rules:
1) When two feasible solutions are compared, the one with a better ag-
gregation value is better.135

2) When at least one of two solutions is infeasible, the one with a smaller
degree of overall constraint violation is better.

• MOEA/D-Epsilon [33] uses the original epsilon constraint-handling tech-
nique. The epsilon level setting can be found in [34]. As the generation
counter K increases, the epsilon level dynamically decreases.140

• MOEA/D-SR [32] embeds the stochastic ranking method (SR) [23] in
MOEA/D to deal with constraints. A threshold parameter rf ∈ [0, 1] is set
to balance the selection between the objectives and the constraints. When
comparing two solutions, if a random number in [0, 1] is less than rf , the
one with a better aggregation value is retained into the next generation.145

If the random number in [0, 1] is greater than rf , MOEA/D-SR is similar
to MOEA/D-CDP. In the case of rf = 0, MOEA/D-SR is equivalent to
MOEA/D-CDP.

2.2. Dominance-based CMOEAs

Currently NSGA-II [1] is a widely used dominance-based MOEA. In NSGA-150

II, an offspring population Q is generated by genetic operators from the popula-
tion P at each generation. A fast non-dominated sorting approach is applied on
P ∪ Q. Each individual is assigned to a non-dominated rank. Solutions in the
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first k ranks are selected into P ′, until the number of solutions in P ′ is greater
than or equal to the population size NP . If the size of P ′ is greater than NP ,155

solutions in the k-th rank are first removed from P ′. Then, solutions in the k-th
rank are sorted based on crowding distances in descending order, and the first
|NP − P ′| solutions are added to P ′ to make sure that the size of P ′ is equal
to NP .

Dominance-based CMOEAs select the next generation based on the fast160

non-dominated sorting approach. Two representative examples include NSGA-
II-CDP[1] and SP[27]. In NSGA-II-CDP[1], the CDP method is adopted to
judge the dominance relationship between any two individuals. In SP [27], a
CMOP is transformed into an unconstrained MOP by using a penalty function.
The value of the penalty function is self-adaptively changing according to the165

feasibility fraction of the current population. The population is sorted based on
non-dominated sorting [1] on the transformed objectives during the evolutionary
process.

3. MOEA/D with Angle-based Constrained Dominance Principle

In this section, the definition of the proposed ACDP and the effectiveness of170

this mechanism in MOEA/D are detailed.

3.1. Angle-based Constrained Dominance Principle

In the CDP approach [1], with its three basic rules, the overall constraint
violation is the most important factor during the evolutionary process, and some
useful information in the infeasible regions tends to be ignored.175

The angle between two solutions in the objective space can be used to mea-
sure their similarity [35]. Compared with other Euclidean distance metrics, the
angle information is easier for normalization [36]. In this paper, we propose an
angle-based constrained dominance principle(ACDP) to deal with constraints.

The definition of the angle between any two solutions x1 and x2 is given as180

follows:

angle(x1,x2, z∗)=arccos

(
(F(x1)− z∗)T · (F(x2)− z∗)
||F(x1)− z∗|| · ||F(x2)− z∗||

)
(6)

where z∗ = (z∗1 , . . . , z
∗
m) is the ideal point, and z∗i = min{fi(x|x ∈ S}. || · || is

the two-norm of a vector.
As shown in Fig. 1, given any two solutions x1 and x2, the angle between

them in the objective space is θ21. Obviously, the angle between any two solutions185

is less than or equal to π/2, which means that the range of angle between any
two solutions belongs in [0, π/2].

Given any two solutions x1 and x2, a threshold angle θ, a random number
r and a parameter pf (Number of Feasible Solutions

Population Size ) which denotes the proportion
of feasible solutions in the current population, the ACDP is defined as follows:190

1. If both solutions are feasible, given one solution dominates the other, the
one dominating the other is better; otherwise, they are incomparable.
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Figure 1: Illustration of the angle between x1 and x2

2. If there is at least one infeasible solution and angle(x1,x2, z∗) ≤ θ, the
one with a smaller constraint violation dominates the other.

3. When there is at least one infeasible solution and angle(x1,x2, z∗) > θ, if195

r < pf , and given one solution dominates the other, the one dominating
the other is better; otherwise, they are incomparable.

3.2. ACDP in the framework of MOEA/D

As we know, MOEA/D uses the value of the decomposition function of a
solution in the updating of its neighbors. In order to use ACDP to handle200

constraints in the framework of MOEA/D, here we provide a version of ACDP
which is suitable to the algorithm.

Given a subproblem with a weight vector λ, for two solutions x1 and x2, their
overall constraint violations are φ1 and φ2. It is worth noting that φ1 ≥ 0, φ2 ≥
0. The aggregation values of x1 and x2 on the subproblem sp are gte(x1|λ, z∗)205

and gte(x2|λ, z∗). The ACDP dominance �θ in the framework of MOEA/D is
defined as follows:

x1 �θ x2 ⇔





Rule 1 if φ1 = φ2 = 0 :

gte(x1|λ, z∗) < gte(x2|λ, z∗);
Rule 2 if φ1 + φ2 > 0 and angle(x1,x2, z∗) ≤ θ :

φ1 < φ2;

Rule 3 if φ1 + φ2 > 0 and angle(x1,x2, z∗) > θ :

r < pf and gte(x1|λ, z∗) < gte(x2|λ, z∗).

(7)

where θ is a threshold parameter, which is defined by users. In Eq. (7), the
constraint-handling method ACDP is equivalent to CDP [1] when θ ≥ π

2 . The
reason is that the maximum value of angle(x1,x2, z∗) is π

2 . As a result, the210

value of angle(x1,x2, z∗) is always less than or equal to θ when θ ≥ π
2 . In

the case of φ1 < φ2 in Eq. (7), the second rule can be always met, but the
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third rule can never be fulfilled. Thus, Eq. (7) can be transformed into Eq.
(8) when θ ≥ π

2 , which is the same as CDP. Note that Rule 2 of Eq. (7) can
be decomposed into two sub-rules. The first sub-rule is that when a feasible215

solution is compared with an infeasible one, the feasible one is better, which
is the same as the second rule of CDP. The second sub-rule is that when two
infeasible solutions are compared, the one with a smaller constraint violation is
better, which corresponds to the third rule of CDP.

x1 �θ x2(θ ≥ π
2 )⇔





Rule 1 if φ1 = 0, φ2 = 0 :

gte(x1|λ, z∗) < gte(x2|λ, z∗);
Rule 2 if φ1 + φ2 > 0 :

φ1 < φ2.

(8)

In Rule 1 of ACDP, when these two solutions are both feasible, the solution220

with a lower aggregation value dominates the other, which is similar to the first
rule of CDP.

When at least one of x1 and x2 is infeasible, CDP only compares the con-
straint violations of these two solutions, which makes the diversity of the pop-
ulation difficult to maintain when most of the solutions in the population are225

infeasible. In contrast, ACDP utilizes additional information to compare the two
solutions, which includes both the angle between the two compared solutions
in the objective space and the proportion of feasible solutions in the current
population (pf ). More details of ACDP in this situation are listed as follows:

• In Rule 2 of ACDP, if the angle between x1 and x2 in the objective space230

is smaller than the parameter θ, ACDP considers that these two solu-
tions are similar and compares them according to their constraint viola-
tions. Because these two solutions are similar, based on the framework of
MOEA/D, they will be considered to relate to the same subproblem. In
this situation, using the constraint violations to compare the two solutions235

will not cause the loss of the diversity.

• In Rule 3 of ACDP, if the angle between x1 and x2 in the objective space is
larger than the parameter θ, ACDP considers that these two solutions are
dissimilar, and the solution with a lower aggregation value will dominate
the other with a probability of pf . Some infeasible solutions with low240

aggregation values will have a chance to be selected in the next generation,
which may enhance the convergence of the population.

• The probability in Rule 3 of ACDP is set to be the proportion of feasible
solutions in the current population. It keeps the balance of the exploration
of the population between infeasible regions and feasible regions. When245

pf is large, ACDP tends to explore infeasible regions. When pf is small,
ACDP tends to explore feasible regions.
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3.3. Effectiveness of ACDP in MOEA/D

The evolutionary process of a CMOEA can be generally divided in three
stages according to the status of the population. In the first stage, a population250

is generated randomly, and most of the individuals are far away from the real
PF as shown in Fig. 2 (a) and Fig. 2 (b).

In the second stage, the population begins to explore the search space. As
shown in Fig. 2 (c), when using CDP in MOEA/D, the population will be
attracted to feasible regions and actually find it difficult to go across infeasible255

regions. As shown in Fig. 2 (d), when ACDP is applied to MOEA/D, the pop-
ulation can maintain its diversity by using angle information. Some individuals
can enter infeasible regions, which can help the population to go across infeasible
regions effectively. Additionally, ACDP uses the proportion of feasible solutions
in the current population in its selection of solutions to retain, which can help260

to balance the search between feasible and infeasible regions.
In the third stage, the population will converge to boundaries of feasible

regions, with most individuals that lie on the boundaries being non-dominated.
In contrast, when using CDP, the population tends to get trapped in local
optima, because of the difficulty of crossing infeasible regions in the second265

stage, as shown in Fig. 2 (e). Instead, when using ACDP, the population can
converge to the real PF more completely, as shown in Fig. 2 (f), because the
population can maintain its diversity and explore infeasible regions in the second
stage.

3.4. The Setting of θ270

In the early stage of the evolutionary process, population members are usu-
ally far from the real PF. To prevent the population from being trapped in a
local optimum, the value of θ should be small, to maintain the diversity. Later
in the evolutionary process, convergence should be emphasized, so the value of
θ should become larger. Based on the above analysis, the value θ(k) should be275

dynamically increased with increasing generation counter k. In this paper, a
method for setting θ(k) is proposed as follows:

θ(k) =

{
θ0

(
1 + k

Tmax

)cp
, 1 ≤ k ≤ Tc

π
2 , Tc < k ≤ Tmax

(9)

where θ0 is an initial threshold value, N is the size of population and Tmax is the
maximum evolutionary generation. Tc = αTmax, α ≤ 1, is the final generation

for the control of θ. The parameter cp is initialized to log(π/(2θ0))
log(1+α) to make280

θ(k) = π/2 when k = Tc.
In Fig. 3, the changing trends of θ(k) with different initial values of θ(0) are

plotted, which shows that θ(k) is gradually increasing until k = Tc. According
to Eq. (9), when the generation counter k reaches Tc, θ(k) = π

2 . In the early
stage of the evolutionary process, θ(k) increases continuously and slowly, which285
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(a) Stage 1 of CDP (b) Stage 1 of ACDP

(c) Stage 2 of CDP (d) Stage 2 of ACDP

(e) Stage 3 of CDP (f) Stage 3 of ACDP

Figure 2: Illustrations of the evolutionary process of MOEA/D with CDP and ACDP.
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can help the population to maintain diversity. When k is close to Tc, θ(k) in-
creases quickly, which helps the population to enhance its convergence. When k
reaches Tc, θ(k) is equal to π

2 , so ACDP is transformed into CDP, which helps
the population to maintain feasibility.

290

k (generation counter)

(k
)

0
= /2

0
= /8

0
= /64

0
= /2048

/2

T
c T

max

0

Figure 3: The changing trends of θ(k) with different initial values of θ(0).

3.5. ACDP embedded in MOEA/D

The proposed MOEA/D-ACDP integrates the general framework of MOEA/D
and the angle-based constrained dominance principle.

The pseudocode of MOEA/D-ACDP is listed in Algorithm 1. Lines 1-5 ini-
tialize some parameters in MOEA/D-ACDP. First, a CMOP is decomposed into295

N subproblems which are associated with weight vectors λ1, . . . , λN . Then the
population P , the initial increasing factor cp, the ideal point z∗ and the neighbor
indexes B(i) are initialized. Lines 7-11 update the angle threshold value θ(k).
Line 12 updates the proportion of feasible solutions in the current population
pf . Lines 13-23 generate a set of new solutions and update the ideal point z∗.300

To be more specific, lines 14-21 determine the set of neighboring solutions that
may be updated by a newly generated solution yj . In line 22, the differential
evolution (DE) crossover operator is adopted to generate a new solution yj .
Meanwhile, yj is further mutated by the polynomial mutation operator. The
ideal point z∗ is updated in line 23. Lines 24-39 update subproblems. In line305

27, the subproblems are updated based on the ACDP approach, for which the
detailed pseudocode is listed in Algorithm 2. At the end of each generation, non-
dominated solutions (NS) in the population are selected to update the external
archive based on non-dominated sorting in line 31.

In Algorithm 2, the algorithm updates a subproblem in terms of Eq. (7).310

Lines 3-7 denote that when two feasible solutions xj and yj are compared, the
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Algorithm 1: MOEA/D-ACDP

Input:
N : the number of subproblems.
Tmax: the maximal generation.
N weight vectors: λ1, . . . , λN .
T : the size of the neighborhood.
δ: the selecting probability from neighbors.
nr: the maximal number of solutions replaced by a child.
θ0, α: the parameters of ACDP method.
Output: NS : a set of feasible non-dominated solutions

1 Decompose a CMOP into N subproblems associated with λ1, . . . , λN .

2 Generate an initial population P = {x1, . . . ,xN}.
3 Initialize cp to log(π/(2θ0))

log(1+α) .

4 Initialize the ideal point z∗ = (z1, . . . , zm).
5 For each i = 1, . . . , N , set B(i) = {i1, . . . , iT }, where λi1 , . . . , λiT are the
T closest weight vectors to λi.

6 for k ← 1 to Tmax do
7 if k ≤ αTmax then
8 Set θ(k) according to θ(k) = θ0(1 + k

Tmax
)cp.

9 else
10 Set θ(k) to be equal to π

2
11 end
12 Update pf in the current generation.
13 Generate a random permutation rp from {1, . . . , N}.
14 for i← 1 to N do
15 Generate a random number r ∈ [0, 1].
16 j = rp(i).
17 if r < δ then
18 S = B(j)
19 else
20 S = {1, . . . , N}
21 end
22 Generate yj through DE and polynomial mutation operators.
23 Update the current ideal point.
24 Set c = 0.
25 while c 6= nr and S 6= ∅ do
26 select an index j from S randomly, S = S\{j}.
27 result = UpdateSubproblems(xj , yj , θ(k), pf)
28 if result == true then c = c+ 1;

29 end

30 end
31 NS = NondominatedSelect(NS

⋃
P )

32 end
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Algorithm 2: Subproblem Update

1 Function result = UpdateSubproblems(xj, yj, θ(k), pf)
2 result = false
3 if φ(yj) = 0 and φ(xj) = 0 then
4 if gte(yi|λj , z∗) ≤ gte(xj |λj , z∗) then
5 xj = yj

6 result = true

7 end

8 else
9 if angle(F(yj),F(xj), z∗) < θ(k) then

10 if φ(yj) < φ(xj) then
11 xj = yj

12 result = true

13 end

14 else
15 if rand() < pf then
16 if gte(yi|λj , z∗) ≤ gte(xj |λj , z∗) then
17 xj = yj

18 result = true

19 end

20 end

21 end

22 end
23 return result

24 end
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one with a better aggregation value is selected. Lines 9-13 denote that when at
least one of two solutions xj and yj is infeasible, if the angle between them in
the objective space is lower than θ, the solution with a lower constraint violation
is selected. Lines 15-20 denote that when at least one of two solutions xj and315

yj is infeasible, if the angle between them in the objective space is larger than
θ, the solution with a lower aggregation value will be selected with a probability
of pf .

4. Experimental Study

4.1. Test Instances LIR-CMOPs320

To evaluate the performance of the proposed MOEA/D-ACDP, 14 con-
strained multi-objective test problems with large infeasible regions in the objec-
tive space are used [37, 38]. The general characteristic of LIR-CMOPs is that
their real PFs are blocked by a number of large infeasible regions, and thus hard
to find during an evolutionary process. Their constraint functions are comprised325

of controllable shape functions and distance functions [39]. More specifically,
the shape functions are used to make the PF shapes convex or concave, while the
distance functions are used to adjust the convergence difficulty for CMOEAs.

4.2. Real-world Engineering Optimization: I-beam

To evaluate the performance of MOEA/D-ACDP for solving real world op-330

timization problems, an engineering optimization problem with two conflicting
objectives is studied.

As defined in [40], the I-beam optimization problem shown in Fig. 4 is
a bi-objective constrained optimization problem which needs to minimize the
following objectives simultaneously:335

1. Cross-sectional area of the beam;
2. Static deflection of the beam for the displacement under force P .

The decision variable vector of the problem is x = [x1, x2, x3, x4]T , which is
in units of centimeters. The range for each decision variable is listed as follows:
10 ≤ x1 ≤ 80, 10 ≤ x2 ≤ 50, 0.9 ≤ x4 ≤ 5, 0.9 ≤ x4 ≤ 5. Some given parameter340

settings are listed as follows:
1. Permissible bending stress of the beam’s material: kg = 1.6kN/cm2.
2. Young’s Modulus of Elasticity: E = 2× 104kN/cm2.
3. Maximal bending forces: P = 600kN and Q = 50kN .
4. The length of the I-beam: l = 200cm345

The I-beam optimization problem considered in this paper is defined as
follows: 




minimize f1(x) = 2x2x4 + x3(x1 − 2x4)

minimize f2(x) =
Pl3

48EI

subject to c(x) = kg −
My

Wy
− Mz

Wz

(10)
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Figure 4: The geometry modeling of I-Beam.

where I is the inertia coefficient which can be calculated by Eq. 11.

I =
x3(x1 − 2x4)

3
+ 2x2x4[4x4

2 + 3x1(x1 − 2x4)]

12
. (11)

The values of My and Mz are 30000kN · cm and 2500kN · cm, respectively.350

The section modulus can be calculated by Eqs. 12 and 13.

Wy =
x3(x1 − 2x4)

3
+ 2x2x4[4x4

2 + 3x1(x1 − 2x4)]

6x1
(12)

Wz =
(x1 − 2x4)x3

3 + 2x4x2
3

6x2
(13)

To study the landscape in the objective space of the I-beam optimiza-
tion problem, 1,000,000 sampling solutions are generated, where 850,000 so-355

lutions are generated randomly, and the other 150,000 solutions are generated
by MOEA/D-ACDP. In Fig. 5, it is observed that there exist a few infeasible
regions in the objective space for the I-beam optimization problem (the propor-
tion of feasible solutions among all sampled solutions p = 0.5339, which means
that nearly half of the selected points are infeasible).360

4.3. Experimental Settings

To evaluate the performance of the proposed MOEA/D-ACDP, it is com-
pared with six popular CMOEAs (C-MOEA/D, MOEA/D-CDP, MOEA/D-
Epsilon, MOEA/D-SR, NSGA-II-CDP and SP), using a differential evolution
(DE) crossover operator. They are tested on LIR-CMOP1-14 and the I-beam365

optimization problem. The detailed parameters are listed as follows:
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Figure 5: The distribution of the I-Beam problem.

1. Polynomial mutation probability Pm = 1/n (n is the number of decision
variables) and its distribution index is set to 20. For the DE operator,
CR = 1.0, f = 0.5.

2. Population size: N = 300. Neighborhood size: T = 30.370

3. Stopping condition: each algorithm is run 30 times independently, and
stops when 150,000 function evaluations are reached.

4. Probability of selecting individuals in the neighborhood: δ = 0.9.

5. The maximal number of solutions replaced by a child: nr = 2.

6. Parameter setting in MOEA/D-ACDP: α = 0.8 and θ0 = π
2N .375

7. Parameter setting in MOEA/D-Epsilon: Tc = 400, cp = 2 and θ = 0.05N .

8. Parameter setting in MOEA/D-SR: Sr = 0.01.

4.4. Performance Metric

To measure the performance of MOEA/D-ACDP, C-MOEA/D, MOEA/D-
CDP, MOEA/D-Epsilon, MOEA/D-SR, NSGA-II-CDP and SP, two widely used380

metrics are employed: inverted generational distance (IGD) [41] and hypervol-
ume (HV ) [4]. Their definitions are as follows.

• Inverted Generational Distance (IGD):

IGD is a metric which evaluates the performance related to convergence and
diversity simultaneously. Let P ∗ be a set of uniformly distributed points in the385

ideal PF. Let A denote an approximate PF achieved by a certain CMOEA. The
metric IGD that represents average distance from P ∗ to A is defined as:





IGD(P ∗, A) =

∑
y∗∈P∗

d(y∗, A)

|P ∗|

d(y∗, A) = min
y∈A
{
√∑m

i=1(y∗i − yi)2}

(14)
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In our experiment, for CMOPs with two objectives, 1000 points are sampled uni-
formly from the PF to constitute P ∗. For CMOPs with three objectives, 10000
points are sampled uniformly from the PF to constitute P ∗. A smaller IGD390

represents better performance with respect to both diversity and convergence.

• Hypervolume (HV ):

HV reflects the closeness between the non-dominated set achieved by a CMOEA
and the representative PF. A larger HV means that the corresponding non-
dominated set is closer to the true PF. A HV with a larger value represents395

better performance with respect to both diversity and convergence.

HV (S) = V OL

(⋃

x∈S
[f1(x), zr1 ]× ...[fm(x), zrm]

)
(15)

where V OL(·) is the Lebesgue measure, zr = (zr1 , ..., z
r
m)T is a reference point

in the objective space.
Both IGD and HV metrics are used in the LIR-CMOP instances. For the

LIR-CMOPs, the reference point is set as 1.3 times the nadir point of the real400

PF. As the real PF of the I-beam optimization problem is not known, the IGD
metric cannot be calculated. Thus, we uses the HV metric [4] to measure the
performance of the tested CMOEAs on the I-beam optimization problem. In
the I-beam optimization case, the reference point is set to zr = [1000, 0.08]T .

405

4.5. Discussion of Experimental Results

4.5.1. Performance Evaluation on the LIR-CMOP Test Instances

The IGD values on LIR-CMOP1-14 achieved by seven CMOEAs in 30 in-
dependent runs are shown in Table 1. As discussed in Subsection 4.1, LIR-
CMOP1-14 have large infeasible regions in their objective spaces. For LIR-410

CMOP3-14, MOEA/D-ACDP significantly outperforms the other six compared
algorithms in terms of the IGD metric. For LIR-CMOP1-2, MOEA/D-ACDP
significantly outperforms C-MOEA/D, MOEA/D-CDP, MOEA/D-Epsilon, NSGA-
II-CDP and SP, and does not differ significantly from MOEA/D-SR.

The HV values on LIR-CMOP1-14 achieved by seven CMOEAs in 30 in-415

dependent runs are shown in Table 2. For LIR-CMOP3-14, MOEA/D-ACDP
significantly outperforms the compared algorithms in terms of the HV met-
ric. For LIR-CMOP1, MOEA/D-ACDP significantly outperforms C-MOEA/D,
MOEA/D-CDP, NSGA-II-CDP and SP, and is not significantly different from
MOEA/D-Epsilon and MOEA/D-SR. For LIR-CMOP2, MOEA/D-ACDP sig-420

nificantly outperforms C-MOEA/D, MOEA/D-CDP, NSGA-II-CDP, NSGA-II-
CDP and SP, and is not significantly different from MOEA/D-SR.

Fig. 6 (a) and Fig. 7 (a) show the final external archives achieved by
MOEA/D-ACDP and the other six CMOEAs with the median IGD values on
LIR-CMOP3 during 30 independent runs. It can be seen that MOEA/D-ACDP425
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almost converges to the whole real PF, and it has the best diversity performance
among the seven CMOEAs.

In Fig. 6 (b) and Fig. 7 (b), the external archives of each CMOEA with the
median IGD values on LIR-CMOP5 during 30 independent runs are plotted.
It can be seen that MOEA/D-ACDP covers the whole PF. However, the other430

six CMOEAs are trapped in local optima.
In Fig. 6 (c) and Fig. 7 (c), for LIR-CMOP10, MOEA/D-ACDP has the

best performance in terms of convergence. In Fig. 6 (d) and Fig. 7(d), we can
see that MOEA/D-ACDP can discover most parts of the PF on LIR-CMOP11.
However, the other six algorithms can find only a few parts of the PF.435

4.5.2. Discussion of the Experimental Results on the LIR-CMOPs

LIR-CMOP3-4 both have several narrow and disconnected feasible regions.
If the CDP mechanism is applied, it is very difficult for the population to dis-
tribute the individuals among these narrow and disconnected feasible regions.
More likely, most individuals will be trapped in one or a few of these feasible440

regions. However, when ACDP is applied, rule 2 of the ACDP mechanism will
enable more well-distributed individuals to survive into the next generation. As
a result, MOEA/D-ACDP can help to maintain the diversity of the population
during the evolutionary process. From these experimental results, we can also
see that MOEA/D-ACDP performs the best on these two test instances.445

LIR-CMOP5-14 have some infeasible regions in front of the real PFs, which
makes it difficult for CMOEAs to converge to the real PFs. If the CDP mecha-
nism is applied, when feasible individuals attempt to enter the infeasible regions,
they will be easily bounced back to the feasible regions, due to rule2 of CDP.
However, when ACDP is applied, rule 3 of the ACDP mechanism will be acti-450

vated when the feasible individuals attempt to enter the infeasible regions (pf
is still high at this stage), which will facilitate a smooth entry because only
convergence is considered according to rule 3 of ACDP. Next, when most fea-
sible individuals have entered the infeasible regions, pf becomes lower and rule
3 is deactivated. In this case, most individuals become non-dominated by each455

other, because the dominance relationship defined by Eq. (7) does not exist any
more. The non-dominance relationship of individuals helps most infeasible ones
survive in the offspring generations, and eventually cross the infeasible regions.
As a result, using MOEA/D-ACDP can preserve some high-quality infeasible
solutions in the population, which can help the population to find the global460

optimum. From the experimental results in Tables 1 and 2, we can also conclude
that MOEA/D-ACDP has the best performance on these ten test instances.

According to the above observations, we can conclude that the proposed
MOEA/D-ACDP outperforms the other six CMOEAs. A common feature of
the above LIR-CMOPs test instances is that they all have large infeasible re-465

gions in their objective spaces. The experimental results demonstrate that the
proposed ACDP method can deal with CMOPs well by taking advantage of an-
gle information among solutions of a population and the proportion of feasible
solutions.
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Figure 6: The non-dominated solutions achieved by MOEA/D-ACDP, C-MOEA/D,
MOEA/D-CDP, MOEA/D-Epsilon and MOEA/D-SR with the median IGD in 30 indepen-
dent runs for LIR-CMOP3, LIR-CMOP5, LIR-CMOP10 and LIR-CMOP11.
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Table 1: IGD results of MOEA/D-ACDP and the other six CMOEAs on LIR-CMOP1-14
test instances

LIR-CMOP MOEA/D-ACDP C-MOEA/D MOEA/D-CDP MOEA/D-Epsilon MOEA/D-SR NSGA-II-CDP SP

1
mean 5.159E-02 1.591E-01† 1.348E-01† 8.234E-02† 4.406E-02 4.376E-01† 1.489E-01†

std 1.815E-02 3.534E-02 5.996E-02 5.321E-02 3.360E-02 1.071E-01 8.479E-02

2
mean 2.269E-02 1.462E-01† 1.549E-01† 4.708E-02† 2.057E-02 3.084E-01† 1.943E-01†

std 9.418E-03 4.141E-02 2.966E-02 1.339E-02 1.072E-02 9.513E-02 9.688E-02

3
mean 4.659E-02 2.309E-01† 2.268E-01† 7.858E-02† 1.529E-01† 4.082E-01† 2.054E-01†

std 1.850E-02 4.135E-02 4.403E-02 2.978E-02 7.688E-02 1.120E-01 1.296E-01

4
mean 2.784E-02 2.080E-01† 2.188E-01† 5.662E-02† 2.038E-01† 3.081E-01† 1.920E-01†

std 1.477E-02 4.197E-02 3.766E-02 3.366E-02 7.907E-02 7.367E-02 9.019E-02

5
mean 1.771E-02 1.162E+00† 1.207E+00† 1.201E+00† 1.123E+00† 1.153E+00† 1.145E+00†

std 2.965E-02 2.180E-01 1.660E-02 1.963E-02 2.842E-01 2.425E-01 2.473E-01

6
mean 1.757E-01 1.265E+00† 1.303E+00† 1.231E+00† 1.175E+00† 1.134E+00† 1.260E+00†

std 4.129E-02 3.067E-01 2.319E-01 3.602E-01 3.967E-01 4.743E-01 4.769E-01

7
mean 1.408E-01 1.620E+00† 1.623E+00† 1.568E+00† 1.136E+00† 4.596E-01† 7.327E-01†

std 4.385E-02 3.036E-01 2.905E-01 4.101E-01 7.315E-01 4.854E-01 3.714E-01

8
mean 1.812E-01 1.607E+00† 1.631E+00† 1.577E+00† 1.369E+00† 6.017E-01† 6.495E-01†

std 4.854E-02 2.680E-01 2.464E-01 3.767E-01 5.735E-01 3.991E-01 4.664E-01

9
mean 3.595E-01 4.981E-01† 4.868E-01† 4.962E-01† 4.813E-01† 5.261E-01† 5.428E-01†

std 5.345E-02 6.991E-02 5.372E-02 6.987E-02 4.571E-02 1.060E-01 1.083E-01

10
mean 1.388E-01 3.775E-01† 3.774E-01† 3.257E-01† 2.821E-01† 4.790E-01† 4.893E-01†

std 1.148E-01 7.446E-02 6.858E-02 9.833E-02 1.135E-01 1.928E-01 1.501E-01

11
mean 1.318E-01 4.422E-01† 4.662E-01† 4.154E-01† 3.489E-01† 6.052E-01† 6.342E-01†

std 4.487E-02 1.759E-01 1.439E-01 1.508E-01 1.129E-01 9.166E-02 9.894E-02

12
mean 1.497E-01 3.597E-01† 3.236E-01† 3.680E-01† 3.012E-01† 4.166E-01† 4.171E-01†

std 9.985E-03 1.074E-01 1.023E-01 8.664E-02 8.989E-02 4.386E-02 1.011E-01

13
mean 7.414E-02 1.266E+00† 1.289E+00† 1.183E+00† 1.093E+00† 1.317E+00† 1.318E+00†

std 2.727E-03 2.173E-01 6.321E-02 3.456E-01 4.269E-01 1.433E-03 5.009E-02

14
mean 6.732E-02 1.235E+00† 1.103E+00† 1.127E+00† 1.143E+00† 1.273E+00† 1.277E+00†

std 1.918E-03 1.209E-01 3.857E-01 3.329E-01 3.002E-01 2.416E-03 3.608E-02

Wilcoxons rank sum test at a 0.05 significance level is performed between MOEA/D-ACDP
and each of the other six CMOEAs. † and ‡ denote that the performance of the

corresponding algorithm is significantly worse than or better than that of MOEA/D-ACDP,
respectively. The best mean is highlighted in boldface.
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Figure 7: The non-dominated solutions achieved by NSGA-II-CDP and SP with the me-
dian IGD in 30 independent runs for LIR-CMOP3, LIR-CMOP5, LIR-CMOP10 and LIR-
CMOP11.

20



Table 2: HV results of MOEA/D-ACDP and the other six CMOEAs on LIR-CMOP1-14 test
instances

LIR-CMOP MOEA/D-ACDP C-MOEA/D MOEA/D-CDP MOEA/D-Epsilon MOEA/D-SR NSGA-II-CDP SP

1
mean 1.365E+00 9.499E-01† 1.009E+00† 1.353E+00 1.376E+00 9.205E-01† 1.177E+00†

std 2.493E-02 7.038E-02 1.298E-01 4.417E-02 3.974E-02 8.084E-02 9.278E-02

2
mean 1.737E+01 1.395E+01† 1.374E+01† 1.705E+01† 1.736E+01 1.080E+00† 1.321E+00†

std 1.306E-02 8.154E-02 6.160E-02 1.693E-02 1.890E-02 1.597E-01 2.036E-01

3
mean 1.188E+00 7.558E-01† 7.600E-01† 1.184E+00 9.313E-01† 7.925E-01† 9.638E-01†

std 4.929E-02 5.730E-02 5.809E-02 2.898E-02 1.620E-01 7.920E-02 1.133E-01

4
mean 1.421E+00 1.069E+00† 1.051E+00† 1.390E+00† 1.089E+00† 9.025E-01† 1.087E+00†

std 1.946E-02 6.952E-02 5.462E-02 4.405E-02 1.360E-01 1.084E-01 1.497E-01

5
mean 1.903E+00 1.192E-01† 5.805E-02† 5.829E-02† 1.707E-01† 1.774E-01† 1.968E-01†

std 5.658E-02 3.352E-01 4.042E-04 2.022E-04 4.442E-01 3.498E-01 3.488E-01

6
mean 1.280E+00 7.863E-02† 4.312E-02† 1.325E-01† 1.682E-01† 2.700E-01† 2.300E-01†

std 4.613E-02 3.011E-01 2.362E-01 4.251E-01 4.061E-01 3.622E-01 3.565E-01

7
mean 3.408E+00 2.990E-01† 2.886E-01† 4.055E-01† 1.313E+00† 2.921E+00† 2.321E+00†

std 1.409E-01 6.927E-01 6.348E-01 8.879E-01 1.567E+00 1.078E+00 7.304E-01

8
mean 3.330E+00 3.246E-01† 2.695E-01† 3.859E-01† 8.287E-01† 2.505E+00† 2.521E+00†

std 1.461E-01 5.878E-01 5.297E-01 8.166E-01 1.244E+00 8.397E-01 9.773E-01

9
mean 4.080E+00 3.715E+00† 3.755E+00† 3.724E+00† 3.752E+00† 3.513E+00† 3.472E+00†

std 9.501E-02 2.079E-01 1.600E-01 2.033E-01 1.142E-01 3.230E-01 3.466E-01

10
mean 3.755E+00 3.274E+00† 3.268E+00† 3.385E+00† 3.477E+00† 2.903E+00† 2.905E+00†

std 2.208E-01 1.623E-01 1.416E-01 2.122E-01 2.383E-01 6.628E-01 5.629E-01

11
mean 5.004E+00 3.937E+00† 3.842E+00† 4.038E+00† 4.274E+00† 3.167E+00† 3.055E+00†

std 1.564E-01 6.479E-01 5.507E-01 5.727E-01 4.463E-01 3.863E-01 3.412E-01

12
mean 6.713E+00 5.977E+00† 6.134E+00† 6.010E+00† 6.240E+00† 5.771E+00† 5.764E+00†

std 5.874E-02 3.855E-01 3.617E-01 3.074E-01 2.950E-01 1.601E-01 3.083E-01

13
mean 7.897E+00 6.444E-01† 4.728E-01† 1.092E+00† 1.513E+00† 1.601E-01† 3.083E-01†

std 2.943E-02 1.317E+00 2.689E-01 2.052E+00 2.422E+00 1.420E-02 1.692E-01

14
mean 8.641E+00 7.766E-01† 1.627E+00† 1.430E+00† 1.269E+00† 5.810E-01† 6.053E-01†

std 1.546E-02 6.140E-01 2.473E+00 2.095E+00 1.919E+00 1.683E-02 2.244E-01

Wilcoxons rank sum test at a 0.05 significance level is performed between MOEA/D-ACDP
and each of the other six CMOEAs. † and ‡ denotes that the performance of the

corresponding algorithm is significantly worse than or better than that of MOEA/D-ACDP,
respectively. The best mean is highlighted in boldface.

4.5.3. Performance Comparison on the I-beam Optimization Problem470

The experimental results of HV values of MOEA/D-ACDP and the six other
CMOEAs on the I-beam optimization problem are shown in Table 3. It can be
seen that MOEA/D-ACDP significantly outperforms the compared CMOEAs
on this engineering problem.

To further study the superiority of the proposed method MOEA/D-ACDP,475

the non-dominated solutions achieved by each CMOEA during the 30 indepen-
dent runs are plotted in Fig. 8 (a)-(h).The non-dominated set of all the above so-
lutions generates a set of ideal reference points. It is clear that MOEA/D-ACDP
has better convergence performance than the other four decomposition-based
CMOEAs (C-MOEA/D, MOEA/D-CDP, MOEA/D-Epsilon and MOEA/D-SR).480

MOEA/D-ACDP has better diversity performance than the two compared dominance-
based CMOEAs (NSGA-II-CDP and SP). The box plot of HV values of the
CMOEAs is shown in Fig. 8 (h), which further illustrates that MOEA/D-ACDP
outperforms the other six CMOEAs on the I-beam optimization problem.

4.6. Influence of Parameter Setting in ACDP485

There are two critical parameters in ACDP.

1) Tc, the termination generation for control of θ(k).

2) θ0, the initial value of θ.
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Figure 8: The non-dominated solutions achieved by each algorithm during 30 independent
runs are plotted in (a)-(g). In (h), the box plots of each CMOEA are plotted.

Table 3: HV results of MOEA/D-ACDP and the other six CMOEAs on the I-Beam opti-
mization problem

MOEA/D-ACDP C-MOEA/D MOEA/D-CDP MOEA/D-Epsilon MOEA/D-SR NSGA-II-CDP SP
mean 6.046E+01 5.905E+01† 5.921E+01† 5.916E+01† 5.948E+01† 6.026E+01† 6.017E+01†

std 1.096E-01 2.996E-01 3.508E-01 3.246E-01 2.248E-01 2.283E-01 2.775E-01

Wilcoxons rank sum test at a 0.05 significance level is performed between MOEA/D-ACDP
and each of the other six CMOEAs. † and ‡ denote that the performance of the

corresponding algorithm is significantly worse than or better than that of MOEA/D-ACDP,
respectively. The best mean is highlighted in boldface.
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In this paper, Tc = 0.8Tmax. This is a default setting of Tc for many al-
gorithms of the same kind in the research community [33, 42]. We therefore490

mainly focus on investigating the influence of θ0 in ACDP.
To analyze the influence of θ0 setting, we run MOEA/D-ACDP with θ0 =
π

2N×16 ,
π

2N×4 ,
π
2N ,

π×4
2N , π×162N , π×642N , π2 on LIR-CMOPs for 30 independent runs.

In Table 4, the performance of MOEA/D-ACDP with θ0 = π
2N×16 and θ0 =

π
2N×4 is similar to that of MOEA/D-ACDP with θ0 = π

2N . When θ0 ≥ π×4
2N ,495

the performance of MOEA/D-ACDP decreases. In Fig. 9, the mean values of
IGD on LIR-CMOP5, 7, 12 and 14 with different values of θ0 are plotted. We
can see that θ0 ∈ { π

2N×16 , π
2N×4 , and π

2N } have similar performance, and that
they are better than those of MOEA/D-ACDP with θ0 >

π
2N . Thus, we suggest

that θ0 be set in the interval [ π
2N×16 ,

π
2N ]. In this work, θ0 is set to π

2N .500

Table 4: Comparison results of MOEA/D-ACDP on LIR-CMOP1-14 with different θ0 (pop-
ulation size N = 300)

θ0 = π
2N×16 θ0 = π

2N×4 θ0 = π
2N θ0 = π×4

2N θ0 = π×16
2N θ0 = π×64

2N θ0 = π
2

3 3 + 1 4 2 2
1 1 - 6 10 12 12
10 10 = 7 0 0 0

Wilcoxons rank sum test at a 0.05 significance level is performed between MOEA/D-ACDP
with θ0 = π

2N
and that with other six initial threshold settings. ’+’, ’-’ and ’=’ denote the

number of instances on which MOEA/D-ACDP with the corresponding θ0 is significantly
better/worse/not better and not worse than that with θ0 = π

2N
in terms of the IGD metric,

respectively.

5. Conclusions

This paper proposes a new constraint-handling mechanism named ACDP. It
utilizes the angle information between any two solutions to dynamically main-
tain the diversity of the population during the evolutionary process. The propor-
tion of feasible solutions is also used to maintain a balance between convergence505

and feasibility of a population. A set of CMOP instances called LIR-CMOP1-14
are tested. All the test instances have large infeasible regions in their objective
spaces, which make it difficult for many CMOEAs to achieve the real PFs. Com-
pared with the other six popular CMOEAs, the proposed algorithm can help
the population to cross large infeasible regions more effectively. Additionally,510

the experimental results demonstrate that the proposed algorithm can work well
on a real-world engineering problem. Thus, we can conclude that MOEA/D-
ACDP outperforms the other six CMOEAs. In summary, MOEA/D-ACDP has
following advantages:

• The proposed MOEA/D-ACDP utilizes the angle information between515

solutions to maintain the diversity of the population for CMOPs.

• MOEA/D-ACDP enhances convergence to the PF by exploring feasible
and infeasible regions simultaneously during the evolutionary process, in-
stead of wasting the useful information represented by infeasible solutions.
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Figure 9: Means of IGD by using MOEA/D-ACDP for initial threshold θ0 ∈
{ π
2N×16

, π
2N×4

, π
2N

, π×4
2N

, π×16
2N

, π×64
2N

, π
2
} on LIR-CMOP5, 7, 12, 14 at 30 independent runs.
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Although the proposed MOEA/D-ACDP performs well on CMOPs with two520

and three objectives, we still need to enhance its capability for solving CMOPs
with more than three objectives. One aspect of our future work is to study
the characteristics of constrained optimization problems beyond three objec-
tives, and to design suitable constraint-handling mechanisms in the framework
of MOEA/D-ACDP to solve them. Additional planned future work will fo-525

cus on developing new mechanisms of mining more useful information during
the evolutionary process to further improve the performance of the proposed
algorithm.
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Highlights 

1. The proposed MOEA/D-ACDP utilizes the angle information between solutions to 

maintain the diversity of the population for CMOPs. 

2. MOEA/D-ACDP enhances convergence to the PF by exploring feasible and infeasible 

regions simultaneously during the evolutionary process, instead of wasting the useful 

information represented by infeasible solutions. 

3. The experimental results illustrate that MOEA/D-ACDP is significantly better than the 

other six CMOEAs on fourteen benchmark problems and an engineering optimization 

problem. 
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