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Abstract

This paper proposes a novel consu. ~int-handling mechanism, namely the angle-
based constrained dominance principle (ACDP), to solve constrained multi-
objective optimization pr viei. © (CMOPs). In this work, the mechanism of
ACDP is embedded in ¢ decomp rsition-based multi-objective evolutionary al-
gorithm (MOEA/D). ACD. ns s the angle information among solutions of a
population and the p  opo dion of feasible solutions to adjust the dominance re-
lationship, so that iv =a". me ntain good convergence, diversity and feasibility
of a population, s’ .nultan. - sly. To evaluate the performance of the proposed
MOEA/D-ACDT, . vteen benchmark instances and an engineering optimiza-
tion problem are studieu. Six state-of-the-art CMOEAs, including C-MOEA /D,
MOEA/D-CT P, 1 TOEA /D-Epsilon, MOEA /D-SR, NSGA-II-CDP and SP, are
compared. " "e < xperimental results illustrate that MOEA /D-ACDP is signif-
icantly be’ cer the ~ the other six CMOEAs on these benchmark problems and
the real- vorls case, which demonstrates the effectiveness of ACDP.
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1. Introduction

Multi-objective optimization problems (MOPs) involve che ' “imization of
more than one objective function. In the real world, man, ~r.imization prob-
lems involve a number of constraints and multiple cor®cting ~bjectives. In
general, a CMOP can be described mathematically as .ollows.

minimize  F(x) = (f1(x), Salx), "
subject to ¢;(x) >0,i=1,. .,¢ 1)
h] (X) = 07.] = A
x e R"”
where F(x) = (f1(x), f2(x), ..., fm(x))T € ™ 15 wn m-dimensional objective

vector, g;(x) > 0 is the " inequality constra. “, and h;(x) = 0 is the j'*
equality constraint. x € R” is an n-dime <ional decision vector. The feasible
region S is defined as the set {x[g;(¥) > 0,. = 1,...,¢ and hj(x) = 0,5 =
1,...,p}

In CMOPs, there are usually more han one constraint. To capture the
degree of constraint violation, these -~ str.ints are commonly summarized into
a scalar value as follows:

$(x) = E‘ | min(gi(x), 0)[ + Z | ()] 2)

When ¢(x) = 0, the solutic » x is feasible; otherwise it is infeasible.
For any two feasit e sclutious x* € R and x® € R™ of a CMOP, it can be
said that x* domine =s > if *.e following condition is met:

4 fi(x®) < fi(x) and 3j f;(x%) < f;(x") (3)

where ¢, j € {7, " ...,m}. If there exists a solution x* € S that is not dominated
by any other solu’.on in S, x* can be said to be a Pareto optimal solution. The
set of all Parc.- optimal solutions is called a Pareto set (PS). The set of the
vectors ir the objc:tive set to which the PS maps is called the Pareto front
(PF), w' ich an’ e defined in the form PF = {F(x)| x € PS}.

Maintan.. e a balance among convergence, diversity and feasibility of a
popt .ation ‘s very critical when solving CMOPs. There are two basic as-
pect. of mai taining the balance of these three metrics in constrained MOEAs
(CMOL A0 One is the multi-objective optimization method and the other
3 the ( »mstraint-handling technique. Multi-objective evolutionary algorithms
MOEA ) are widely used to solve MOPs, because MOEAs can, in a single
ruw., _.olve a set of non-dominated solutions that approach the global optimum
a . re well distributed. According to the selection strategy used in the evolu-
tonary process, MOEAs can be classified into three different types. The first
t, pe is the dominance-based MOEA, which uses a selection strategy based on
Pareto domination. A popular MOEA of this type is NSGA-II [1], which adopts
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a non-dominated sorting and elitism-preserving strategy. Othe. ~epres ntative
dominance-based algorithms include NSGA [2], MOGA [3], “T™A |+, PAES-II
[5], SPEA-IT [6] and NPGA [7]. The second type is the < ecor .pc “tion-based
MOEA. A representative example is MOEA /D [8], which ac - nposes an MOP
into a number of single-objective optimization problems’~UPs). ... recent years,
decomposition-based MOEAs have attracted much atte 1tion, a. d many variants
of MOEA /D have been proposed, including MOEA /D-"F [91 MOEA /D-M2M
[10], EAG-MOEA/D [11], MOEA/D-SAS [12] an . so on. The third type of
MOEA is the indicator-based MOEA. A classic e -ar ple « f this type is IBEA,
which uses a scalar metric index to assist the sel ~tion[13!1 Other representative
examples of this type include SMS-EMOA [14], Hy,™ [15] and FV-MOEA [16].

The constraint-handling technique is the « *her key component in CMOEAs.
In general, constraint-handling methods ca. be >~ .ified into four types. The
first type is the feasibility-driven method, whic. tends to preserve feasible so-
lutions in a population. Coello Coello a.. * Cnristiansen [17] proposed a simple
method, in which infeasible solutions are ai. ‘enored during the evolutionary
process. Deb et al. proposed a consu aiuc - 'sminance principle(CDP) [18] to
compare two arbitrary solutions. CDP L, three basic rules: 1) When two feasi-
ble solutions are compared, the onc «. min. ting the other in terms of objectives
is better. 2) When a feasible solutio. is compared with an infeasible one, the
feasible one is better. 3) Whew ~wo - asible solutions are compared, the one
with a smaller degree of constraint . ~lation is better. Powell and Skolnick [19]
proposed a constraint-handline technique named superiority of feasible solution
(SF). For an infeasible so’ ition, .'s fitness is defined as the sum of the objective
value of the worst feasibic "olutio 1 (fuworst) and the constraint violation ¢(x) of
the infeasible solution wherea. .he fitness of a feasible solution is simply equal
to its objective value Tbh refo-e, feasible solutions are always better than infea-
sible solutions. Th~ ar e f asibility-driven constraint-handling methods have
not taken full ad” antage o. the useful information contained in the infeasible
solutions, whick may “~ad them to become trapped in local optima.

The second __-ve trades off the feasibility and convergence of a population
simultaneous y. . .msenez et al. proposed a min-max formulation [20], which
drives infeasiu. solutions to evolve toward feasible ones, and drives the fea-
sible solu’ions to e/olve toward the global optimum. Young proposed a non-
dominat 4 r .nkir g method [21] which blends the ranks of a solution in both
objective a..' constraint spaces. Singh proposed an infeasibility-driven evo-
lutic .ary a'vorithm (IDEA), which maintains a small proportion of infeasible
solui ‘ons in t 1e population to improve the convergence [22]. In [23], a stochastic
rarking ~ .nod (SR) was proposed, in which solutions are compared based on
sbjecti =s or constraints randomly with a probability S,.. Takahama et al. pro-
cosed ar € constraint-handling method [24]. When the constraint violation of a
sor..loa is smaller than e, it is regarded as a feasible solution. In [25], an adap-
1.« constraint-handling method was proposed. Ning proposed a constrained
on-dominated rank based on the constraint violation and Pareto rank [26] to
b. lance the feasibility and convergence. Most constraint-handling methods of
this type do not explicitly consider a mechanisms to maintain diversity of the
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population, especially for solving CMOPs with large infeasible .. ~ions.

The third type is the penalty-based method. Woldesenl .. et ai. proposed
an adaptive penalty function, which consists of a distance v .tue © au “vo penalty
values [27]. Jan and Zhang proposed a penalty function for »-” £A/D. It adopts
two types of penalty functions [28]. However, the id ... pena.y factors are
difficult to set in advance.

The fourth type is the hybrid method, which co. bines parts of several
constraint-handling methods to deal with constra’.ts. Wang et al. proposed
the adaptive tradeoff model (ATM) [29]. In ATM. .ne wvolutionary process
is classified into three phases. In each phase, » ditferer, constraint-handling
method is adopted. Qu et al. proposed an ensc. ble method to deal with
constraints[30]. It has several sub-populatioi. - and ez *h sub-population uses a
different constraint-handling method.

It can be concluded that most of the existi. = constraint-handling methods
emphasize treating convergence and feas. 'uty during the evolutionary process,
while diversity is usually not explicitly consi. ved and well maintained. In this
paper, we propose a new constraint-h. nuw. . method named ACDP, which can
maintain good diversity as well as conv » gence and feasibility of a population
simultaneously. The method uses "« ang'e information among solutions of a
population and the proportion of fe. sib.e solutions to adjust the dominance
relationship.

The rest of this paper is organi. 1 as follows: Section 2 briefly introduces
MOEA/D, NSGA-II and siv representative CMOEAs. Section 3 introduces
the details of the angle-' ased « nstrained dominance principle embedded in
MOEA/D. Section 4 give. ~ompr :hensive experimental results of the proposed
algorithm MOEA/D-/ CDP a. . six other CMOEAs on LIR-CMOPs and the
I-beam optimization orol.em. Finally, conclusions are made in section 5.

2. Related Wc 'n

2.1. Decompo w. n-based CMOFEAs

In the oi.~ins. framework of MOEA/D [8], given a series of uniformly dis-
tributed v eight ~ctors, a MOP is decomposed into N scalar subproblems
(SOPs), «md -ach SOP relates to one solution. In MOEA/D, a set of N uni-
formly sp. -4 we ght vectors AL, ..., AV is initially generated for N subproblems.
A wei ... vecte A satisfies the following conditions:

13
-~

L/\izl and A, >0 foreach ke {1,...,m}. (4)
k=1

The e are several approaches to decompose a MOP into a number of scalar
~ntimization subproblems [8, 31]. Three decomposition approaches, including

t1e weighted sum [31], Tchebycheff [31] and boundary intersection approaches

2l are commonly used. In this paper, the Tchebycheff decomposition method
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is used in the MOEA /D framework. The j-th subproblem is de.. *od as ‘ollows:

: 1, ;
minimize ¢*°(x|\’, 2*) = max {)\Jm(x — 7| }

1<i<m
subject to x € S (5)
where z* = (27,...,2},) is the ideal point, and z = min_ *(v,x € S}.

Decomposition-based CMOEAs combine the M/JEA /™ with different constraint-
handling mechanisms. In this paper, we introduce 1

based CMOEAs including C-MOEA/D [25], M. “EA/™ CDP [32], MOEA /D-
Epsilon [33], and MOEA/D-SR [32].

2.0

e C-MOEA/D [25] uses a variant of t! » eps'~ constraint-handling tech-

nique. In this technique, the epsilon le. ! is set to handle constraints
according to the constraint violati. + aua tnhe proportion of feasible solu-
tions in the current population. Whe. comparing any two solutions, if
overall constraint violations of i ‘¢ 5.” “*~ns are both less than the epsilon
level, the one with a better aggre, = .ion value dominates the other. Oth-
erwise, the one with a smali.* ~vera'! constraint violation dominates the
other.

MOEA/D-CDP [32] uses C2P to judge the dominance relationship be-
tween two arbitrary solutions. t'he comparison between two solutions is
based on the followi' ¢ uvw ~ rules:

1) When two feasi’-le solut >ns are compared, the one with a better ag-
gregation value is bety.

2) When at leas. on' of two solutions is infeasible, the one with a smaller
degree of overa.” o astr .nt violation is better.

MOEA/D-T silon [33] uses the original epsilon constraint-handling tech-
nique. The epsiu. level setting can be found in [34]. As the generation
counter . .1creases, the epsilon level dynamically decreases.

MOEA, ™ 5R [32] embeds the stochastic ranking method (SR) [23] in
MO™.A/D to leal with constraints. A threshold parameter ry € [0,1] is set
to Hala .ce t".e selection between the objectives and the constraints. When
comp. “ing two solutions, if a random number in [0, 1] is less than r¢, the
one with a better aggregation value is retained into the next generation.
If the 1 mmdom number in [0, 1] is greater than ry, MOEA/D-SR is similar
v M7 EA/D-CDP. In the case of r; = 0, MOEA/D-SR is equivalent to
MOEA/D-CDP.

™ minance-based CMOFEAs
arrently NSGA-II [1] is a widely used dominance-based MOEA. In NSGA-

" [, an offspring population @ is generated by genetic operators from the popula-
t.on P at each generation. A fast non-dominated sorting approach is applied on
P UQ@Q. Each individual is assigned to a non-dominated rank. Solutions in the

w repr: sentative decomposition-
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first k ranks are selected into P’, until the number of solutions . P’ 1. greater
than or equal to the population size N P. If the size of P’ is _ =ater han NP,
solutions in the k-th rank are first removed from P’. Then, ,olut oi. ‘n the k-th
rank are sorted based on crowding distances in descending . - er, and the first
NP — P'| solutions are added to P’ to make sure tha* w.e size >f P’ is equal
to NP.

Dominance-based CMOEAs select the next generwzion b .sed on the fast
non-dominated sorting approach. Two representat’ ve examples include NSGA-
II-CDPJ1] and SP[27]. In NSGA-II-CDP[1], the CI".” 1 :thod is adopted to
judge the dominance relationship between any *wo indiv.duals. In SP [27], a
CMOP is transformed into an unconstrained MOF . - using a penalty function.
The value of the penalty function is self-ade tively c .anging according to the
feasibility fraction of the current populatioi. The | - ulation is sorted based on
non-dominated sorting [1] on the transformed or, *~tives during the evolutionary
process.

3. MOEA/D with Angle-based C ‘ns.rained Dominance Principle

In this section, the definition ot “u. nro,osed ACDP and the effectiveness of
this mechanism in MOEA /D are det.’lea.

3.1. Angle-based Constrained Domu,. ~nce Principle

In the CDP approach ' -vith its three basic rules, the overall constraint
violation is the most impr .tant ta ‘tor during the evolutionary process, and some
useful information in the .. ‘easil e regions tends to be ignored.

The angle betweer twoe solu..ons in the objective space can be used to mea-
sure their similarity 35]. Cor pared with other Euclidean distance metrics, the
angle information *, eas. ~ f r normalization [36]. In this paper, we propose an
angle-based cons’. ~ined dominance principle(ACDP) to deal with constraints.

The definitica of 1..~ angle between any two solutions x' and x? is given as
follows:

F(x') — )" (F(x?) — Z*))

le.t x*,2%)=
angle(-4,x°, z*) =arccos (|F(xl)—z*||~||F(X2)—Z*||

(6)

where z© - .2}, ..,z%) is the ideal point, and zf = min{f;(x|x € S}. || || is
the tv . aorm . . a vector.

/s show. in Fig. 1, given any two solutions x' and x?, the angle between
them  the « ojective space is 7. Obviously, the angle between any two solutions
i 1css than or equal to 7/2, which means that the range of angle between any
wo solt “ions belongs in [0, 7/2].

Giv- a any two solutions x! and x?, a threshold angle 6, a random number
~ and a parameter py (N“mbe;;’;i:if;ﬁlgsglu“ons) which denotes the proportion
c . feasible solutions in the current population, the ACDP is defined as follows:

1. If both solutions are feasible, given one solution dominates the other, the
one dominating the other is better; otherwise, they are incomparable.




f
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Figure 1: Illustration of the angle 1. “ween <! and x2

2. If there is at least one infeasible s 1tion and angle(x!,x?,2*) < 6, the
one with a smaller constraint violation . ~minates the other.

195 3. When there is at least one infeas. Ie solution and angle(x', x2, 2*) > 0, if
r < py, and given one solut. .. don.mates the other, the one dominating
the other is better; otherwise, \hey ~re incomparable.

3.2. ACDP in the framework of m "EA/D

As we know, MOEA/D »<es the value of the decomposition function of a
200 solution in the updating of its “eighbors. In order to use ACDP to handle
constraints in the framew. -k of } OEA/D, here we provide a version of ACDP
which is suitable to tb . algori.) n.
Given a subprobl’ m w ch a weight vector A, for two solutions x! and x2, their
overall constraint viola. s .re ¢! and ¢2. It is worth noting that ¢! > 0, ¢? >
s 0. The aggregatic » values of x! and x? on the subproblem sp are g**(x!|\, z*)
and ¢g'¢(x?|)\,2* . Tu. ACDP dominance =y in the framework of MOEA/D is
defined as follr . -

(Rule 1if ¢' =¢>=0:
g x|\, 2%) < gt (x2|A, 2%);

Rule 2 if ¢! + ¢? > 0 and angle(x!,x2,2*) < 0 :
Pl < ¢%

Rule 3 if ¢! + ¢? > 0 and angle(x!,x2,2%) > 0 :
r < pg and g'¢(x! |\, 2*) < g'¢(x2|\, 2*).

- j@ .‘(2 PN

(7)

w. ~re  is a threshold parameter, which is defined by users. In Eq. (7), the
~»<traint-handling method ACDP is equivalent to CDP [1] when § > 7. The

20 7 2ason is that the maximum value of angle(x!,x2,2*) is 5. As a result, the
lue of angle(x!,x2,z*) is always less than or equal to § when 6 > 5. In

the case of ¢! < ¢? in Eq. (7), the second rule can be always met, but the
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third rule can never be fulfilled. Thus, Eq. (7) can be transic med .1to Eq.
(8) when 6 > 7, which is the same as CDP. Note that Rul = of k., (7) can
be decomposed into two sub-rules. The first sub-rule is *aat ,u. - a feasible
solution is compared with an infeasible one, the feasible o. ~ 1s better, which
is the same as the second rule of CDP. The second su' .ule is Jiat when two
infeasible solutions are compared, the one with a smal >r consy aint violation is

better, which corresponds to the third rule of CDP.

Rule 1 if ¢! =y, ¢? =0
gte(xl|)\,z“, P gte(X2|)\,z*);
Rule 2 if * +¢% >0:
¢1 < /2.

x' 2 x*(0> %)<

(®)

In Rule 1 of ACDP, when these two sc’'tions are both feasible, the solution
with a lower aggregation value dominates the < her, which is similar to the first
rule of CDP.

When at least one of x' and x? is i1 =asible, CDP only compares the con-
straint violations of these two soluv 0.~ w.ich makes the diversity of the pop-
ulation difficult to maintain when mc=t of the solutions in the population are
infeasible. In contrast, ACDP uu."*7es awditional information to compare the two
solutions, which includes both the a. gle between the two compared solutions
in the objective space and "' ~ proportion of feasible solutions in the current
population (py). More dr .ails ot ACDP in this situation are listed as follows:

e In Rule 2 of ACT/P, if tn. angle between x! and x? in the objective space
is smaller thar the par meter 8, ACDP considers that these two solu-
tions are sim’lar . ~d ¢, mpares them according to their constraint viola-
tions. Beca® =e these vwo solutions are similar, based on the framework of
MOEA/D, they ~ill be considered to relate to the same subproblem. In
this situs .. n, using the constraint violations to compare the two solutions
will no” cav e the loss of the diversity.

e In B de 3 o1. CDP, if the angle between x! and x? in the objective space is
lar jer t'ian *he parameter §, ACDP considers that these two solutions are
dissi. lar. and the solution with a lower aggregation value will dominate
.ne other with a probability of py. Some infeasible solutions with low
aggreg. tion values will have a chance to be selected in the next generation,

hich nay enhance the convergence of the population.

e 1. 2 probability in Rule 3 of ACDP is set to be the proportion of feasible
sc utions in the current population. It keeps the balance of the exploration
of the population between infeasible regions and feasible regions. When
py is large, ACDP tends to explore infeasible regions. When py is small,
ACDP tends to explore feasible regions.
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3.3. Effectiveness of ACDP in MOEA/D

The evolutionary process of a CMOEA can be general’y (ivideu in three
stages according to the status of the population. In the firs  sta e, a population
is generated randomly, and most of the individuals are far a. av from the real
PF as shown in Fig. 2 (a) and Fig. 2 (b).

In the second stage, the population begins to expl re the ¢ »arch space. As
shown in Fig. 2 (c), when using CDP in MOEA/D, e r pulation will be
attracted to feasible regions and actually find it d’.ficul* “o go across infeasible
regions. As shown in Fig. 2 (d), when ACDP is a; »V .d tc MOEA/D, the pop-
ulation can maintain its diversity by using angle forr-~".on. Some individuals
can enter infeasible regions, which can help the popui. ion to go across infeasible
regions effectively. Additionally, ACDP uses 1. ~ prope rtion of feasible solutions
in the current population in its selection ot . ~lutiv..s to retain, which can help
to balance the search between feasible and infeas “le regions.

In the third stage, the population w.' converge to boundaries of feasible
regions, with most individuals that lie on the . sundaries being non-dominated.
In contrast, when using CDP, the p »ul .uva tends to get trapped in local
optima, because of the difficulty ~f crc sing infeasible regions in the second
stage, as shown in Fig. 2 (e). Instvaw, when using ACDP, the population can
converge to the real PF more comple ely, as shown in Fig. 2 (f), because the
population can maintain its dive.. *ty awuu explore infeasible regions in the second
stage.

3.4. The Setting of 0

In the early stage of the ol tionary process, population members are usu-
ally far from the real PF To prevent the population from being trapped in a
local optimum, the v. "v of € should be small, to maintain the diversity. Later
in the evolutionar- proce. - convergence should be emphasized, so the value of
0 should become i ~er. Based on the above analysis, the value 6(k) should be
dynamically increased . ith increasing generation counter k. In this paper, a
method for se.tin (k) is proposed as follows:

L \?
o(k) = oo (1472 ) 1<k <T .
g Te <k <Tnaa

whe = 6 is a initial threshold value, N is the size of population and T, is the
maxii. 'm e olutionary generation. T, = aTnez, @ < 1, is the final generation
“or the control of . The parameter cp is initialized to % to make
(k) =7 /2 when k =T..

T T1g. 3, the changing trends of §(k) with different initial values of 6(0) are
v - '~d, which shows that 6(k) is gradually increasing until & = T,. According
o Eq. (9), when the generation counter k reaches T, 0(k) = 5. In the early
s age of the evolutionary process, (k) increases continuously and slowly, which
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Figure 2: Illustrations of the evolutionary process of MOEA/D with CDP and ACDP.
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can help the population to maintain diversity. When k is close '~ T., "(k) in-
creases quickly, which helps the population to enhance its cor . ~genc. When k
reaches T, 6(k) is equal to 5, so ACDP is transformed in'> CI r, ~hich helps
the population to maintain feasibility.
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Figure 3: The changing trends of 6#(k) with different initial values of 6(0).

3.5. ACDP embedded n Mc4 D

The proposed MC £A ' D-ACDP integrates the general framework of MOEA /D
and the angle-base? cu. ‘tra’ ied dominance principle.

The pseudoco @ of MOLA/D-ACDP is listed in Algorithm 1. Lines 1-5 ini-
tialize some par: mete. » in MOEA /D-ACDP. First, a CMOP is decomposed into
N subproblemr”  -hich are associated with weight vectors A!, ..., AN. Then the
population F, the .nitial increasing factor cp, the ideal point z* and the neighbor
indexes B(i) . initialized. Lines 7-11 update the angle threshold value (k).
Line 12 v dates tue proportion of feasible solutions in the current population
p¢. Linc * 12 23 ¢ nerate a set of new solutions and update the ideal point z*.
To be more . e fic, lines 14-21 determine the set of neighboring solutions that
may oe upcated by a newly generated solution y7. In line 22, the differential
evoli tion (I 3) crossover operator is adopted to generate a new solution y”.
Meanw. '~ y7 is further mutated by the polynomial mutation operator. The
deal p int z* is updated in line 23. Lines 24-39 update subproblems. In line
"7, the ubproblems are updated based on the ACDP approach, for which the
deu.”’_u pseudocode is listed in Algorithm 2. At the end of each generation, non-
u ... aated solutions (N S) in the population are selected to update the external
«xchive based on non-dominated sorting in line 31.

In Algorithm 2, the algorithm updates a subproblem in terms of Eq. (7).
Lines 3-7 denote that when two feasible solutions x/ and y’ are compared, the

11




Algorithm 1: MOEA /D-ACDP

(S N N N

Input:

N: the number of subproblems.

Tinaz: the maximal generation.

N weight vectors: A1, ... AN,

T': the size of the neighborhood.

6: the selecting probability from neighbors.

n,: the maximal number of solutions replaced by - chi d.
0o, a: the parameters of ACDP method.

Output: NS : a set of feasible non-dominatea . ~lutions

Decompose a CMOP into N subproblem: associat d with AL, ... AV,
Generate an initial population P = {x*, .,V

Initialize cp to %

Initialize the ideal point z* = (z1,...,~, ).

For each i =1,..., N, set B(i) = "*- ... 1, }, where A, ... A\'T are the

T closest weight vectors to A’.

6 for k < 1 to T},4, do
7 if k£ < aT},4. then
8 ‘ Set O(k) according t~ A(k) = Oy(1 + Tn]jw )P,
9 else
10 | Set 6(k) to be equal to 3
11 end
12 Update pf in the ‘urrent eneration.
13 Generate a rancdom p ~w tation rp from {1,..., N}.
14 fori«+ 1to /] dc
15 Generate « »a .dor number r € [0, 1].
16 j=rp().
17 if r<o . ten
18 | S =B(j)
19 els :
20 S--{1,...,N}
21 -nd
22 Ge serate y’ through DE and polynomial mutation operators.
23 ‘ “"odat 2 the current ideal point.
24 Set . = 0.
25 wile ¢ # n, and S # @ do
26 | select an index j from S randomly, S = S\{j}.
iy \ result = UpdateSubproblems(x?, y7, 0(k), pf)
28 if result == true then c=c+ 1;
20 | end
.| end
1 ‘ NS = NondominatedSelect(N.S'|J P)
+> end

12




Algorithm 2: Subproblem Update

© 00 N Ok W N

NN NN R R R R e e e e
B W N B O © 0 N O Gt h W N - O

Function result = UpdateSubproblems(x" v7, 0(F), pf)

end

result = false
if ¢(y’) =0 and ¢(x’) =0 then

if g'(y'|N,2*) < g*“(x’|M,z - tnen

x) =y
result = true

end

else

if angle(F(y’),F(x?),2*) <~ k) then

if ¢(y7) < d(x?) en
result =+~

end
else
if rand’) < vy tuen

b. O Y

| result = true

end

2nc

el

en .
I’ cur . recult

if (v [N o) < g'(x7|N, 2*) then

13
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one with a better aggregation value is selected. Lines 9-13 deno. thauv shen at
least one of two solutions x? and y’ is infeasible, if the ang! ~ etwec. them in
the objective space is lower than 6, the solution with a lowe’ con i’ ~t violation
is selected. Lines 15-20 denote that when at least one of tv = solutions x’/ and
y7 is infeasible, if the angle between them in the object .. space is larger than
0, the solution with a lower aggregation value will be se ected w 'th a probability

of Pf-

4. Experimental Study

4.1. Test Instances LIR-CMOPs

To evaluate the performance of the prop.-ed M OEA/D-ACDP, 14 con-
strained multi-objective test problems with la. - inteasible regions in the objec-
tive space are used [37, 38]. The genera' ~»~~~-* istic of LIR-CMOPs is that
their real PFs are blocked by a number of 1.. ve infeasible regions, and thus hard
to find during an evolutionary process Their coustraint functions are comprised
of controllable shape functions and du *a’ ce runctions [39]. More specifically,
the shape functions are used to ma’ ~ the . 'V shapes convex or concave, while the
distance functions are used to adjus t..> convergence difficulty for CMOEAs.

4.2. Real-world Engineering Optw. ization: I-beam

To evaluate the performance of MOEA /D-ACDP for solving real world op-
timization problems, an e .ginec ing optimization problem with two conflicting
objectives is studied.

As defined in [40] the 1 e .n optimization problem shown in Fig. 4 is
a bi-objective constr .nec optimization problem which needs to minimize the
following objectives s.. > (tar ously:

1. Cross-sectional area ot " e beam;
2. Static deflect’ on «“ the beam for the displacement under force P.

The decisior variable vector of the problem is x = [z, 22, 23, ¥4]T, which is
in units of ce .tim ters. The range for each decision variable is listed as follows:
10 <z <8u, "N <y <50,09 <24 <5,0.9<2x4 <5. Some given parameter
settings a2 listea . 5 follows:

1. Perm’ssib' - ber ding stress of the beam’s material: k, = 1.6kN/cm?.
2. Young's fod .lus of Elasticity: F =2 x 10*kN/cm?.

3. M .ximal beuding forces: P = 600kN and @ = 50kNN.

4. T e lengt  of the I-beam: [ = 200cm

T T-h am optimization problem considered in this paper is defined as

“ollows:
minimize  f1(x) = 2zox4 + x3(1 — 224)
B PI3
 48EI (10)

minimize  fa(x)

subject to c¢(x) =ky — — —

14




350

355

360

365

Figure 4: The geome "y r ouc.ing of I-Beam.

where I is the inertia coefficient whic» ce.. be calculated by Eq. 11.

z3(1 — 224)” + “mowaldws® 4 3w (71 — 224)] (11)
12 '

The values of M, and M are 3. 00kN - cm and 2500kN - cm, respectively.
The section modulus can ~ ~ calc lated by Eqgs. 12 and 13.

I =

y 3(_1“;2”‘4)3 + 2914 [4$42 + 31‘1(131 — 2374)]

W =
Y 61‘1

(12)

(v1 — 2w4)23% + 224293

W, =

629 (13)

To study the landscape in the objective space of the I-beam optimiza-
tion problem, . 100,000 sampling solutions are generated, where 850,000 so-
lutions ar : ge .erated randomly, and the other 150,000 solutions are generated
by MOL A /T -ACDP. In Fig. 5, it is observed that there exist a few infeasible
regions in tuc 2 jective space for the I-beam optimization problem (the propor-
tion »Of feasi le solutions among all sampled solutions p = 0.5339, which means
that nearly } alf of the selected points are infeasible).

1.8. Eu erimental Settings

To « valuate the performance of the proposed MOEA /D-ACDP, it is com-
nared with six popular CMOEAs (C-MOEA/D, MOEA/D-CDP, MOEA /D-
F psuon, MOEA/D-SR, NSGA-II-CDP and SP), using a differential evolution
DE) crossover operator. They are tested on LIR-CMOP1-14 and the I-beam
optimization problem. The detailed parameters are listed as follows:

15
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Figure 5: The distribution of the * Beam roblem.

1. Polynomial mutation probability P~ .. (n is the number of decision
variables) and its distribution index :- set to 20. For the DE operator,
CR=1.0, f=0.5.

2. Population size: N = 300. Neighb. hood size: T' = 30.

©w

Stopping condition: each algc it~ is run 30 times independently, and
stops when 150,000 funct™ .- ~va, "ations are reached.

Probability of selecting indivia. als in the neighborhood: § = 0.9.

The maximal numbr . ot 5 lutions replaced by a child: nr = 2.
Parameter setting in *"OE ./D-ACDP: a = 0.8 and 0y = 5.

Parameter sett’ 1g ir MOEA /D-Epsilon: T, = 400, ¢p = 2 and § = 0.05N.
Parameter se ting .~ M .OEA/D-SR: S, = 0.01.

© N o

4.4. Performan.e Me. “c

To measur . «. 2 performance of MOEA /D-ACDP, C-MOEA /D, MOEA /D-
CDP, MOE# /D-T psilon, MOEA /D-SR, NSGA-II-CDP and SP, two widely used
metrics are emy. ~wed: inverted generational distance (IGD) [41] and hypervol-
ume (HV ) [4] Theur definitions are as follows.

e Inve. ed senerational Distance (I/GD):

IGI is a n ~tric which evaluates the performance related to convergence and
divel "ity simr iltaneously. Let P* be a set of uniformly distributed points in the
id 1Pi. Zet A denote an approximate PF achieved by a certain CMOEA. The
netric .= D that represents average distance from P* to A is defined as:

> d(y*, A)

IGD(P*,A) _ y*eP*

P (14)

d(y*, A) = min{ Sy (yr — wi)?}
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In our experiment, for CMOPs with two objectives, 1000 points a. ~ sam, ‘ed uni-
formly from the PF to constitute P*. For CMOPs with thre _hject. =2s, 10000
points are sampled uniformly from the PF to constitute ~*. . . -aller IGD
represents better performance with respect to both diversiv, -ad convergence.

e Hypervolume (HV):

HYV reflects the closeness between the non-dominate” et ac...cved by a CMOEA
and the representative PF. A larger HV means hat .u. corresponding non-
dominated set is closer to the true PF. A HV wi... a le ger value represents
better performance with respect to both diversity =»d convergence.

HV(S) =VOL (U [f1(x), <11 x "-[Jm(X)a«an]> (15)
xeS

where VOL(-) is the Lebesgue measure, z = (27, ...,2")7

in the objective space.

Both IGD and HV metrics are usc 1 71 the LIR-CMOP instances. For the
LIR-CMOPs, the reference point © ~et a. 1.3 times the nadir point of the real
PF. As the real PF of the I-beam op, in.. -ation problem is not known, the IGD
metric cannot be calculated. 7' we uses the HV metric [4] to measure the
performance of the tested CMOL.* < on the I-beam optimization problem. In
the I-beam optimization case, the reference point is set to 2" = [1000,0.08]%.

is a reference point

4.5. Discussion of FExyp-rime. *al Results

4.5.1. Performance "wal atiom on the LIR-CMOP Test Instances

The IGD values o.. IR CMOP1-14 achieved by seven CMOEAs in 30 in-
dependent runs ¢ e shown i Table 1. As discussed in Subsection 4.1, LIR-
CMOP1-14 hav. laig - infeasible regions in their objective spaces. For LIR-
CMOP3-14, M~ ™A /D-ACDP significantly outperforms the other six compared
algorithms ir tery .s of the IGD metric. For LIR-CMOP1-2, MOEA /D-ACDP

significantly o.." erforms C-MOEA /D, MOEA /D-CDP, MOEA /D-Epsilon, NSGA-

II-CDP a.d SP, and does not differ significantly from MOEA /D-SR.

The 4V valv s on LIR-CMOP1-14 achieved by seven CMOEAs in 30 in-
dependent . ms are shown in Table 2. For LIR-CMOP3-14, MOEA /D-ACDP
signi’.cantly outperforms the compared algorithms in terms of the HV met-
ric. -or LIR- ZMOP1, MOEA /D-ACDP significantly outperforms C-MOEA /D,
MOEA ™ ©DP, NSGA-II-CDP and SP, and is not significantly different from
VIOEA 'D-Epsilon and MOEA /D-SR. For LIR-CMOP2, MOEA /D-ACDP sig-
‘ificant] - outperforms C-MOEA /D, MOEA /D-CDP, NSGA-II-CDP, NSGA-II-
CLT .ad SP, and is not significantly different from MOEA /D-SR.

Tg. 6 (a) and Fig. 7 (a) show the final external archives achieved by
VIOEA/D-ACDP and the other six CMOEAs with the median IGD values on
L'R-CMOP3 during 30 independent runs. It can be seen that MOEA /D-ACDP
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almost converges to the whole real PF, and it has the best divers.. - per.. rmance
among the seven CMOEAs.

In Fig. 6 (b) and Fig. 7 (b), the external archives of ear 2 C? .07 A with the
median IGD values on LIR-CMOP5 during 30 independe.. uns are plotted.
It can be seen that MOEA /D-ACDP covers the whole 7. . How. ver, the other
six CMOEAs are trapped in local optima.

In Fig. 6 (c) and Fig. 7 (c), for LIR-CMOP10, M “EA/T,-ACDP has the
best performance in terms of convergence. In Fig. v (d) and Fig. 7(d), we can
see that MOEA /D-ACDP can discover most parts of .ie } F on LIR-CMOP11.
However, the other six algorithms can find only = few na- s of the PF.

4.5.2. Discussion of the Fxperimental Resul.. on the .IR-CMOPs

LIR-CMOP3-4 both have several narrov. ana . _connected feasible regions.
If the CDP mechanism is applied, it is very diw. mlt for the population to dis-
tribute the individuals among these nai. w and disconnected feasible regions.
More likely, most individuals will be trappeu ‘1 one or a few of these feasible
regions. However, when ACDP is apy.'iea. ..”: 2 of the ACDP mechanism will
enable more well-distributed individuals *» survive into the next generation. As
a result, MOEA /D-ACDP can help. v. ma.tain the diversity of the population
during the evolutionary process. Fro.» tunese experimental results, we can also
see that MOEA/D-ACDP peric. ms ... best on these two test instances.

LIR-CMOP5-14 have some infea. hle regions in front of the real PFs, which
makes it difficult for CMOF * = to converge to the real PFs. If the CDP mecha-
nism is applied, when feas ole ina viduals attempt to enter the infeasible regions,
they will be easily bounce ' back to the feasible regions, due to rule2 of CDP.
However, when ACDF is appu. 4, rule 3 of the ACDP mechanism will be acti-
vated when the feas’ le i (div’ luals attempt to enter the infeasible regions (p;
is still high at thic sta, ™), ~s/hich will facilitate a smooth entry because only
convergence is cc <idered according to rule 3 of ACDP. Next, when most fea-
sible individuale have =tered the infeasible regions, ps becomes lower and rule
3 is deactivate .. Tu this case, most individuals become non-dominated by each
other, becau ¢ thr dominance relationship defined by Eq. (7) does not exist any
more. The no. ominance relationship of individuals helps most infeasible ones
survive ir the offsp.ing generations, and eventually cross the infeasible regions.
As a rec °lt, asin | MOEA/D-ACDP can preserve some high-quality infeasible
solutiors in “e population, which can help the population to find the global
optir um. I -om the experimental results in Tables 1 and 2, we can also conclude
that MOEA D-ACDP has the best performance on these ten test instances.

Acce. lag to the above observations, we can conclude that the proposed
VIOEA, D-ACDP outperforms the other six CMOEAs. A common feature of
he abo e LIR-CMOPs test instances is that they all have large infeasible re-
giown., .0 their objective spaces. The experimental results demonstrate that the
p uvpused ACDP method can deal with CMOPs well by taking advantage of an-
sle information among solutions of a population and the proportion of feasible
sciutions.
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¥ gure 6: The non-dominated solutions achieved by MOEA/D-ACDP, C-MOEA/D,
VIOEA/. -CDP, MOEA /D-Epsilon and MOEA /D-SR with the median IGD in 30 indepen-
- ent runs for LIR-CMOP3, LIR-CMOP5, LIR-CMOP10 and LIR-CMOP11.
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Table 1: IGD results of MOEA/D-ACDP and the other six CMO”.As ¢ . L. -CMOP1-14
test instances

LIR-CMOP | MOEA/D-ACDP C-MOEA/D MOEA/D-CDP MOEA/D-Epsilon MOEA /M-SR .. "'A-Il-CDP SP
1 | mean 5.159E-02 1.591E-017 1.348E-017 8.234E-027 4./ 6E-02 4.5,6BE-017 1.489E-017
std 1.815E-02 3.534E-02 5.996E-02 5.321E-02 £ S60E-02 L.071E-01 8.479E-02
o | mean 2.269E-02 1.462E-017 1.549E-017 4.708E-027 2. 57E-02 3.084E-017 1.943E-017
std 9.418E-03 4.141E-02 2.966E-02 1.339E-02 1.0 "B-02 9.513E-02 9.688E-02
5 | mean 4.659E-02 2.309E-017 2.268E-017 7.858E-02F T520r | 4.082E-017 2.054E-017
std 1.850E-02 4.135E-02 4.403E-02 2.978E-02 7.68°%-02 1.120E-01 1.296E-01
4 | mean 2.784E-02 2.080E-017 2.188E-017 5.662E-02 2 LE- T 3.081E-017 1.920E-017
std 1.477E-02 4.197E-02 3.766E-02 3.366E-02 (.907E- 2 7.367E-02 9.019E-02
- | mean 1.771E-02 1.162E-+007 1.207E+007 1.201E+10F 1.123F 0T 1.153E+007  1.145E+00T
o std 2.965E-02 2.180E-01 1.660E-02 1.963E-0z Lo o601 2.425E-01 2.473E-01
6 | mean 1.757E-01 1.265E+00T 1.303E+007 1.231E+007 " 175E+007 T.I34E+007  1.260E+007
std 4.129E-02 3.067E-01 2.319E-01 3.612E-01 967E-01 4.743E-01 4.769E-01
7 | mean 1.408E-01 1.620E+007 1.623E+007 1.565. 0F " (36E+007 4.596E-017 7.327E-017
std 4.385E-02 3.036E-01 2.905E-01 101E-U. 7.315E-01 4.854E-01 3.714E-01
g | mean 1.812E-01 1.607E+00T 1.631E+00T .50, -00 1.369E+007 6.017E-017 6.495E-017
std 4.854E-02 2.680E-01 2.464E-01 3.767E-u 5.735E-01 3.991E-01 4.664E-01
g | mean 3.595E-01 4.981E-01F 4.868E-01F 4.813E-017 5.261E-017 5.428E-017
std 5.345E-02 6.991E-02 5.372E-02 6.987E-02 4.571E-02 1.060E-01 1.083E-01
10| mean 1.388E-01 3.775E-017 3.7T4E-017 3. TE-017 2.821E-017 4.790E-017 4.893E-017
std 1.148E-01 7.446E-02 6.858E-02 9.8331 12 1.135E-01 1.928E-01 1.501E-01
11 | mean 1.318E-01 4.422E-017 4.662E-01 o1t 3.489E-017 6.052E-017 6.342E-017
std 4.487E-02 1.759E-01 1.439E-01 1.508E-01 1.129E-01 9.166E-02 9.894E-02
1o | mean 1.497E-01 3.597E-017 3.236%-017 "~ 3.680E-017 3.012E-017 4.166E-017 4.171E-017
std 9.985E-03 1.074E-01 1.02 . " 8.664E-02 8.989E-02 4.386E-02 1.011E-01
13 | mean 7.414E-02 1.266E+007 1.289E- 0! L. 183E+00F 1.093E+007 1.317E+00T  1.318E+007
std 2.727E-03 2.173E-01 6.321E-0. 3.456E-01 4.269E-01 1.433E-03 5.009E-02
14 | mean 6.732E-02 1.235E+007 T INRE+007 1.127E+007 T.143E+007 1.273E+00T  1.277E+007
std 1.918E-03 1.209E-01 BT 3.329E-01 3.002E-01 2.416E-03 3.608E-02

Wilcoxons rank sum test at a 0.05 signiti. nce level is performed between MOEA /D-ACDP
and each of the other six CMOEAs. { and { denote that the performance of the
corresponding algorithm is sig® .uca. “ly worse than or better than that of MOEA/D-ACDP,

respective’ . The bu 1t mean is highlighted in boldface.
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+ , ° 7: The non-dominated solutions achieved by NSGA-II-CDP and SP with the me-

<an IGD in 30 independent runs for LIR-CMOP3, LIR-CMOP5, LIR-CMOP10 and LIR-

“"MOP11.
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Table 2: HV results of MOEA/D-ACDP and the other six CMOEAs on LIR-_ " TOP1-14 test

instances ¥
LIR-CMOP | MOEA/D-ACDP  C-MOEA/D MOEA/D-CDP MOEA/D-Epsilon  MOEA/D R N ,a-. “DP SP
| | mean 1.365E+00 9.499E-01F 1.009E+007 1.353E+00 1.376E-, ° 9.205E-017 1.177E+007
std 2.493E-02 7.038E-02 1.298E-01 4.417E-02 3.974E-02 8.084E-02 9.278E-02
o | mean 1.737TE+01 1.395E+01T 1.374E+017 1.705E+017 727 1 L. OE+00T  1.321E+007
std 1.306E-02 8.154E-02 6.160E-02 1.693E-02 1 JOE-02 1.597E-01 2.036E-01
5 | mean 1.188E+00 7.558E-017 7.600E-017 1.184E+00 9 13E-017 7.925E-017 9.638E-017
std 4.929E-02 5.730E-02 5.809E-02 2.898E-02 1 20E-01 7.920E-02 1.133E-01
4 | mean 1.421E+00 1.069E+00T 1.051E+00T 1.390E+007 1.0s. " 007 9.025E-01T  1.087E+007
std 1.946E-02 6.952E-02 5.462E-02 4.405E-02 £.360k-u. 1.084E-01 1.497E-01
~ | mean 1.903E+00 1.192E-017 5.805E-02 5.820E-02 L7001t 1.774E-017 1.968E-017
° std 5.658E-02 3.352E-01 4.042E-04 2.022E-04 W42E- 3.498E-01 3.488E-01
| mean 1.280E+00 7.863E-02 4.312E-027 1.325E-017 ~ 1.682E- .7 2.700E-017 2.300E-017
std 4.613E-02 3.011E-01 2.362E-01 4.251E- 40617 01 3.622E-01 3.565E-01
7 | mean 3.408E+00 2.990E-017 2.886E-017 4.055E-017 1.315E+007 2.921E+007  2.321E+007
std 1.409E-01 6.927E-01 6.348E-01 8.879E-01 567E+00 1.078E+00 7.304E-01
g | mean 3.330E+00 3.246E-017 2.695E-017 3.8 E-01T « 287E-017 2.505E+007  2.521E+007
std 1.461E-01 5.878E-01 5.297E-01 8.160. 244E+00 8.397E-01 9.773E-01
o | mean 4.080E+00 3.715E+007 3.755E+007 5. CAER00  8.752E+007 3.513E+007  3.472E+007
std 9.501E-02 2.079E-01 1.600E-01 2.05,. 11 1.142E-01 3.230E-01 3.466E-01
10 | mean 3.755E+00 3.274E+007 3.268E+007 3.385E+0u 3.ATTE+007 2.903E+007  2.905E+007
std 2.208E-01 1.623E-01 1.416E-01 Ceiccirut 2.383E-01 6.628E-01 5.629E-01
17 | mean 5.004E+00 3.937E+007 3.842E+007 238E+007 4.274E+00F 3.167E+007  3.055E-+007
std 1.564E-01 6.479E-01 5.507E-01 5.. 701 4.463E-01 3.863E-01 3.412E-01
1o | mean 6.713E+00 5.977E+007 6.134E+00 6.010E+J07 6.240E+007 5.771E+007  5.764E+007
std 5.874E-02 3.855E-01 3.617E-01 o 01 2.950E-01 1.601E-01 3.083E-01
13 | mean 7.897E+00 6.444E-017 4.728E-01T —  1.092E+007 1.513E+007 1.601E-017 3.083E-017
std 2.943E-02 1.317E+00 2.68¢7-01 2.052E+00 2.422E+00 1.420E-02 1.692E-01
14 | mean 8.641E+00 7.766E-017 1.627, - ° 430E+007 1.269E+007 5.810E-017 6.053E-017
std 1.546E-02 6.140E-01 2.473E- 0 2.095E+00 1.919E+00 1.683E-02 2.244E-01
Wilcoxons rank sum test at a 0.05 sionificar. e level is performed between MOEA /D-ACDP
and each of the other six CMG."As. | . d i denotes that the performance of the

corresponding algorithm is significantly w ~se than or better than that of MOEA/D-ACDP,
respectively. The best mean is highlighted in boldface.

ao 4.5.8. Performance Compe “son on the I-beam Optimization Problem
The experimental - esul*s ot .{V values of MOEA /D-ACDP and the six other

CMOEASs on the I-k am opti aization problem are shown in Table 3. It can be
seen that MOEA /)-ACDP significantly outperforms the compared CMOEAs
on this engineeri- g nroblem.

ats To further study tu. superiority of the proposed method MOEA /D-ACDP,
the non-domi- ate 1 solutions achieved by each CMOEA during the 30 indepen-
dent runs ar- nlot .ed in Fig. 8 (a)-(h).The non-dominated set of all the above so-
lutions ger srate. - set of ideal reference points. It is clear that MOEA /D-ACDP
has bettr . co .vergence performance than the other four decomposition-based

s CMOEA. ‘C-MC £A/D, MOEA /D-CDP, MOEA /D-Epsilon and MOEA /D-SR).
MOE* "D-ACT 2 has better diversity performance than the two compared dominance-
base t CMGC "As (NSGA-II-CDP and SP). The box plot of HV values of the
CMC%As is hown in Fig. 8 (h), which further illustrates that MOEA /D-ACDP
¢ .opertorus the other six CMOEAs on the I-beam optimization problem.

ws 4 6. In’uence of Parameter Setting in ACDP

There are two critical parameters in ACDP.
1) T., the termination generation for control of 8(k).

2) B, the initial value of 6.
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Figure 8: The nor down. ~ated solutions achieved by each algorithm during 30 independent
runs are plotted in (a)-(g). . . (h), the box plots of each CMOEA are plotted.

Tablc 3: HV ssults of MOEA/D-ACDP and the other six CMOEAs on the I-Beam opti-
mizat n probl m

| M. -ACDP  C-MOEA/D MOEA/D-CDP  MOEA/D-Epsilon  MOEA/D-SR_ NSGA-II-CDP SP
mean 6.046E+01 5.905E4017 5.921E+017 5.916E+017 5.948E+017 6.026E+01T  6.017E+01T
std .096E-01 2.996E-01 3.508E-01 3.246E-01 2.248E-01 2.283E-01 2.775E-01

Vilcoxor s rank sum test at a 0.05 significance level is performed between MOEA /D-ACDP
.d each of the other six CMOEAs. t and I denote that the performance of the
~<nonding algorithm is significantly worse than or better than that of MOEA/D-ACDP,
respectively. The best mean is highlighted in boldface.
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In this paper, T, = 0.8T,,4,- This is a default setting of ., for .. any al-
gorithms of the same kind in the research community [33, ' Wc therefore
mainly focus on investigating the influence of 6y in ACDP

To analyze the influence of 6y setting, we run MOEA,/. .CDP with 6y =

n_ ro mxd mxl6 mx64 71 oon LIR-CMOPs fe. .0 inde, endent runs.

SNx167 3Nx4) 3N N > 2N 7 3N 2
In Table 4, the performance of MOEA /D-ACDP w th 6y = snactg and 0g =

5Nz is similar to that of MOEA /D-ACDP with 6y = . When 0y > ’;—Tv‘l,
the performance of MOEA /D-ACDP decreases. I'. kig 9, the mean values of
IGD on LIR-CMOPS5, 7, 12 and 14 with different va' .es ¢~ 6, are plotted. We
can see that 0y € {5516, snxa> and 5} have ~imiler - erformance, and that
they are better than those of MOEA /D-ACDP with - > J%. Thus, we suggest

that 6y be set in the interval |53/ 55, 757 In his wor ., 6 is set to 5.

Table 4: Comparison results of MOEA/D-ACT  ou wan-OMOP1-14 with different 6y (pop-
ulation size N = 300)

b =smas 0= sxxa | %= 3y ‘ vfﬂé o="55" Oo=7F" 6h=3
3 3 + 1 4 2 2
1 1 - 10 12 12
10 10 = ' 7 0 0 0
Wilcoxons rank sum test at a 0.05 signiﬁca_*ce . vel is performed between MOEA /D-ACDP
with 6p = ﬁ and that with other .. ~itiay ‘hreshold settings. '+’, -’ and ’=’ denote the

number of instances on which MOEA, N-ACDP with the corresponding 6 is significantly
better/worse/not better and not worse tha.. that with 0y = 55 in terms of the IGD metric,
respectively.

5. Conclusions

This paper propos. ~ « ne' constraint-handling mechanism named ACDP. It
utilizes the angle "aformav. .n between any two solutions to dynamically main-
tain the diversity ot . = population during the evolutionary process. The propor-
tion of feasible «~lutions .s also used to maintain a balance between convergence
and feasibilit: of ¢ population. A set of CMOP instances called LIR-CMOP1-14
are tested. A.’ t' e test instances have large infeasible regions in their objective
spaces, wl.ch max. ‘t difficult for many CMOEAs to achieve the real PFs. Com-
pared w'.h t'.e other six popular CMOEAs, the proposed algorithm can help
the popula. "n 'O cross large infeasible regions more effectively. Additionally,
the e perimental results demonstrate that the proposed algorithm can work well
on & real-wo ld engineering problem. Thus, we can conclude that MOEA /D-
ACD1 ~utr _rforms the other six CMOEAs. In summary, MOEA /D-ACDP has
“ollowir g advantages:

e T'.e proposed MOEA/D-ACDP utilizes the angle information between
solutions to maintain the diversity of the population for CMOPs.

e MOEA/D-ACDP enhances convergence to the PF by exploring feasible
and infeasible regions simultaneously during the evolutionary process, in-
stead of wasting the useful information represented by infeasible solutions.
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Although the proposed MOEA /D-ACDP performs well on C.."OPs . ith two
and three objectives, we still need to enhance its capability f_. ~olvi._ CMOPs
with more than three objectives. One aspect of our futr.e w.in '3 to study
the characteristics of constrained optimization problems u.nd three objec-
tives, and to design suitable constraint-handling meche ..oms in .lhe framework
of MOEA/D-ACDP to solve them. Additional plan ed futt e work will fo-
cus on developing new mechanisms of mining more us 1l in’ormation during
the evolutionary process to further improve the r :criormance of the proposed
algorithm.
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*Highlights (for review)

Highlights

1. The proposed MOEA/D-ACDP utilizes the angle information between solutions to
maintain the diversity of the population for CMOPs.

2. MOEA/D-ACDP enhances convergence to the PF by exploring feasi*'~ and infeasible
regions simultaneously during the evolutionary process, instead of war.ing the useful
information represented by infeasible solutions.

3. The experimental results illustrate that MOEA/D-ACDP is sic iific 2~tlv better than the
other six CMOEAs on fourteen benchmark problems and an .~ sineering optimization
problem.



