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Abstract A novel approach to deal with numerical and
engineering constrained optimization problems, which
incorporates a hybrid evolutionary algorithm and an
adaptive constraint-handling technique, is presented in
this paper. The hybrid evolutionary algorithm simul-
taneously uses simplex crossover and two mutation
operators to generate the offspring population. Ad-
ditionally, the adaptive constraint-handling technique
consists of three main situations. In detail, at each sit-
uation, one constraint-handling mechanism is designed
based on current population state. Experiments on 13
benchmark test functions and four well-known con-
strained design problems verify the effectiveness and
efficiency of the proposed method. The experimental
results show that integrating the hybrid evolutionary
algorithm with the adaptive constraint-handling tech-
nique is beneficial, and the proposed method achieves
competitive performance with respect to some other
state-of-the-art approaches in constrained evolutionary
optimization.
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1 Introduction

In the real world, many optimization problems in-
volve constraints. The general constrained optimization
problem can be expressed as follows:

minimize f (�x), �x = (x1, x2, · · · , xn) ∈ �n subject to in-
equality constraints

gj(�x) ≤ 0, j = 1, · · · , l

and/or equality constraints

hj(�x) = 0, j = l + 1, · · · , m

where �x ∈ � ⊆ S, � is the feasible region, and S is an
n-dimensional rectangular space in �n defined by the
parametric constraints

li ≤ xi ≤ ui, 1 ≤ i ≤ n

where li and ui are lower and upper bounds for a
decision variable xi, respectively.

For an inequality constraint that satisfies gj(�x) =
0 ( j ∈ 1, · · · , l) at any point �x ∈ �, we say it is active at
�x. All equality constraints hj(�x) ( j = l + 1, · · · , m) are
considered active at all points of �.

To deal with equality constraints, each equality
constraint hj(�x) = 0 ( j = l + 1, · · · , m) is usually con-
verted into a couple of inequality constraints: hj(�x) −
δ ≤ 0 and −hj(�x) − δ ≤ 0 where δ is a small tolerant
value. Thus, the original problem has 2m − l inequality
constraints.
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In general, constrained optimization problems are
intractable, especially when the landscape of the ob-
jective function is very complex and the feasible region
is concave and covers a very small part of the whole
search space. Classical gradient-based optimization
methods have difficulties to handle this kind of prob-
lems, as constrained optimization problems may usually
lack an explicit mathematical formulation and have
discrete definition domains. Compared with gradient-
based optimization methods, evolutionary algorithms
(EAs) are population-based global search techniques,
not sensitive to the characteristics of the problems
and easy to implement. During the past decade, using
EAs to solve constrained optimization problems has
attracted a lot of research interest, and a large number
of constrained optimization evolutionary algorithms
(COEAs) have been proposed. An extensive survey of
COEAs can be found in Michalewicz and Schoenauer
(1996) and Coello Coello (2002).

It is noteworthy that EAs are unconstrained search
methods and lack an explicit mechanism to bias the
search in constrained search space. This motivates
the development of different constraint-handling tech-
niques to cope with constraints (Mezura-Montes and
Coello Coello 2005). Coello Coello (2002) classified
most constraint-handling techniques into five catego-
ries: (1) methods based on preserving feasibility of
solutions; (2) methods based on penalty functions; (3)
methods making distinction between feasible and infea-
sible solutions; (4) methods based on decoders; and (5)
hybrid methods.

While most constraint-handling techniques are mod-
ular, there are also constraint-handling techniques em-
bedded as an integral part of EAs. In essence, COEAs
can be considered as constraint-handling techniques
plus EAs. Therefore, an effective constraint-handling
technique needs to be in conjunction with an efficient
EA to obtain competitive performance. Next, a number
of the most representative COEAs will be briefly re-
viewed from the two important aspects, i.e., constraint-
handling techniques and EAs. Note that according to
the recent progress on constraint-handling techniques,
this paper divides them into three categories: methods
based on penalty functions, methods based on biasing
feasible over infeasible solutions, and methods based
on multi-objective optimization concepts.

The most common constraint-handling techniques
are penalty-function-based methods because of their
simplicity and ease of implementation. In these meth-
ods, the individual is penalized based on its constraint
violation which is the sum of the violation of all con-
straints. Based on constraint violation, a penalty term

can be constructed. Then, an extended objective func-
tion is defined by introducing the penalty term into
the original objective function. The aim is to optimize
the extended objective function. Farmani and Wright
(2005) proposed a two-stage adaptive fitness formula-
tion method. In the first penalty stage, the worst of the
infeasible solutions has a penalized objective function
value that is higher or equal to that of the best solution
in the population. In the second penalty stage, the
penalized objective function value of the worst infea-
sible individual is equal to that of the individual with
maximum objective function value in the current popu-
lation. The goal of the two-stage penalty is to ensure
that slightly infeasible solutions with a low objective
function value remain fit. The main advantage of this
method is that it does not require any parameter tuning.
Considering that it is difficult to set appropriate penalty
factor for penalty function, Huang et al. (2007) pro-
posed a co-evolutionary differential evolution for con-
strained optimization. Two populations are used in this
method. The first population contains a set of penalty
factors and is used to evolve decision solutions, while
the second population consists of decision solutions
and is employed to adapt penalty factors. These two
populations evolve interactively and self-adaptively.

Another method for constraint-handling is to bias
feasible over infeasible solutions. Deb (2000) proposed
a pairwise comparison used in tournament selection
which does not need any penalty parameter. In this
method, when comparing pairwise individuals, (1) any
feasible solution is preferred to any infeasible solution;
(2) between two feasible solutions, the one with better
objective function value is chosen; and (3) between
two infeasible solutions, the one with smaller constraint
violation is chosen. Taking into account the difficulty to
determine the penalty parameter, Runarsson and Yao
(2000) proposed a stochastic-rank-based approach. In
this approach, a probability pf is introduced. The
probability pf denotes the probability of using only
the objective function to compare individuals in the
infeasible region of the search space. That is to say,
given pairwise individuals, the probability of comparing
them according to the objective function is 1 if both
individuals are feasible; otherwise, it is pf . A pf value
of 0.45 is found to provide very good results. Takahama
and Sakai (2005) proposed the α constrained method.
In this method, a satisfaction level μ(�x) for the con-
straints is introduced to indicate how well an individual
�x satisfies the constraints. Then, the α level comparison
between individuals is conducted based on their level of
satisfaction and the objective function. This method can
convert an algorithm for unconstrained optimization
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problems into an algorithm for constrained optimiza-
tion problems by the α level comparison.

Recently, using multi-objective optimization con-
cepts for constrained optimization has become a hot
topic. The main characteristics of this kind of meth-
ods are twofold: (1) converting the original con-
strained optimization problems into unconstrained
multi-objective optimization problems and (2) exploit-
ing multi-objective optimization techniques to solve
the converted problems. Three mechanisms taken from
multi-objective optimization are frequently incorpo-
rated into constraint-handling techniques (Mezura-
Montes and Coello Coello 2002): (1) using Pareto
dominance as a selection criterion; (2) using Pareto
ranking to assign fitness in such a way that non-
dominated individuals are assigned a higher fitness
value; and (3) splitting the population into subpopula-
tions that are evaluated with respect to the objective
function or with respect to a single constraint of the
problem. Constrained optimization by multi-objective
genetic algorithms proposed by Surry and Radcliffe
(1997) views a constrained optimization problem as a
constrained satisfaction problem by ignoring the ob-
jective function and as an unconstrained optimization
problem by neglecting the constraints. In the former
case, the individuals are evaluated by Pareto ranking.
This method replaces a proportion pcost of solutions
based on fitness and the others based on Pareto rank-
ing. The parameter pcost is adjusted depending on the
target proportion of the feasible solutions in the pop-
ulation. Zhou et al. (2003) transformed a constrained
optimization problem into a bi-objective optimization
problem. In this approach, Pareto strength value is
defined for each individual based on Pareto domi-
nance. Pareto strength value of an individual reflects
the number of individuals in the population dominated
by it. The comparisons between two individuals are
firstly based on Pareto strength, if they share the same
Pareto strength value, then comparisons occur based
only on constraint violations. Venkatraman and Yen
(2005) proposed a generic, two-phase framework for
constrained optimization problems. In the first phase,
the objective function is completely disregarded, and
the constrained optimization problem is treated as a
constrained satisfaction problem. In the second stage,
the constrained optimization problem is considered
as a bi-objective optimization problem by simultane-
ously optimizing the objective function and the con-
straints. Cai and Wang (2006) proposed a method in
which non-dominated individuals are identified from
the population over the course of evolution, and only
one non-dominated individual is used to replace the

corresponding dominated individual. In addition, an in-
feasible solution archiving and replacement mechanism
is proposed, the main aim of which is to motivate the
population toward feasible region promptly. Ray and
Liew (2003) proposed a method based on the concept
of society and civilization. In this method, a society
refers to a set of individuals in the solution space, while
a civilization is a collection of all such societies. At
each generation, intra-society interaction between an
average individual and its leader results in an improve-
ment of an individual’s performance; however, inter-
society information exchange among leaders leads to
the migration of leaders to more advanced societies.
The identification of leaders in a society is the follow-
ing: (1) if there are no feasible solutions, the leaders
are the ones with constraint rank 1 and (2) if all the in-
dividuals are feasible, the leaders are the ones with ob-
jective rank less than average objective rank. Besides,
the method (Coello Coello 2000a) based on Fonseca
and Fleming’s Pareto ranking process (Fonseca and
Fleming 1999), the method (Coello Coello 2000b)
based on population-based multi-objective technique
such as VEGA (Schaffer 1985), the method (Coello
Coello and Mezura-Montes 2002) based on the niched-
Pareto genetic algorithm (Horn et al. 1994), and the
method (Aguirre et al. 2004) based on the Pareto
archived evolutionary strategy (Knowles and Corne
2000) are also presented for constrained optimization.

As previously mentioned, the search algorithm is
another important aspect in constrained evolutionary
optimization. Traditionally, EAs include three main
branches, i.e., genetic algorithm (GA), evolutionary
strategy (ES), and evolutionary programming (EP).
These three branches have been extensively applied to
cope with constrained optimization problems. During
the past few years, some new members have been cre-
ated and added into the community of EAs, such as dif-
ferential evolution (DE), particle swarm optimization
(PSO), cultural algorithm (CA), etc. Brest et al. (2006),
Huang et al. (2006), and Mezura-Montes et al. (2006a)
exploit DE, Dimopoulos (2007), Krohling and Coelho
(2006), and Liang and Suganthan (2006) exploit PSO,
and Coello Coello and Becerra (2004) and Becerra and
Coello Coello (2006) exploit CA as search algorithms
for constrained optimization. In addition, Wang et al.
(2007a) proposed a hybrid EA for constrained opti-
mization in which global and local search models are
executed iteratively. In this method, the global search
model is used to promote high population diversity, and
the local search model intends to accelerate the conver-
gence speed. Orthogonal design is also generalized into
constrained optimization by Wang et al. (2007b).



398 Y. Wang et al.

In this paper, a hybrid EA and an adaptive con-
straint-handling technique are proposed for numerical
and engineering constrained optimization problems.
The hybrid EA incorporates simplex crossover and two
mutation operators [diversity mutation and improved
breeder GA (BGA) mutation] to generate the off-
spring population. In addition, the adaptive constraint-
handling technique consists of three main situations,
i.e., infeasible situation, semi-feasible situation, and
feasible situation. Only one situation is applied at each
generation according to whether all the individuals
are infeasible, there are feasible and infeasible indi-
viduals, or all the individuals are feasible. Meanwhile,
one constraint-handling mechanism is designed accord-
ing to the characteristic of the current situation. The
method is assessed on a total of seventeen optimization
problems to verify its performance. The experimen-
tal results indicate that it is very robust and effec-
tive for solving constrained optimization problems. The
main advantage of the method proposed is its ease of
implementation.

Organization of the rest of this paper is as follows.
Section 2 presents the details of the proposed method.
Section 3 presents and analyzes the experimental re-
sults. Furthermore, we compare our method with re-
spect to the state-of-the-art approaches in constrained
evolutionary optimization using 13 benchmark test
functions and four engineering design problems. The
effectiveness of the genetic operators adopted in our
approach is also shown in this section by different ex-
periments. In addition, the effect of simplex crossover
on performance is demonstrated. Section 4 concludes
this paper.

2 Description of the proposed approach

2.1 Algorithm framework

In this paper, the degree of constraint violation of an
individual �x on the jth constraint is calculated using the
following expression:

Gj(�x) =
{

max{0, gj(�x)}, 1 ≤ j ≤ l
max{0, |hj(�x)| − δ}, l + 1 ≤ j ≤ m

. (1)

where δ is a positive tolerance value for equality con-
straints. Then, G(�x) = ∑m

j=1 Gj(�x) reflects the degree of
constraint violation of the individual �x.

At each generation, the proposed method, re-
ferred to as hybrid evolutionary algorithm and adap-
tive constraint-handling technique (abbreviated to
HEA-ACT) hereafter, maintains: (1) a population
of N individuals, i.e., P(t) = {�x1, �x2, · · · , �xN}, and (2)

their objective function values f (�x1), f (�x2), · · · , f (�xN),

and their degree of constraint violations G(�x1),

G(�x2), · · · , G(�xN).
The basic idea of HEA-ACT is that after the in-

dividuals in the parent population undergo crossover
and mutation operations, the offspring population is
obtained. Subsequently, some potential individuals in
both the parent and offspring populations will be se-
lected for the next population based on the adap-
tive constraint-handling technique. HEA-ACT works
as follows:

Step 1. Initialization: Set t : = 0. Randomly generate
an initial population P(0) of size N from the
decision space S. Evaluate the f value and
G value for each individual in the population
P(0).

Step 2. Reproduce: Generate new populations Q1

and Q2 by simplex crossover and mutation, re-
spectively. It is worth noting that the mutation
operators contain two components, i.e., diver-
sity mutation and improved BGA mutation.
An individual takes part in diversity mutation
or improved BGA mutation with a probability
of 0.5. Thus, no individual is subject to both
mutation operations in the same generation.
Note also that the crossover and mutation
operations are applied in parallel rather than
sequentially.

Step 3. Evaluation: Evaluate the f value and G value
for each individual in Q1 ∪ Q2.

Step 4. Selection: Select N individuals from Q1 ∪
Q2 ∪ P(t) to form the next population P(t+1)

based on the adaptive constraint-handling
technique that will be specified later.

Step 5. Set t: = t+1.
Step 6. Stopping criterion: If stopping criterion is met,

stop and return the optimal solution in P(t),
else go to step 2.

Adaptive constraint-
handling technique

P(t)

Q2

Simplex
crossover

Mutation

P(t)

+

Q1

+

Q2

P(t+1)

Q1

Fig. 1 HEA-ACT framework
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The HEA-ACT procedure is also shown in Fig. 1.
Next, we will discuss the implementation of reproduc-
tion and the adaptive constraint-handling technique of
the above method in detail.

2.2 Reproduction

The reproduction procedure includes simplex crossover
and two mutation operators, i.e., diversity mutation and
improved BGA mutation.

2.2.1 Simplex crossover

Simplex crossover (Tsutsui et al. 1999) is a multi-parent
combination operator for real-code genetic algorithm,
which generates offspring based on uniform probability
distribution and does not need any fitness informa-
tion. In �n, n + 1 individuals that are independent of
each other form a simplex. For simplicity, in a two-
dimensional search space three individuals �x1, �x2, and
�x3 form a simplex (as shown in Fig. 2). We expand this
simplex in each direction by (1 + ε) (ε ≥ 0) times. Let

�o = 1

3

3∑
i=1

�xi and �yi = (1 + ε)(�xi − �o). Thus, �y1, �y2, and

�y3 constitute a new simplex. We then randomly choose
an individual �z from the new simplex, i.e., �z = k1 �y1 +
k2 �y2 + k3 �y3 + �o, where k1, k2, and k3 are randomly
selected within the range [0,1] and satisfy the condition
k1 + k2 + k3 = 1. Thus, we obtain an offspring �z from
these three parents �x1, �x2, and �x3 by simplex crossover.
This procedure for producing offspring can be general-
ized into n-dimensional search space.

In general, simplex crossover is specified as SPX −
μ − λ − ε, where μ is the number of parents chosen for
crossover operation, λ is the number of the offspring
created, and ε is a control parameter that defines the
amplification rate.

3y

2t1t

3tε

2tε1tε

3t

2y1y

3x

2x1x

o

Fig. 2 SPX with three-parent in two-dimensional space

Simplex crossover can maintain a balance between
exploration and exploitation (Tsutsui et al. 1999). At
the early stage of the search, the variance among in-
dividuals randomly selected in the population is large.
Therefore, the creation of several individuals from
the chosen parents using simplex crossover results in
widening the search region. On the other hand, at the
later stage of the search the variance in the population
is small, thereby ensuring a focused exploitation in the
vicinity of the optimal solution using simplex crossover.
In addition, the computational complexity of simplex
crossover for producing an offspring is only O(n).

2.2.2 Diversity mutation

To perform diversity mutation on a chosen individual
�x = (x1, x2, · · · , xn), randomly generate an integer irand

between 1 and n with probability 1
/

n and a real number
between li and ui, and then replace the irandth compo-
nent of the chosen individual by the real number to
get a new chromosome �x′ = (x′

1, x′
2, · · · , x′

n). The above
procedure can be denoted by the following expression:

x′
i =

{
li + β(ui − li) i = irand

xi otherwise
, i = 1, · · · , n (2)

where β ∈ U(0,1) and U(0,1) is a uniform random
number generator in the range [0,1].

The purpose of this mutation operator is to facilitate
the high diversity of the population, so it is called
diversity mutation.

2.2.3 Improved BGA mutation

BGA mutation is proposed by Mühlenbein and
Schlierkamp-Voosen (1993). Suppose �x = (x1, x2, · · · ,

xn) is a chromosome and xi is a variable to be mutated.
A new value x′

i is computed according to:

x′
i = xi ± rangi · α, (3)

where rangi defines the mutation range and it is nor-
mally set to 0.1 · (ui − li), the + or - sign is chosen with
a probability of 0.5. In (3), α is set by the following
expression

α =
∑15

k=0
αk2−k, (4)

where αk ∈ {0, 1}. Before BGA mutation is applied, we
set each αk equal to 0, and then each αk is mutated
to 1 with probability p(αk = 1) = 1/16. Only αk = 1
contributes to the sum. On average, there will be just
one αk with value 1, say αj. Then α is fixed to 2− j.
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In this paper, BGA mutation has been improved by
replacing the normal setting of rangi (i.e., 0.1 · (ui − li))

with the modified setting

(ui − li) · rand
(
0, (1 − current_gen/total_gen)7

)
(5)

where current_gen denotes the current number of gen-
eration and total_gen denotes the total number of

generation. The power “7” in (5) is set experimentally.
The improved BGA mutation is called IBGA mutation.

To perform the IBGA mutation on a chosen indi-
vidual �x = (x1, x2, · · · , xn), randomly generate an index
irand between 1 and n with probability 1

/
n, and then

replace the irandth variable of the chosen individual
using (3), (4), and (5) to get a new chromosome �x′ =
(x′

1, x′
2, · · · , x′

n). This procedure can be expressed as
follows:

x′
i =

{
xi ± (ui − li) · rand

(
0,(1-current_gen/total_gen)7

) × ∑15
k=0 αk2−k, i = irand

xi, otherwise
, i = 1, · · · , n (6)

The IBGA mutation is intended to enhance the local
search capability of the population, as in this operator,
the probability of generating a neighborhood of �x is
very high. Moreover, the setting of rangi is dynamically
controlled by a nonlinear function. Note, however, that
in the normal setting, rangi is always kept to 0.1·(ui−li),
so the local tuning ability is not satisfactory.

Remark 1 The main highlight of simplex crossover is its
capability to maintain a balance between exploration
and exploitation. However, when the population is
trapped in a local optimum, simplex crossover might
not have the ability in helping the population to jump
out of the local optimum, as simplex crossover only
expands the simplex formed by several individuals with
a constant amount. Especially when the individuals
in the population are very similar, the global search
ability of simplex crossover will drastically decrease.
The diversity mutation has the global search capability
since it can search the whole space. Nevertheless, its
local search ability is not good enough. The goal of
the IBGA mutation is to improve the capability of
local search. Moreover, the dynamic setting of rangi

makes the population favor exploration at the early
stage and exploitation at the later stage of the search. It
is expected that combing these operators can enhance
the performance of HEA-ACT concretely.

2.3 Adaptive constraint-handling technique

In general, the population will experience three dif-
ferent situations in constrained optimization and, con-
sequently, we can design alternate constraint-handling
mechanisms for different situations. When the pop-
ulation contains only infeasible solutions, it is called
infeasible situation. When the population consists of a
combination of feasible and infeasible solutions, it is
called semi-feasible situation. And when the popula-
tion is composed of only feasible solutions, it is called

feasible situation. Next, the constraint-handling mech-
anisms will be introduced for these three situations step
by step.

2.3.1 Infeasible situation

As in this situation there are no feasible solutions in
the population, the constrained optimization problem
under this condition can be treated as a constraint sat-
isfaction problem. As a result, finding feasible solutions
is the most important objective in this situation. To
achieve this objective, we only concern the constraint
violations G(�x) of the individuals in the population, and
the objective function f (�x) is disregarded completely.
Firstly, the individuals in the parent population are
ranked based on their constraint violations in ascending
order, and then some excellent individuals with the
least constraint violations are selected and form the
offspring population.

The above constraint-handling mechanism in the in-
feasible situation is very suitable for the highly con-
strained optimization problems in which the feasible
region is very small compared with the entire search
space and it is extremely difficult to find a feasible
solution.

2.3.2 Semi-feasible situation

As for the semi-feasible situation, to keep the diversity
and balance the exploration and exploitation ability of
the population, a reasonable proportion between feasi-
ble and infeasible solutions in the population should be
maintained, and some potential feasible and infeasible
solutions should survive into the next generation. An
adaptive constraint-handling mechanism is proposed to
accomplish this goal.

Firstly, the population is divided into the feasible
group K1 and the infeasible group K2. The best feasible
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solution �xbest and the worst feasible solution �xworst are
identified from the feasible group K1, respectively. Af-

terward, the objective function f (�x) of the population
is converted into the following form (Wang et al. 2008):

f ′(�xi)=
{

f (�xi), �xi ∈ K1

max
{
ϕ ∗ f (�xbest)+(1 − ϕ) ∗ f (�xworst), f (�xi)

}
, �xi ∈ K2

(7)

where ϕ denotes the proportion of feasible solutions in
the last population P(t).

The objective function values of the individuals in
the population are then normalized:

fnor(�xi)=
f ′(�xi)− min

�x∈K1∪K2

f ′(�x)

max
�x∈K1∪K2

f ′(�x)− min
�x∈K1∪K2

f ′(�x)
, �xi ∈ K1 ∪ K2, (8)

To scale the constraint violations to the same order
of magnitude as the objective function, the constraint
violations of the individuals in the population are nor-
malized using the following expression:

Gnor(�xi) =
⎧⎨
⎩

0, �xi ∈ K1
G(�xi)− min

�x∈K2
G(�x)

max
�x∈K2

G(�x)− min
�x∈K2

G(�x)
, �xi ∈ K2

. (9)

It is possible that a single infeasible solution exists in
the population. Under this condition, the normalized
constraint violation Gnor of such individual will always
be equal to 0. To overcome this crash, the normalized
constraint violation Gnor of such individual is set to a
value uniformly chosen between 0 and 1.

Finally, the fitness function is obtained by adding
the normalized objective function values and constraint
violations together:

ffinal(�xi) = fnor(�xi) + Gnor(�xi). (10)

When selecting offspring for next generation in the
semi-feasible situation, the individuals in the parent
population are firstly ranked based on (10) in ascending
order, and then some excellent individuals with the
lowest ffinal(�x) are selected for the offspring population.

It is noteworthy that (7) reflects the adaptive char-
acteristic of the constraint-handling mechanism, as the
parameter is adapted based on the feasibility propor-
tion of the last population P(t) which may change from
generation to generation. If the value of ϕ is large, the
objective function values of the infeasible solution will
be relatively smaller, thus increasing the probability
for the infeasible solution to survive into the offspring
population. In contrast, if the value of ϕ is small, the
objective function values of the infeasible solution will
be relatively larger, so the feasible solution will be
selected with a higher probability. By the adaptive
transformation for fitness function, the population may

maintain a reasonable proportion between feasible and
infeasible solutions, which, in turn, facilitates more ef-
fective search for the global optimal solution.

In addition, normalization for both the objective
function and the constraint violations is necessary, as
the objective function and the constraint violations are
of different orders of magnitude originally.

2.3.3 Feasible situation

In this situation, the constrained optimization problem
is equivalent to the unconstrained optimization prob-
lem, as the population only contains feasible solutions.
With respect to the feasible situation, the comparisons
of individuals are based solely on the objective function
f (�x). Afterward, some excellent individuals with the
least objective function values are selected for the next
generation.

Remark 2 The proposed constraint-handling mecha-
nisms in these three different situations constitute the
adaptive constraint-handling technique for constrained
optimization, which switches smoothly from the first
situation to the third situation based on a simple condi-
tional statement. In principle, the adaptive constraint-
handling technique proposed in this paper belongs
to the penalty function method. Apart from the fea-
ture of adaptation, the proposed technique is easy to
understand and use. Furthermore, the computational
time complexity is only O(N log(N)). Compared with
Wang et al. (2008), this paper adopts the same idea
of converting the objective function values of feasible
and infeasible individuals in the semi-feasible situation;
however, the rest of the proposed approach is different.

3 Experimental study

3.1 Benchmark test functions

At first, 13 well-known benchmark test functions men-
tioned in Runarsson and Yao (2000) are optimized to
inspect the performance of the proposed method. The
main characteristics of these test cases are reported
in Table 1. From Table 1, it is obvious that the test
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Table 1 Main characteristics
of 13 benchmark functions Function Number Type of f ρ (%) LI NE NI α

g01 13 Quadratic 0.0003 9 0 0 6
g02 20 Nonlinear 99.9965 1 0 1 1
g03 10 Nonlinear 0.0000 0 1 0 1
g04 5 Quadratic 26.9356 0 0 6 2
g05 4 Nonlinear 0.0000 2 3 0 3
g06 2 Nonlinear 0.0064 0 0 2 2
g07 10 Quadratic 0.0003 3 0 5 6
g08 2 Nonlinear 0.8640 0 0 2 0
g09 7 Nonlinear 0.5256 0 0 4 2
g10 8 Linear 0.0005 3 0 3 3
g11 2 Quadratic 0.0000 0 1 0 1
g12 3 Quadratic 0.0197 0 0 93 0
g13 5 Nonlinear 0.0000 0 3 0 3

functions include different types of objective function
(e.g., linear, nonlinear, and quadratic) and constraints
[e.g., linear inequality (LI), nonlinear equalities (NE),
and nonlinear inequalities (NI)]. The feasibility ratio
ρ = |F ∩ S|/|S| is determined experimentally by cal-
culating the percentage of feasible solutions among
1,000,000 randomly generated individuals. Note that
test functions g02, g03, g08, and g12 are maximization
problems, and the others are minimization problems. In
this study, the maximization problems are transformed
into minimization using − f (�x). In addition, only test
functions g03, g05, g11, and g13 contain equality con-
straints. For these problems, a dynamic setting of the
parameter δ for equality constraints is adopted like
Mezura-Montes and Coello Coello (2005). The para-
meter δ decreases from generation to generation using
the following equation:

δ(t+1) =
{

δ(t)

δ′ i f δ(t) > 1E − 10

1E − 10 otherwise
, (11)

where the initial δ(0) is set to 5 and the value of δ′ is set
to 1.035.

The following parameters are established experi-
mentally for the best performance of HEA-ACT: N =
60, μ, λ, and ε in simplex crossover are set to 10, 5,
and 10, respectively. It is worth noticing that simplex
crossover is executed 40 times in each generation, so
the size of population Q1 is equal to 200. When im-
plementing simplex crossover at each time, the parents
of size μ are randomly chosen from the population. In
addition, as the diversity mutation or the IBGA muta-
tion occurs with a probability of 0.5 for each individual
in the population, the size of Q2 is equal to 60. The
number of fitness function evaluations (FFEs) is fixed
to 200,000. The above parameter settings are kept for
all experiments. In this paper, 30 independent runs are

performed for each test function in MATLAB (the
source code may be obtained from the authors upon
request).

3.1.1 Experimental results

The statistical results of HEA-ACT are summarized in
Table 2. The table shows the “known” optimal solu-
tion for each test function and the “best”, “median”,
“mean”, “worst”, and standard deviations of the objec-
tive function values found.

As shown in Table 2, HEA-ACT is able to find
the global optima consistently in 12 test functions
over 30 runs with the exception of test function g02.
With respect to test function g02, although the optimal
solutions are not consistently found, the best result
achieved is very close to the global optimal solution.
The resulting solutions achieved for test function g02
have been exhibited in Fig. 3. It is noteworthy that
the standard deviations in Table 2 are fairly small.
In particular, the standard deviation for test functions
g12 is equal to 0. Moreover, HEA-ACT is an efficient
method, as the number of FFEs is 200,000. In addition,
as the objective function and constraints are treated
separately in HEA-ACT, it does not need to evaluate
the objective function for the infeasible situation in the
adaptive constraint-handling technique, which makes
HEA-ACT more efficient. Finally, feasible solutions
are consistently found for all test functions in 30 runs.

The above discussion validates that HEA-ACT is an
effective and efficient approach for constrained opti-
mization, and that it is capable of providing competitive
results.

As discussed previously, HEA-ACT cannot consis-
tently reach the optimal solution for test function g02.
The main characteristic of this test function is that there
are many local optima with high peak near the global
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Table 2 Experimental results obtained by HEA-ACT for 13 benchmark test functions over 30 independent runs

Function Optimal Results of HEA-ACT

Best Median Mean Worst SD

g01 −15.000 −15.000 −15.000 −15.000 −15.000 7.7E-11
g02 −0.803619 −0.803582 −0.767844 −0.758182 −0.673096 3.2E-02
g03 −1.000 −1.000 −1.000 −1.000 −1.000 5.2E-15
g04 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539 7.4E-12
g05 5126.498 5126.498 5126.498 5126.498 5126.498 9.3E-13
g06 −6961.814 −6961.814 −6961.814 −6961.814 −6961.814 4.6E-12
g07 24.306 24.306 24.306 24.306 24.306 1.9E-11
g08 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 2.8E-17
g09 680.630 680.630 680.630 680.630 680.630 5.8E-13
g10 7049.248 7049.248 7049.248 7049.248 7049.248 1.4E-05
g11 0.750 0.750 0.750 0.750 0.750 3.4E-16
g12 −1.000 −1.000 −1.000 −1.000 −1.000 0.0E+00
g13 0.0539498 0.0539498 0.0539498 0.0539498 0.0539498 1.5E-15

optimal solution. It is commonly accepted that when
solving multi-modal problems (such as test function
g02), the diversity of the population has a significant
effect on finding the optimal solution, as the population
may converge to a local optimum if the diversity of the
population is not good enough. In general, selection
pressure has a direct relationship with the diversity of
the population. If the selection pressure is high, the
diversity of the population may decrease rapidly. It
is necessary to note that in HEA-ACT, the selection
strategy is similar to (μ + λ)-evolutionary strategy, and
therefore, the selection pressure of the population is
relatively high. Another experiment (denoted as HEA-
ACT_1) has been done to show the change of the
results for 13 test functions when the selection pressure
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Fig. 3 Plots show the number of trials versus the quality of the
resulting solutions achieved for test function g02

of the population decreases. For HEA-ACT_1, instead
of using the whole population P(t), only five best indi-
viduals chosen from P(t) are combined with Q1 ∪ Q2 for
selecting the next population in the step 4 of Section
2.1. The comparisons of results between HEA-ACT
and HEA-ACT_1 have been shown in Table 3. It can
be seen from Table 3 that the results derived from
HEA-ACT_1 for test function g02 are of a much higher
quality than HEA-ACT. Moreover, the global optimal
solution has been found by HEA-ACT_1 for test func-
tion g02. However, the lower selection pressure causes
the performance degradation for some test functions,
such as g01, g07, g10, and g13. More importantly, the
feasible solution cannot be found consistently over 30
runs for test function g13. The analyses above indi-
cate that different test functions may need different
selection pressure, for instance, for test function g02,
the lower selection pressure is beneficial, but for test
functions g01, g07, g10, and g13, the higher selection
pressure is beneficial. This phenomenon is in agreement
with the no-free lunch theorem (Wolpert and Macready
1997). Based on the above discussion, how to dynam-
ically choose the selection pressure for different test
functions will be part of our future work.

3.1.2 Comparison with the α simplex and the CDE

In the experiments, HEA-ACT is compared with α

Simplex (Takahama and Sakai 2005), which has been
introduced in Section 1. In α Simplex, 30 independent
runs are performed, the population size N is 90, the mu-
tation rate Pm = 0.06, the maximum number of FFEs is
30,000 for test function g12 and from 290,000 to 330,000
for the other test functions, and all equality constraints
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Table 3 Experimental comparison between HEA-ACT and HEA-ACT_1 on 13 test functions over 30 independent runs

Function Method Best Median Mean Worst SD

g01 HEA-ACT −15.000 −15.000 −15.000 −15.000 7.7E-11
HEA-ACT_1 −15.000 −15.000 −14.998 −14.966 6.0E-03

g02 HEA-ACT −0.803582 −0.767844 −0.758182 −0.673096 3.2E-02
HEA-ACT_1 −0.803619 −0.794896 −0.794358 −0.730711 1.4E-02

g03 HEA-ACT −1.000 −1.000 −1.000 −1.000 5.2E-15
HEA-ACT_1 −1.000 −1.000 −1.000 −1.000 4.3E-06

g04 HEA-ACT −30,665.539 −30,665.539 −30,665.539 −30,665.539 7.4E-12
HEA-ACT_1 −30,665.539 −30,665.539 −30,665.539 −30,665.539 7.4E-12

g05 HEA-ACT 5,126.498 5,126.498 5,126.498 5,126.498 9.3E-13
HEA-ACT_1 5,126.498 5,126.498 5,126.498 5,126.498 3.2E-11

g06 HEA-ACT −6,961.814 −6,961.814 −6,961.814 −6,961.814 4.6E-12
HEA-ACT_1 −6,961.814 −6,961.814 −6,961.814 −6,961.814 4.6E-12

g07 HEA-ACT 24.306 24.306 24.306 24.306 1.9E-11
HEA-ACT_1 25.225 26.366 26.497 27.992 7.8E-01

g08 HEA-ACT −0.095825 −0.095825 −0.095825 −0.095825 2.8E-17
HEA-ACT_1 −0.095825 −0.095825 −0.095825 −0.095825 2.8E-17

g09 HEA-ACT 680.630 680.630 680.630 680.630 5.8E-13
HEA-ACT_1 680.630 680.630 680.630 680.630 7.2E-09

g10 HEA-ACT 7,049.248 7,049.248 7,049.248 7,049.248 1.4E-05
HEA-ACT_1 7,175.103 7,378.483 7,400.906 7,751.922 1.6E+02

g11 HEA-ACT 0.750 0.750 0.750 0.750 3.4E-16
HEA-ACT_1 0.750 0.750 0.750 0.750 3.4E-16

g12 HEA-ACT −1.000 −1.000 −1.000 −1.000 0.0E+00
HEA-ACT_1 −1.000 −1.000 −1.000 −1.000 0.0E+00

g13 HEA-ACT 0.0539498 0.0539498 0.0539498 0.0539498 0.0E+00
HEA-ACT_1 (11)a

aDenotes the number of trials that feasible solutions are found.

are relaxed using δ = 1E − 4. In addition, the α level is
controlled based on the following equation:

α(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

(
maxi μ(�xi) +

∑
i μ(�xi)

N

)
, i f t = 0

(1−β)α(t−1)+β,
i f 0< t< Tmax

2

and (T mod Tα)=0

α(t−1),
i f 0 < t < Tmax

2

and (T mod Tα) �=0

1, i f t> Tmax
2

(12)

where μ(�xi) denotes the satisfaction level of individual
�xi which indicate how well the individual �xi satisfies the
constraints, β = 0.3, Tα = 50, the maximum iterations
Tmax = 8,500 for test function g12 and for the other test
functions, Tmax = 85,000 is used.

HEA-ACT is also compared with cultural differen-
tial evolution (CDE; Becerra and Coello Coello 2006).
CDE combines cultural algorithm with differential evo-
lution to solve constrained optimization problems. Cul-
tural algorithms involve two main components: the

population space and the belief space. The popula-
tion space consists of a set of possible solutions, and
the belief space is the information repository. Both
spaces are linked through a communication protocol.
In this method, the cultural algorithm is used to ex-
tract knowledge from the population during the evo-
lutionary process and to accelerate the convergence,
and the population space is modeled using differential
evolution. For each test function, 30 independent runs
are performed with 100,100 FFEs, the population size
is 100, the maximum number of generations is 1,000,
F = 0.5, CR = 1, the maximum depth of k-d tree is 12,
the length of best cell list is the number of decision
variables of the problem, the size of the list in the
history knowledge w = 5, α and β can be fixed to 0.4
or 0.45, and the percentage of accepted individuals at
the end of the evolutionary process %p = 0.2.

The results have been shown in Tables 4 and 5. Com-
pared with α Simplex, HEA-ACT finds similar “best”,
“mean”, and “worst” results for ten test functions (g01,
g03, g04, g05, g06, g08, g09, g10, g11, and g12). For test
function g02, better “best”, “mean,” and “worst” results
are found by α Simplex. The “worst” result provided
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Table 4 Comparing HEA-ACT with respect to α Simplex on 13 benchmark test functions

Function Optimal Best result Mean result Worst result

HEA-ACT α Simplex HEA-ACT α Simplex HEA-ACT α Simplex

g01 −15.000 −15.000 −15.000 −15.000 −15.000 −15.000 −15.000
g02 −0.803619 −0.803582 −0.803619 −0.758182 −0.784187 −0.673096 −0.754259
g03 −1.000 −1.000 −1.001 −1.000 −1.001 −1.000 −1.001
g04 −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,665.539
g05 5,126.498 5,126.498 5,126.497 5,126.498 5,126.497 5,126.498 5,126.497
g06 −6,961.814 −6,961.814 −6,961.814 −6,961.814 −6,961.814 −6,961.814 −6,961.814
g07 24.306 24.306 24.306 24.306 24.306 24.306 24.307
g08 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
g09 680.630 680.630 680.630 680.630 680.630 680.630 680.630
g10 7,049.248 7,049.248 7,049.248 7,049.248 7,049.248 7,049.248 7,049.248
g11 0.750 0.750 0.750 0.750 0.750 0.750 0.750
g12 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000
g13 0.0539498 0.0539498 0.053942 0.0539498 0.066770 0.0539498 0.438803

Result in boldface indicates that a better result is reached.

by HEA-ACT is of a higher quality for test function
g07. In addition, HEA-ACT finds better “mean” and
“worst” results for test function g13.

With respect to CDE, HEA-ACT provides similar
“best”, “mean”, and “worst” results for eight test func-
tions (g01, g04, g06, g07, g08, g09, g10, and g12). A
better “best” result is found by CDE in test function
g02; however, HEA-ACT reaches better “mean” and
“worst” results. HEA-ACT finds better “best”, “mean”
and “worst” results for three test functions (g03, g05
and g13). Finally, HEA-ACT finds better “mean” and
“worst” results for test function g11. It can be observed
that with regard to CDE, premature convergence tends

to occur for constrained optimization problems with
equality constraints (g03, g05, g11, and g13).

It is very difficult to solve constrained optimization
problems with equality constraints without relaxing the
equality constraints. Nevertheless, the transformation
from equality constraints into inequality constraints
may have an impact on performance of the method. For
example, as the transformation of equality constraints,
the results provided by α Simplex for test functions g03,
g05, and g13 are better than the “known” optima. This
does not mean that “new” optima have been found by
α Simplex. It is necessary to notice that for four test
functions with equality constraints (g03, g05, g11, and

Table 5 Comparing HEA-ACT with respect to CDE on 13 benchmark test functions

Function Optimal Best result Mean result Worst result

HEA-ACT CDE HEA-ACT CDE HEA-ACT CDE

g01 −15.000 −15.000 −15.000 −15.000 −15.000 −15.000 −15.000
g02 −0.803619 −0.803582 −0.803619 −0.758182 −0.724886 −0.673096 −0.590908
g03 −1.000 −1.000 −0.995 −1.000 −0.789 −1.000 −0.640
g04 −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,665.539
g05 5,126.498 5,126.498 5,126.571 5,126.498 5,207.411 5,126.498 5,327.390
g06 −6,961.814 −6,961.814 −6,961.814 −6,961.814 −6,961.814 −6,961.814 −6,961.814
g07 24.306 24.306 24.306 24.306 24.306 24.306 24.306
g08 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
g09 680.630 680.630 680.630 680.630 680.630 680.630 680.630
g10 7,049.248 7,049.248 7,049.248 7,049.248 7,049.248 7,049.248 7,049.248
g11 0.750 0.750 0.750 0.750 0.758 0.750 0.796
g12 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000 −1.000
g13 0.0539498 0.0539498 0.056180 0.0539498 0.288324 0.0539498 0.392100

Result in boldface indicates that a better result is reached.
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Table 6 Mean results obtained by HEA-ACT, HEA-ACT with
only simplex crossover (version 1), HEA-ACT with simplex
crossover and diversity mutation (version 2), and HEA-ACT

with simplex crossover and IBGA mutation (version 3) for 13
benchmark test functions over 30 independent runs

Function HEA-ACT Version 1 Version 2 Version 3

g01 −15.000 (16)a −14.981 −15.000
g02 −0.758182 −0.530551 −0.789723 −0.699993
g03 −1.000 −1.000 −1.000 −1.000
g04 −30,665.539 −30,661.841 −30,665.300 −30,665.539
g05 5,126.498 5,126.498 5,126.498 5,126.498
g06 −6,961.814 −6,961.814 −6,961.814 −6,961.814
g07 24.306 24.306 24.306 24.306
g08 −0.095825 −0.095825 −0.095825 −0.095825
g09 680.630 680.630 680.630 680.630
g10 7,049.248 8,910.618 7,151.997 7,049.252
g11 0.750 0.750 (28)a 0.750
g12 −1.000 −1.000 −1.000 −1.000
g13 0.0539498 (0)a (18)a 0.0667799

Result in boldface indicates that a better result is reached.
aDenotes the number of trials that feasible solutions are found

g13), the results obtained by HEA-ACT are almost
equal to the “known” optima. It is because the value
of δ is extremely small (1E− 10) when the stopping
criterion is met.

In addition, regarding the computation cost (mea-
sured by the number of FFEs), CDE is the most ef-
ficient method, as it has the minimum computational
cost (100,100 FFEs), and HEA-ACT has the median
computation cost (200,000 FFEs).

As a general remark on the comparison above,
HEA-ACT shows a very competitive performance with
respect to two state-of-the-art approaches in terms of
the quality, the robustness, and the efficiency of search.
Concretely, HEA-ACT exhibits a good trade-off be-
tween effectiveness and efficiency.

3.1.3 Effectiveness of the genetic operators
in HEA-ACT

In this subsection, some trials have been performed to
study the effectiveness of the genetic operators adopted
in HEA-ACT (i.e., simplex crossover, diversity muta-
tion, and IBGA mutation) by using some operators
separately. Three different versions of HEA-ACT have
been tested:

1. Version 1: HEA-ACT with only simplex crossover;
2. Version 2: HEA-ACT with simplex crossover and

diversity mutation;
3. Version 3: HEA-ACT with simplex crossover and

IBGA mutation.

Table 7 Mean results
obtained by HEA-ACT
with two-point crossover,
HEA-ACT with BLX-α
crossover, and HEA-ACT
with simplex crossover for 13
benchmark test functions
over 30 independent runs

Result in boldface indicates
that a better result is reached.
aDenotes the number of trials
that feasible solutions are
found

Function HEA-ACT with two-point HEA-ACT with BLX-α HEA-ACT with simplex
crossover crossover

g01 −14.633 −15.000 −15.000
g02 −0.616297 −0.723299 −0.758182
g03 −0.991 −0.999 −1.000
g04 −30,396.177 −30,817.915 −30,665.539
g05 (0)a (0)a 5,126.498
g06 (28)a −6,961.788 −6,961.814
g07 37.157 26.674 24.306
g08 −0.093602 −0.095825 −0.095825
g09 691.688 682.137 680.630
g10 9,164.792 8,704.273 7,049.248
g11 0.755 0.756 0.750
g12 −1.000 −1.000 −1.000
g13 (27)a (26)a 0.0539498
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Table 8 Mean results obtained by HEA-ACT with varying μ in simplex crossover over 30 independent runs

Function 6 8 10 12 14

g01 −15.000 −15.000 −15.000 −15.000 −15.000
g02 −0.755016 −0.755971 −0.758182 −0.744841 −0.746268
g03 −1.000 −1.000 −1.000 −1.000 −1.000
g04 −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,665.539
g05 5,126.498 5,126.498 5,126.498 5,126.498 (29)a

g06 −6,961.814 −6,961.814 −6,961.814 −6,961.814 −6,961.814
g07 24.306 24.306 24.306 24.306 24.306
g08 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
g09 680.630 680.630 680.630 680.630 680.630
g10 7,049.248 7,049.248 7,049.248 7,049.248 7,049.248
g11 0.750 0.750 0.750 0.750 0.750
g12 −1.000 −1.000 −1.000 −1.000 −1.000
g13 0.0539498 0.0539498 0.0539498 0.0539498 0.0667798

Result in boldface indicates that a better result is reached
aDenotes the number of trials that feasible solutions are found

The parameters used in these three versions are
exactly the same as those used in the experiments
described at the beginning of Section 3.1. Furthermore,
the number of FFEs is also the same to have a fair com-
parison. The experimental results have been recorded
in Table 6.

Table 6 shows that compared with HEA-ACT, the
performance deterioration takes place in test functions
g02, g04, and g10 for version 1. Moreover, version 1
cannot find feasible solutions consistently for test func-
tions g01 and g13. Although version 2 provides results
of a higher quality for test function g02, it degrades
its performance for test functions g01, g04, and g10.
More importantly, feasible solutions cannot be found
consistently for test functions g11 and g13. There exists

a negative effect when using version 3. For instance, the
results of test functions g02, g10, and g13 are worse than
those provided by HEA-ACT. This may be because the
diversity of the population is not as good as expected.

Based on the analyses above, it can be concluded
that HEA-ACT outperforms these three versions on
the whole, which also verifies that simultaneously em-
ploying these three genetic operators increases the
chance for improving the search performance.

3.1.4 Discussion about simplex crossover

To ascertain whether simplex crossover is really suit-
able for the framework proposed, the proposed ap-
proach is compared with the same approach, but

Table 9 Mean results obtained by HEA-ACT with varying λ in simplex crossover over 30 independent runs

Function 1 3 5 7 9

g01 −15.000 −15.000 −15.000 −15.000 −15.000
g02 −0.740535 −0.750761 −0.758182 −0.762383 −0.755297
g03 −1.000 −1.000 −1.000 (21)a (19)a

g04 −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,665.539
g05 5,126.498 5,126.498 5,126.498 (27)a (26)a

g06 −6,961.814 −6,961.814 −6,961.814 −6,961.814 −6,961.814
g07 24.306 24.306 24.306 24.306 24.306
g08 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
g09 680.630 680.630 680.630 680.630 680.630
g10 7,049.248 7,049.248 7,049.248 7,049.248 7,049.248
g11 0.750 0.750 0.750 0.750 0.750
g12 −1.000 −1.000 −1.000 −1.000 −1.000
g13 0.105270 0.0539498 0.0539498 0.0539498 0.0539498

Result in boldface indicates that a better result is reached.
aDenotes the number of trials that feasible solutions are found
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Table 10 Mean results obtained by HEA-ACT with varying ε in simplex crossover over 30 independent runs

Function 6 8 10 12 14

g01 −14.933 −15.000 −15.000 −15.000 −15.000
g02 −0.680891 −0.735283 −0.758182 −0.753172 −0.760076
g03 −1.000 −1.000 −1.000 −1.000 −1.000
g04 −30,619.116 −30,665.539 −30,665.539 −30,665.539 −30,665.539
g05 (8)a (29)a 5,126.498 5,126.498 5,126.498
g06 −6,952.819 −6,961.814 −6,961.814 −6,961.814 −6,961.814
g07 26.728 24.306 24.306 24.306 24.306
g08 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
g09 681.604 680.630 680.630 680.630 680.630
g10 7,148.091 7,049.248 7,049.248 7,049.248 7,050.864
g11 0.750 0.750 0.750 0.750 0.750
g12 −1.000 −1.000 −1.000 −1.000 −1.000
g13 0.0539587 0.0539498 0.0539498 0.0539498 0.0539498

Result in boldface indicates that a better result is reached.
aDenotes the number of trials that feasible solutions are found

replacing simplex crossover with two traditional
ones, i.e., two-point crossover and BLX-α crossover
(Eshelman and Schaffer 1993). The compared ap-
proaches have the same number of FFEs (i.e., 200,000
FFEs) to have a fair comparison. In BLX-α crossover,
the parameter α is fixed to 0.5, which is used as a stan-
dard value in Eshelman and Schaffer (1993). The mean
results obtained by three different experiments, HEA-
ACT with two-point crossover, HEA-ACT with BLX-
α crossover, and HEA-ACT with simplex crossover,
have been shown in Table 7. As described in Table 7,
the best overall performance is exhibited by HEA-
ACT with simplex crossover, followed by HEA-ACT
with BLX-α crossover, and finally, HEA-ACT with

two-point crossover seems to have the worst overall
performance. HEA-ACT with two-point crossover and
HEA-ACT with BLX-α crossover can only consistently
hit the global optima for test function g12 and for test
functions g01, g08, and g12, respectively. Furthermore,
HEA-ACT with two-point crossover and HEA-ACT
with BLX-α crossover cannot consistently find feasible
solutions for test functions g05, g06, and g13 and for test
functions g05 and g13, respectively. The results above
indicate that on the whole, HEA-ACT has more stable
performance and is more suitable for the hybrid frame-
work proposed than the other two crossover operators.

It is important to note that in this paper, the
constraint-handling technique and both mutation

Table 11 Mean results obtained by HEA-ACT with different number of simplex crossover performed per generation over 30
independent runs

Function 20 30 40 50 60

g01 −14.933 −15.000 −15.000 −15.000 −15.000
g02 −0.746141 −0.746763 −0.758182 −0.763888 −0.760410
g03 −1.000 −1.000 −1.000 (18)a (18)a

g04 −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,665.539
g05 5,126.498 5,126.498 5,126.498 (29)a (27)a

g06 −6,961.814 −6,961.814 −6,961.814 −6,961.814 −6,961.814
g07 24.306 24.306 24.306 24.306 24.306
g08 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825
g09 680.630 680.630 680.630 680.630 680.630
g10 7,049.248 7,049.248 7,049.248 7,049.248 7,049.248
g11 0.750 0.750 0.750 0.750 0.750
g12 −1.000 −1.000 −1.000 −1.000 −1.000
g13 0.0667799 0.0539498 0.0539498 (29)a 0.0539498

Result in boldface indicates that a better result is reached
aDenotes the number of trials that feasible solutions are found.
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Table 12 Experimental results obtained by HEA-ACT for four engineering optimization problems over 30 independent runs

Problem Results of HEA-ACT

Best Median Mean Worst SD

Welded beam design 2.38095723 2.38096560 2.38097103 2.38102095 1.3E-05
Spring design 0.012665233 0.012665234 0.012665234 0.012665240 1.4E-09
Speed reducer design 2,994.499107 2,994.599748 2,994.613368 2,994.752311 7.0E-02
Three-bar truss design 263.895843 263.895848 263.895865 263.896099 4.9E-05

operators are parameter-free. Hence, simplex cross-
over is responsible for the algorithm not to be com-
pletely adaptive. Next, four additional experiments
have been performed to illustrate the effect of the four
parameters used by simplex crossover (i.e., the number
of parents μ, the number of offspring λ, the control
parameter ε, and the number of times crossover is
performed per generation) on the approach’s perfor-
mance. The mean results obtained by four different ex-
periments have been summarized in Tables 8, 9, 10, 11.

Table 8 indicates that increasing the parameter μ

causes convergence instability. For instance, the algo-
rithm cannot consistently offer feasible solutions for
test function g05 when μ = 14. Moreover, in this case,
premature convergence occurs for test function g13.
These are because a large number of parents may result
in the rapid loss of population diversity. Tsutsui et al.
(1999) pointed out that a large number of parents have
sampling biases that reflect biases in the population
distribution too much. Recently, Noman and Iba (2008)
used simplex crossover with three parents to improve
the local search ability of differential evolution. Their
method shows high performance. From the results of
Table 8, we can induce that a value of μ between 6 and
12 is an appropriate setting for HEA-ACT.

For Table 9, in the cases of λ = 1, the results
for test functions g01 and g13 are much worse than
other results. In addition, in the case of λ = 7 and 9,
the methods cannot converge to the feasible solutions
consistently. The above behaviors are not difficult to
understand, as the exploration and exploitation ability

of the population is poor if the value of λ is smaller
(such as 1); meanwhile, a higher value of λ (such as 7
and 9) means a lower number of iterations, which leads
to an incomplete convergence of the population. These
results encourage the use of a value of λ between 3 and
5 for HEA-ACT.

The control parameter ε defines the amplification
rate of simplex crossover and adjusts the exploration
and exploitation ability of the population. If the control
parameter ε is smaller, the exploration ability of the
population is not good; on the contrary, if the control
parameter ε is bigger, the exploitation capability is
poor, so a suitable value should be chosen for this
parameter. The results in Table 10 have verified the
above analysis. In the case of ε = 6, the results are of
a much worse quality compared with other algorithms.
In the case of ε = 8, the quality of results is better than
those provided by ε = 6; however, it still shows poor
performance for test functions g02 and g05. In the case
of ε = 14, the result for test function g10 is worse than
that of ε = 8, 10, and 12. Thus, a value of ε between 10
and 12 is appropriate for HEA-ACT.

The number that crossover is executed per gener-
ation also has a significant impact on performance.
If the number of crossover executed per generation
is less, the competence of simplex crossover cannot
be exhibited completely. However, if the number of
crossover executed per generation is more, the number
of FFEs per generation will increase remarkably, and
hence, the total iteration number of the population
will decrease accordingly. The results in Table 11 also

Table 13 Results of welded beam design

Method Best Median Mean Worst SD The number
of FFEs

HEA-ACT 2.38095723 2.38096560 2.38097103 2.38102095 1.3E-05 30,000
Ray and Liew (2003) 2.3854347 3.0025883 3.2551371 6.3996785 9.6E-01 33,095
FSA (Hedar and Fukushima 2006) 2.381065 NA 2.404166 2.488967 NA 56,243
Deb (2000) 2.38119 2.39289 NA 2.64583 NA 40,080

NA not available
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Table 14 Comparison of
results for welded beam
design

NA not available

HEA-ACT Ray and Liew (2003) FSA (Hedar and Fukushima 2006) Deb (2000)

x1 0.2443688943 0.2444382760 0.24435257 NA
x2 6.2175179741 6.2379672340 6.2157922 NA
x3 8.2914773014 8.2885761430 8.2939046 NA
x4 0.2443689510 0.2445661820 0.24435258 NA
Best 2.38095723 2.3854347 2.381065 2.38119

Table 15 Results of spring design

Method Best Median Mean Worst SD The number
of FFEs

HEA-ACT 0.012665233 0.012665234 0.012665234 0.012665240 1.4E-09 24,000
Ray and Liew (2003) 0.012669249 0.012922669 0.012922669 0.016717272 5.9E-04 25,167
FSA (Hedar and Fukushima 2006) 0.012665258 NA 0.012665299 0.012665338 2.2E-08 49,531

NA not available

Table 16 Comparison of
results for spring design HEA-ACT Ray and Liew (2003) FSA (Hedar and Fukushima 2006)

x1 0.3567292035 0.368158695 0.3580047835
x2 0.0516895376 0.0521602170 0.0517425034
x3 11.2882937035 10.6484422590 11.2139073628
Best 0.012665233 0.012669249 0.012665258

Table 17 Results of speed reducer design

Method Best Median Mean Worst SD The number of FFEs

HEA-ACT 2,994.499107 2,994.599748 2,994.613368 2,994.752311 7.0E-02 40,000
Ray and Liew (2003) 2,994.744241 3,001.758264 3,001.758264 3,009.964736 4.0E+00 54,456
Mezura-Montes et al. (2006a) 2,996.356689 NA 2,996.367220 2,996.390137 8.2E-03 24,000
Akhtar et al. (2002) 3,008.08 NA 3,012.12 3,028.28 NA 19,154

NA not available

Table 18 Comparison of results for speed reducer design

HEA-ACT Ray and Liew (2003) Mezura-Montes et al. (2006a) Akhtar et al. (2002)

x1 3.5000228993 3.50000681 3.500010 3.506122
x2 0.7000003924 0.70000001 0.700000 0.700006
x3 17.0000128592 17 17 17
x4 7.3004277414 7.32760205 7.300156 7.549126
x5 7.7153774494 7.71532175 7.800027 7.859330
x6 3.3502309666 3.35026702 3.350221 3.365576
x7 5.2866636970 5.28665450 5.286685 5.289773
Best 2,994.499107 2,994.744241 2,996.356689 3,008.08
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Table 19 Results of three-bar truss design

Method Best Median Mean Worst SD The number of FFEs

HEA-ACT 263.895843 263.895848 263.895865 263.896099 4.9E-05 15,000
Ray and Liew (2003) 263.8958466 263.8989 263.9033 263.96975 1.3E-02 17,610

demonstrate the above analyses. In the case of the
number of crossover executed per generation being
equal to 20, the results for test functions g01, g02, and
g13 show slight performance degradation. In the case of
the number of crossover executed per generation being
equal to 50 and 60, for some test functions, the popula-
tion is unable to enter the feasible region consistently.
Therefore, a value of the number of crossover exe-
cuted per generation between 30 and 40 is suitable for
HEA-ACT.

3.2 Engineering optimization problems

For studying the performance of HEA-ACT on real-
world engineering constrained optimization problems,
four well-studied engineering design examples chosen
from Ray and Liew (2003) are solved using this ap-
proach. All parameter settings are the same as the
previous experiments for 13 benchmark test functions
except for the number of FFEs. The number of FFEs
for these four engineering optimization problems is
30,000, 24,000, 40,000, and 15,000, respectively.

The simulation results are shown in Table 12.
As described in Table 12, in terms of the selected per-
formance measures, it can be seen that the robutstness
of HEA-ACT is very good, as it can converge to similar
results with a very small number of FFEs. In particular,
HEA-ACT can almost reach the same result for spring
design problem.

3.2.1 Welded beam design problem

The approaches applied to this problem for comparison
include Ray and Liew (2003), fast simulated annealing
(FSA; Hedar and Fukushima 2006), and Deb (2000).
Their results are shown in Table 13, and the best solu-
tions obtained by the above approaches and HEA-
ACT are listed in Table 14. With respect to HEA-ACT,
the constraints are [–0.001583 –0.039724 –0.000000 –
0.234241 –0.001140] for the best result obtained.

From Table 13, it is clear that the best, median,
mean, and worst results provided by HEA-ACT are
better than those found by other methods. Note that
even the worst result found by HEA-ACT is better than

the best results found by other methods. Moreover,
HEA-ACT is more efficient than other methods in
terms of the number of FFEs.

3.2.2 Spring design problem

The approaches applied to this problem for compar-
isons include Ray and Liew (2003) and FSA (Hedar
and Fukushima 2006). Their results are shown in
Table 15, and the best solutions obtained by the above
approaches and HEA-ACT are listed in Table 16. The
constraints are [0.00000 –0.000000 –4.053808 –0.727721]
based on the best result derived from HEA-ACT.

From Table 15, it can be seen that HEA-ACT has
performed with more robustness in terms of the quality
of results obtained and more efficiency in terms of the
number of FFEs. In addition, even the worst result
found by HEA-ACT is better than the best results
found by other methods.

3.2.3 Speed reducer design problem

The approaches applied to this problem for comparison
include Ray and Liew (2003), Mezura-Montes et al.
(2006a), and Akhtar et al. (2002). Their results are
shown in Table 17, and the best solutions obtained
by the above approaches and HEA-ACT are listed
in Table 18. The constraints are [–0.073923 –0.198006
–0.499095 –0.904643 –0.000014 –0.000005 –0.702500 –
0.000006 –0.583331 –0.051378 –0.000006] based on the
best result provided by HEA-ACT.

As shown in Table 17, while the number of FFEs for
HEA-ACT is larger than those provided by Mezura-
Montes et al. (2006a) and Akhtar et al. (2002), the
best, median, mean, and worst results found by HEA-
ACT are apparently better than those found by other
methods.

Table 20 Comparison of results for three-bar truss design

HEA-ACT Ray and Liew (2003)

x1 0.7886803456 0.7886210370
x2 0.4082335517 0.4084013340
Best 263.895843 263.8958466
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Table 21 Experimental results obtained by HEA-ACT for four engineering optimization problems over 30 independent runs with
100,000 FFEs

Problem Results of HEA-ACT

Best Median Mean Worst SD

Welded beam design 2.38095658 2.38095658 2.38095658 2.38095658 3.8E-12
Spring design 0.012665233 0.012665233 0.012665233 0.012665233 5.3E-18
Speed reducer design 2,994.471066 2,994.471066 2,994.471066 2,994.471066 1.2E-09
Three-bar truss design 263.895843 263.895843 263.895843 263.895843 8.3E-12

3.2.4 Three-bar truss design problem

The approaches applied to this problem for compar-
ative purpose is Ray and Liew (2003). Their results
are shown in Table 19, and the best solutions obtained
by the above approach and HEA-ACT are listed in
Table 20. The constraints are [–0.000000 –1.464118 –
0.535881] based on the best result provided by HEA-
ACT.

As described in Table 19, HEA-ACT outperforms
Ray and Liew (2003) with regards to all performance
metrics.

Based on the above comparisons, one can con-
clude that HEA-ACT is of superior search quality
and robustness for constrained engineering optimiza-
tion problems. Furthermore, on the whole, the perfor-
mance of HEA-ACT is much better than the compared
methods.

Finally, to inspect whether the search quality can
be further improved in engineering optimization prob-
lems, HEA-ACT has been tested using a large number
of FFEs (100,000 FFEs). The results have been shown
in Table 21. From Table 21, it can be found that the
results obtained are of a much higher quality compared
with the results in Table 12, and the standard deviations
are extremely small. The above observation implies
that HEA-ACT can keep improving its performance
over time if more computational cost is allowed.

4 Conclusion

The research reported here proposes a hybrid evolu-
tionary algorithm and an adaptive constraint-handling
technique for constrained numerical and engineering
optimization problems. The hybrid evolutionary algo-
rithm includes simplex crossover, diversity mutation,
and IBGA mutation. It is worthwhile to note that
the crossover operation and the mutation operation
are implemented concurrently and that the diversity
mutation or the IBGA mutation is applied to an in-
dividual in the population with a probability of 0.5.
In addition, the adaptive constraint-handling technique

consists of three situations, i.e., the infeasible situa-
tion, the semi-feasible situation, and the feasible situa-
tion. The proposed approach first judges to which
situation the current population belongs, and then the
selection of individuals is based on the corresponding
constraint-handling mechanism.

The method has been tested experimentally based
on numerical and engineering constrained optimiza-
tion problems. The experimental results indicate that
the proposed method is very suitable for constrained
optimization problems with different types and that
it is superior to or competitive with the compared
approaches. The effectiveness of the genetic operators
adopted in HEA-ACT has been investigated by differ-
ent experiments. It is found that the combination of
these operators reaches more competitive results than
when only using one or two of them, which suggests that
these operators can be combined for constrained op-
timization problems. In addition, the effect of simplex
crossover on performance is demonstrated.
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