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Abstract Due to link additions, small world phenomena exist in tree-based wireless sensor networks.

Epidemics on small worlds of tree-based networks are studied, and the epidemic threshold at which the

outbreak of the epidemic occurs is calculated. Epidemiological processes are analyzed when the infection

probability is larger than the percolation threshold. Although different epidemiological processes occur

on the underlying tree topology, the number of infected nodes increases exponentially as the infection

spreads. The uniform immunization procedure is conducted in the homogeneous small-world network.

The infection still extends exponentially although the immunization effectively reduces the prevalence

speed.

Keywords Epidemic, small world, tree topology, uniform immunization.

1 Introduction

Recent years have seen the deployments of wireless sensor networks (WSNs) in a variety of
applications including habitat and environmental monitoring[1], precision agriculture, security
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surveillance[2], etc. More and more efficient ways of sensor deployments rise into view recently.
The tree topology is a kind of architecture used frequently, which is ubiquitous in the deployment
of wireless sensor nodes. Some routing protocols, topology control algorithms and aggregation
schedules of wireless sensor networks are helpful to construct tree-based networks.

Distributed quad-tree (DQT) is an in-network tree framework, which achieves distance sen-
sitivity and resiliency for event-based querying, as well as greatly reduces the cost of complex
range querying[3]. Hybrid address assignment scheme (HAA) uses a tree address structure to
make the proposed scheme less susceptible to the physical distribution of WSN devices[4]. Se-
mantic/Spatial correlation-aware tree (SCT) is a simple, scalable and distributed tree structure
that addresses the practical challenges in the context of aggregation in WSNs[5]. With this
structure, the total cost of the aggregation tree can be minimized. Localized energy-efficient
multicast algorithm (LEMA) uses a function to locally estimate energy-efficient paths to mul-
tiple destinations[6]. It is able to deal with the inherent errors of WSNs. Several tree-based
protocols based on minimal spanning tree (MST)[7] have attracted much attention recently.
Base-station controlled dynamic clustering protocol (BCDCP) introduces an MST to connect
cluster-heads and adopts iterative cluster splitting algorithm to choose cluster-heads or form
clusters[8]. It distributes energy dissipation evenly among all sensor nodes to improve the net-
work lifetime and average energy saving. Cluster-based and tree-based power efficient data
collection and aggregation protocol for WSNs (CTPEDCA) is based on a clustering and MST
routing strategy for cluster heads, which uses MST to improve the transmission routing mecha-
nism among cluster heads so that only one cluster head communicates directly with the faraway
base station in each round[9]. Most tree-based protocols are multi-hop protocols, which are fa-
mous for energy saving in data gathering and transferring.

Compared with regular computer systems, it is even easier for sensors to be compromised
by virus attacks. The sensor does not have complicated hardware architecture or operating
system to protect its safety due to cost and resource constraints. Nodes in the same network
are homogeneous in both hardware and software. In this research, we only consider the viruses
like sensor worms. If the sensor worm attacks the network, the epidemic propagates rapidly
from one side to another. Yang, et al.[10] studied the worm propagation in the wireless sensor
network and considered the propagation as a random process in a random network. De, et
al.[11] investigated the potential disastrous threat of node compromise spreading in the wireless
sensor network. They focused on the possible epidemic breakout based on the random network.
Considering routing protocols, topology control algorithms and aggregation schedules, random
graphs can not completely indicate structure characteristics of wireless sensor networks. During
the work of tree-based networks, random link additions among nodes occur inevitably for the
use of omnidirectional antennae. Obstacles, adjustments of radio energy, joins of new members,
and errors of location precision all incur link additions. In this paper, small world phenomena[12]

existing in tree-based wireless sensor networks are studied. Due to shortcuts in small worlds,
the epidemic propagation becomes much drastic in the network.

Small world phenomena were first investigated in sociology that individuals were often linked
by a short chain of acquaintances. Watts[13] proposed an alternative model for small world phe-
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nomena by using the graph theory. Recent researches have shown that small world phenomena
are ubiquitous in nature, society, and technology. Small worlds are also observed in wireless
sensor networks[14]. Some researches have been conducted in dynamics of epidemic propaga-
tions on small world networks[15–17]. Moore and Newman[15] studied the percolation on small
world networks, which had been studied as a simple model of the propagation of the disease.
The occupation probabilities of sites and bonds correspond to the susceptibility of individuals
to the disease and the transmissibility of the disease respectively. Telo and Nunes[18] studied
the effect of the network structure on immune models for life diseases and found that spatial
correlations might strongly enhance the stochastic fluctuations in addition to the reduction of
the effective transmission rate. Anna and Lewi[19] analyzed the recurrent oscillations occurring
in small-world networks. The success of an infectious disease to invade a population is strongly
controlled by the population’s specific connectivity structure. Thomas, et al.[20] studied the
effect of vaccinations in a susceptible-infected-recovered (SIR) epidemic model on a dynamic
small-world network. Immunization strategies of small worlds get attentions[21, 22]. The im-
munization is one of the most common and successful strategies for combating the outbreak of
infectious diseases.

Our researches and contributions focus on the following aspects. If the distribution of
occupied nodes is random, the problem when an epidemic occurs becomes equivalent to a
standard percolation problem[23]. We calculate the percolation threshold, at which the outbreak
of the epidemic occurs in small worlds of tree-based sensor networks. We analyze epidemiological
processes when the infection probability is larger than the epidemic threshold. The uniform
immunization procedure, which consists of the random introduction of immune individuals, is
conducted in the homogeneous small worlds of tree-based sensor networks.

The rest of the paper is organized as follows. Our network model and basic ideas are
described in Section 2. The epidemic threshold on the small world is calculated in Section 3.
Epidemiological processes are analyzed in Section 4. The uniform immunization procedure is
conducted in Section 5. Numerical simulations are presented in Section 6. The paper concludes
in Section 7.

2 Network Model and Basic Idea

We consider a network composed of N nodes distributed in the network. The following
properties of the wireless sensor network are supposed:

1) Nodes are not moveable after they are randomly distributed in the network.
2) All nodes are symmetric. They have similar properties (e.g., range of radio coverage,

energy of batteries, etc).
3) There is only one root, from which only one tree is constructed in the sensor network.
4) Link additions occur on the tree-based network to construct the small-world network.
Cayley tree is considered for the study of dynamics, which is such an abstract with one root

node and K children nodes for each parent node with K ≥ 2. It neglects the actual distance
information between any pair of nodes. Random link additions are conducted on the tree-based
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model to construct a small-world network. It simplifies extremely the problem and represents
a spatial graph model. This abstract reflects homogeneous properties of small worlds, in which
each node has approximately the same number of links. If p is defined as the average number
of shortcuts per bond (link) on the underlying tree, there are p(N − 1) link additions and
altogether (p + 1)(N − 1) links in the small world. Figure 1 shows small worlds of tree-based
networks. The small world of an SCT[5] is shown in Figure 1(a). Circles denote nodes and
green ones denote the nodes linked by link additions. The Black line denotes the link between
a pair of nodes. Dashed lines denote link additions of the small world. The actual location
and distance information are neglected, and it only describes logical links of the SCT. Cayley
tree with link additions is shown in Figure 1(b). In this figure, each node has three nearest
neighbors on the underlying topology with K = 3, and dashed lines denote link additions.

(a) The small world of an SCT.

Bonds denote logical links, which ne-

glect the actual distance information

(b) Cayley tree with link additions

Figure 1 Small worlds of tree-based networks

The epidemic propagation depends on the underlying structure and the immunization strate-
gies. Plentiful researches focus on the propagations on the random network or the small-world
network with p → 1 in a susceptible-infected-recovered (SIR) process. In a hypothetical scene,
all nodes are randomly movable or they flood messages under no rule, and then the hypoth-
esis is suitable. The mean-field theory is taken into consideration of the analysis of virus
propagations[11]. The proposed small-world abstract considers the hierarchical tree-based struc-
ture with random connections occurring among nodes, which describes complex dynamics of
wireless sensor networks. If parts of nodes are movable among most unmovable nodes dis-
tributed in the network, random connections occur in the hierarchical topology. As we have
analyzed, obstacles, adjustments of radio energy, joins of new members, and errors of location
precision all incur small-world phenomena. If there is no immunization in the network, the
epidemic experiences a susceptible-infected (SI) process. With the uniform immunization, the
epidemic extends in the susceptible nodes. The immune nodes can not become infected or infect
their neighbors.
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3 Epidemic Thresholds

The wireless sensor network is vulnerable to computer viruses. The high-density deployment
of wireless sensors implies that any virus can be highly contagious. Sensor nodes are severely
resource constrained, and lack sophisticated defense mechanisms to fight virus attacks. Due
to shortcuts in small worlds, the epidemic propagation becomes much drastic in the sensor
networks. In our small-world abstract, we start with Cayley tree and add shortcuts among
nodes chosen uniformly at random. More than one bond between any two nodes, or a bond
which connects a node to itself, is allowed.

A certain fraction h of nodes in the tree-based network is assumed to be susceptible to
the disease, and the bonds represent the physical contacts by which a disease can spread. We
assume that each node could be connected with any other node in the network. The epidemic
propagation begins with a single infected node. The nodes will be occupied (infected) or not
depending on whether they are susceptible to the disease. If the distribution of occupied nodes
is random, the problem when an epidemic occurs becomes equivalent to a standard percolation
problem. The node is denoted by a site. The percolation probability hc, at which the outbreak
of the epidemic occurs, can be calculated. In this paper, the site percolation is only considered.

In Cayley tree, each node has K nearest neighbors, and some properties of Cayley tree have
been analyzed in [23]. The percolation probability hc is given by

hc =
1

K − 1
. (1)

The tree-based abstract reflects different characteristics with the ring understratum intro-
duced by Watts[13]. The parameter p is defined as the average number of shortcuts per bond
on the underlying topology. The probability that two sites chosen randomly have a shortcut
between them is calculated as

θ = 1 −
(

1 − 2
N2

)p(N−1)

≈ 2p(N − 1)
N2

≈ 2p

N
. (2)

Occupied sites connected together will construct the local clusters in the small world, and
they can be connected together by shortcuts. The average number of local clusters of size i in
the network can be obtained by

Xi = hi(1 − h)2+(K−2)iN. (3)

In order to construct a so-called “giant component” as in the random graph[24], we start
with one particular local cluster and add all other local clusters to it, which can be reached
by traveling along a single shortcut. Then all other local clusters, which can be reached by
traveling along a single shortcut, are added to the new ones. This process continues until the
connected cluster, the giant component, is constructed.
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In order to calculate the percolation probability hc, a vector V is defined at each step in
this process, whose component vi is the probability that a local cluster of size i is added to
the overall connected cluster. We define another vector V ′, whose component v′i can be gotten
in terms of the value of V at the previous step. At or below the percolation threshold the
component vi is small and we can calculate the vector V ′ using a transition matrix M . The
following formula reflects the relationship between V and V ′

v′i =
N∑

j=1

Mijvj , (4)

where

Mij = Xi[1 − (1 − θ)ij ]. (5)

Xi is the number of local clusters of size i as before. [1 − (1 − θ)ij ] is the probability of a
shortcut, which connects a local cluster of size i with one of size j, and there are ij possible
pairs of sites by which these can be connected.

The largest eigenvalue λ of the transition matrix M is considered. For λ < 1, the vector V

tends to 0 according to (4). The rate at which new local clusters are added falls off exponentially,
and the connected clusters are finite with an exponential size distribution. Conversely, for λ > 1,
V keeps growing until the size of the connected cluster becomes limited by the size of the whole
system. The percolation threshold occurs at the point λ = 1.

It is difficult to find the largest eigenvalue of the transition matrix M for finite N. If p is a
constant, θ tends to 0 with N → ∞. (5) can be simplified through the relation

Mij = ijθXi. (6)

If we set v′i = λvi, (4) is rewritten as

λvi = iθXi

∞∑
j=1

jvj . (7)

Then,

vi = Cλ−1iθXi, (8)

where C =
∑∞

j=1 jvj is a constant. And

∞∑
i=1

vi = Cλ−1θ

∞∑
i=1

iXi,

∞∑
i=1

ivi = Cλ−1θ

∞∑
i=1

i2Xi,

C = Cλ−1θ
∞∑

i=1

i2Xi,

λ = θ

∞∑
i=1

i2Xi. (9)
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For K = 2,

Xi = hi(1 − h)2N. (10)

This formula is the same as that of the ring understratum proposed by Duncan. In this state,
λ can be derived by

λ = θNh
1 + h

1 − h
= 2ph

1 + h

1 − h
. (11)

We set λ = 1 to get the value of p at the percolation threshold hc,

p =
1 − hc

2hc(1 + hc)
. (12)

This special topology with K = 2 is frequently seen in wireless sensor networks. Power-
efficient gathering in sensor information systems (PEGASIS) is a well-known routing protocol,
which constructs a chain in the network[25]. In this chain, each node has two nearest neighbors.
If the end and the head of the chain are connected, it becomes a ring. Tang, et al. proposed
a routing algorithm named chain-cluster based mixed routing (CCM), which divided a wireless
sensor network into several chains and caused a longer delay for the data transmission[26]. Pal,
et al.[27] introduced a chain structure among sensor nodes in every cluster. Cluster heads got
accumulated data from this chain and sent them to the nearest base station. Figure 2 shows
a chain-based network. The nodes only communicate with their nearest neighbors. The black
node denotes the leader of the chain, which collects and conducts data from other nodes before
it transmits them to the sink.

Node
Leader
Sink

Figure 2 A chain-based network

For K = 3, (3) can be rewritten as

Xi = hi(1 − h)2+iN = (1 − h)2[h(1 − h)]iN, (13)
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λ can be calculated through the relation

λ = θN(1 − h)2
g(1 + g)
(1 − g)3

, (14)

where g = h(1 − h). Then,

λ = θN(1 − h)2
h(1 − h)[1 + h(1 − h)]

[1 − h(1 − h)]3

= θN
h(1 − h)3[1 + h(1 − h)]

[1 − h(1 − h)]3
. (15)

We set λ = 1 to get the value of p at the percolation threshold hc,

p =
[1 − hc(1 − hc)]3

2hc(1 + hc)3[1 + hc(1 − hc)]
. (16)

For general K, the average number of local clusters of size i in the network can be given by

Xi = hi(1 − h)2+(K−2)iN = (1 − h)2[h(1 − h)K−2]iN. (17)

Thus,

λ = θN(1 − h)2
g′(1 + g′)
(1 − g′)3

, (18)

where g′ = h(1 − h)K−2. Then,

λ = θN(1 − h)2
h(1 − h)K−2[1 + h(1 − h)K−2]

[1 − h(1 − h)K−2]3
. (19)

We set λ = 1 to get the value of p at the percolation threshold hc,

p =
[1 − hc(1 − hc)K−2]3

2hc(1 − hc)K [1 + hc(1 − hc)K−2]
. (20)

p is a constant here, and the percolation threshold hc for general K can be calculated by (20).
With the vectors and the transition matrix, the percolation threshold hc is obtained. The

largest eigenvalue λ of the transition matrix is considered, and hc occurs at the point λ = 1.
We can get the same result if we focus on the distribution of local clusters. The quantity P (n)
is defined as the probability that a randomly chosen site belongs to a connected cluster of n
sites. Then we define

H(z) =
∞∑

n=0

P (n)zn. (21)

For h < hc, the distribution of clusters falls off exponentially with the cluster size. In this state,
the probability of two shortcuts connecting the same pair of clusters can be neglected. H(z)
satisfies the Dyson equation-like iterative condition. Equation (21) is calculated by

H(z) =
∞∑

n=0

P0(n)zn
∞∑

n=0

P (m/n)[H(z)]m, (22)
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where m is the number of shortcuts, which connect to other clusters. P0(n) is the probability
that a randomly chosen site belongs to a local cluster of size n. We know

P0(n) =

⎧⎨
⎩

1 − h, n = 0,

nhn(1 − h)2+(K−2)n
, n ≥ 1.

(23)

P (m/n) is the probability that there is exactly m shortcuts emerging from a local cluster of
size n. There are 2p(N − 1) ends of shortcuts in the network, and

P (m/n) =

⎛
⎝2p(N − 1)

m

⎞
⎠[ n

N

]m[
1 − n

N

]2p(N−1)−m

. (24)

When N is large enough, (22) is rewritten as follows:

H(z) =
∞∑

n=0

P0(n)zn

[
1 + (H(z) − 1)

n

N

]2p(N−1)

=
∞∑

n=0

P0(n)[ze
2(N−1)p[H(z)−1]

N ]n

=
∞∑

n=0

P0(n)[ze2p[H(z)−1]]n. (25)

We define H0(z) as

H0(z) =
∞∑

n=0

P0(n)zn. (26)

Compared (25) with (26), H(z) can be calculated as

H(z) = H0(ze2p[H(z)−1]). (27)

From (21), the mean outbreak size can be gotten by the first derivative of H(z),

〈n〉 = H ′(1). (28)

From (27), H ′(z) is calculated through the relation

H ′(z) = H ′
0(ze2p[H(z)−1])[ze2p[H(z)−1]]′

= e2p[H(z)−1]H ′
0(ze2p[H(z)−1])[1 + 2pzH ′(z)]. (29)

We know H(1) = 1 from (21), and

〈n〉 = H ′(1) =
H ′

0(1)
1 − 2pH ′

0(1)
. (30)

From (23) and (26), H0(z) can be derived by

H0(z) = 1 − h +
h(1 − h)Kz

[1 − h(1 − h)K−2z]2
. (31)
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The first derivative of H0(z) is calculated by

H ′
0(z) =

h(1 − h)K [1 + h(1 − h)K−2z]
[1 − h(1 − h)K−2z]3

. (32)

For z = 1, H ′
0(1) is derived as follows:

H ′
0(1) =

h(1 − h)K [1 + h(1 − h)K−2]
[1 − h(1 − h)K−2]3

. (33)

Then,

〈n〉 =
H ′

0(1)
1 − 2pH ′

0(1)

=
h(1 − h)K [1 + h(1 − h)K−2]

[1 − h(1 − h)K−2]3 − 2ph(1 − h)K [1 + h(1 − h)K−2]
. (34)

The mean outbreak size diverges at the percolation threshold hc. This threshold marks the
onset of the epidemic and occurs at the zero of the denominator of (34). Thus,

p =
[1 − hc(1 − hc)K−2]3

2hc(1 − hc)K [1 + hc(1 − hc)K−2]
, (35)

which agrees with (20).
Now, we consider h > hc, and there is a giant component of connected nodes with a large

number of smaller clusters whose distribution falls off exponentially with the cluster. P (n) is
redefined to be the probability that a site chosen randomly belongs to a cluster of size n which
is not part of the giant component. The volume of the giant component is x = 1 − H(1), and
P (n) sum not to 1 now. From (27), x is derived by

x = 1 − H0(e−2px). (36)

The derivatives of both sides is calculated as

1 = 2pH ′
0(e

−2px)e−2px. (37)

From (32), (37) can be calculated as follows:

1 = 2pe−2px h(1 − h)K [1 + h(1 − h)K−2e−2px]
[1 − h(1 − h)K−2e−2px]3

. (38)

All values of h are suitable for x = 0. For x < 0, it is unphysical. The threshold is gotten at
x = 0. Then,

p =
[1 − hc(1 − hc)K−2]3

2hc(1 − hc)K [1 + hc(1 − hc)K−2]
. (39)

The result agrees with (20) and (35).
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With the transition matrix of vectors and the distribution of local clusters, we calculate the
percolation threshold of Cayley tree with link additions. The results are used to approximatively
analyze percolation thresholds of tree-based networks with multi-branches and homogeneous
structures. In reality, the larger the scale of the network is, the more the real percolation
threshold approaches the ideal value. When the sensor network is attacked by viruses, the
infection dies out fast with the infection probability h < hc. The infection spreads with h ≥ hc,
and viruses attack the network from one side to another.

4 Epidemiological Processes

We are interested in the epidemiological process with h ≥ hc. Supposing that there is
only one infected node in the initial stage, all other nodes are susceptible (healthy), and the
infected nodes only attack all their nearest neighbors in each time unit. The number of infected
nodes, I(t), has two contributions: The first comes from the neighbor nodes on the underlying
topology; The second comes from the nodes which can be reached via shortcuts. Figure 3
describes this epidemiological process on the tree-based sensor network. At the initial stage,
all nodes are susceptible ones. The infection spreads on the underlying topology and shortcuts
denoted by dashed lines. The infected nodes are denoted by black ones.

The susceptible node

The infected node

Figure 3 The epidemiological process on the tree-based network

Following the description above, I(t) can be calculated by

I(t) =
t∑

t′=0

ha(t′)[1 + 2ξ−1I(t − t′)], (40)

where a(t′) is the number of infected neighbors on the underlying topology, and ξ is the average
distance between the ends of the shortcut, which is calculated as ξ = N

(N−1)p . If a(t′) is a
constant CK , the epidemiological process is considered, and

I(t) =
t∑

t′=0

hCK

[
1 + 2p

N − 1
N

I(t − t′)
]
. (41)
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The sum is approximated with an integral,

I(t) =
∫ t

0

hCK

[
1 + 2p

N − 1
N

I(t − t′)
]
dt′

= hCKt +
2phCK(N − 1)

N

∫ t

0

I(t′)dt′. (42)

The first-order derivative with respect to t can be obtained by

dI(t)
dt

= hCK +
2phCK(N − 1)

N
I(t), (43)

and the solution is gotten as

I(t) =
[
1 +

N

2p(N − 1)

]
e

2phCK (N−1)t
N − N

2p(N − 1)
. (44)

With N → ∞,

I(t) =
(

1 +
1
2p

)
e2phCKt − 1

2p
. (45)

We can see that the number of infected nodes increases exponentially with t, and the result
coincides with that of the ring topology[13]. With I(t) = N , all nodes are infected and we can
get a threshold tc ≈ N

2phCK(N−1) ln 2pN(N−1)+N
2p(N−1)+N .

In fact, a(t′) has more complex mathematical forms when viruses spread on the underlying
topology. For a(t′) = CKt′, I(t) is calculated as

I(t) =
t∑

t′=0

hCK t′
[
1 + 2p

N − 1
N

I(t − t′)
]

=
∫ t

0

hCKt′
[
1 + 2p

N − 1
N

I(t − t′)
]
dt′

= hCK

∫ t

0

t′dt′ +
2phCK(N − 1)

N
t

∫ t

0

I(t′)dt′ − 2phCK(N − 1)
N

∫ t

0

t′I(t′)dt′. (46)

Both sides are differentiated with respect to t, and

dI(t)
dt

= hCKt +
2phCK(N − 1)

N

∫ t

0

I(t′)dt′. (47)

The second-order derivative with respect to t can be obtained by

d2I(t)
dt2

= hCK +
2phCK(N − 1)

N
I(t). (48)

It is a second-order linear differential equation, and can be solved as

I(t) = C1e
√

2phCK(N−1)
N t + C2e−

√
2phCK (N−1)

N t − N

2p(N − 1)
, (49)



EPIDEMICS ON SMALL WORLDS OF TREE-BASED WSNS 1107

where C1 and C2 are two constants. There is only one infected node in the network in the
initial stage at t = 0, i.e., C1 + C2 = 1 + N

2p(N−1) . With N → ∞,

I(t) = C1e
√

2phCKt + C2e−
√

2phCKt − 1
2p

, (50)

and C1 + C2 = 1 + 1
2p .

The infected parent node may attack all its children nodes in each time unit with a(t′) =
CK(K − 1)t′ , and

I(t) =
t∑

t′=0

hCK(K − 1)t′
[
1 + 2p

N − 1
N

I(t − t′)
]

=
∫ t

0

hCK(K − 1)t′
[
1 + 2p

N − 1
N

I(t − t′)
]
dt′

= hCK

∫ t

0

(K − 1)t′dt′ +
2phCK(N − 1)

N
(K − 1)t

∫ t

0

(K − 1)−t′I(t′)dt′. (51)

Let F (t) = (K − 1)t
∫ t

0
(K − 1)−t′I(t′)dt′, and both sides are differentiated with respect to t,

F ′(t) = ln(K − 1) · F (t) + I(t). (52)

From (51), I(t) can be rewritten as

I(t) = hCK

∫ t

0

(K − 1)t′dt′ +
2phCK(N − 1)

N
F (t). (53)

Then,

F (t) =
N

2phCK(N − 1)
I(t) − N

2p(N − 1)

∫ t

0

(K − 1)t′dt′. (54)

Differentiate both sides with respect to t,

F ′(t) =
N

2phCK(N − 1)
I ′(t) − N

2p(N − 1)
(K − 1)t. (55)

From (52), (54), and (55), we obtain

I ′(t) − hCK(K − 1)t = ln(K − 1)
[
I(t) − hCK

∫ t

0

(K − 1)t′dt′
]

+
2phCK(N − 1)

N
I(t). (56)

The second-order derivative with respect to t can be obtained by

I ′′(t) =
[

ln(K − 1) +
2phCK(N − 1)

N

]
I ′(t). (57)

It can be solved as

I(t) = C3e[ln(K−1)+
2phCK (N−1)

N ]t + C4, (58)
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where C3 and C4 are two constants. At t = 0, there is CK infected nodes in the network, i.e.,
C3 + C4 = CK . With N → ∞,

I(t) = C3e[ln(K−1)+2phCK ]t + C4, (59)

and C3 + C4 = CK .
From the above analysis, we can see that although different epidemiological processes occur

on the underlying topology, the total number of infected nodes increases exponentially as the
infection spreads. It is an SI process if there is no any immune strategy[28].

The mean-field theory is taken into consideration of the analysis of virus propagations on
small worlds traditionally in the hypothetical scene that all nodes are randomly movable or
they flood messages under no rule. Traditional models ignore the spatial proceeding of the
infection propagation. The analysis in this paper focuses on the spatial-temporal dynamics
of the epidemic prevalence on the hierarchical tree-based small world. As it has depicted,
the virus rapidly spreads till all susceptible nodes are infected. The analysis can strengthen
the understanding of the epidemic proceeding on small worlds of tree-based wireless sensor
networks.

5 Uniform Immunization Strategy

The understratum plays a key role in dynamics of an epidemic disease and constitutes
an essential factor in the definition of immunization strategies. The uniform immunization
procedure, which consists of the random introduction of immune individuals, is conducted in
homogeneous small-world networks, in which most nodes have approximately the same number
of links. Immune nodes can not become infected and transmit the infection to their neighbors.
If ρ is defined as the fraction of immune nodes present in the network, the prevalence behavior
for the uniform immunization is obtained by adding a factor (1 − ρ) in (40).

With the uniform immunization I(t) can be expressed as

I(t) =
t∑

t′=0

h(1 − ρ)a(t′)[1 + 2ξ−1I(t − t′)]. (60)

If a(t′) is the constant CK , the epidemiological process with the uniform immunization is
considered, and

I(t) =
t∑

t′=0

h(1 − ρ)CK

[
1 + 2p

N − 1
N

I(t − t′)
]
. (61)

The solution is gotten by

I(t) =
[
1 +

N

2p(N − 1)

]
e

2ph(1−ρ)CK (N−1)t
N − N

2p(N − 1)
. (62)

With N → ∞,

I(t) =
(

1 +
1
2p

)
e2ph(1−ρ)CKt − 1

2p
. (63)
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The number of infected nodes increases exponentially with t, and the uniform immunization
will effectively reduce the prevalence spread by a factor (1 − ρ).

For a(t′) = CK t′, with the uniform immunization I(t) is calculated as

I(t) =
t∑

t′=0

h(1 − ρ)CKt′
[
1 + 2p

N − 1
N

I(t − t′)
]
. (64)

Thus,

I(t) = C1e
√

2ph(1−ρ)CK (N−1)
N t + C2e−

√
2ph(1−ρ)CK (N−1)

N t − N

2p(N − 1)
, (65)

where C1 + C2 = 1 + N
2p(N−1) . With N → ∞,

I(t) = C1e
√

2ph(1−ρ)CKt + C2e−
√

2ph(1−ρ)CKt − 1
2p

, (66)

and C1 + C2 = 1 + 1
2p .

The infected parent node may attack all its children nodes on the underlying topology in
each time unit with a(t′) = CK(K − 1)t′ , and

I(t) =
t∑

t′=0

h(1 − ρ)CK(K − 1)t′
[
1 + 2p

N − 1
N

I(t − t′)
]
. (67)

Then,

I(t) = C3e[ln(K−1)+
2ph(1−ρ)CK (N−1)

N ]t + C4, (68)

where C3 + C4 = CK . With N → ∞,

I(t) = C3e[ln(K−1)+2ph(1−ρ)CK ]t + C4, (69)

and C3 + C4 = CK .
Despite of random link additions, each node has roughly the same number of links. The

uniform immunization is effective in homogeneous small-world networks, and it is equivalent
to the removal of susceptible individuals from the relevant population. It reduces the effective
average number of susceptible neighbors per node and controls the propagation. With the
uniform immunization, the number of infected nodes increases exponentially with t although it
effectively reduces the prevalence speed by a factor (1 − ρ).

6 Simulations

Experiments are designed to test the characteristic path length and the clustering coeffi-
cient of the tree-based wireless sensor network. In one experiment, 100 nodes are distributed
randomly in a 100 × 100 surveillance area and LEACH is constructed. Supposing the small
world phenomenon occurs with the increase of the link addition probability p from 0 to 1, the
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characteristic path length decreases by about 33%, and in the meanwhile the clustering coef-
ficient increases from 0 to 0.5. In another experiment, 1000 nodes are distributed randomly
in a 1000 × 1000 surveillance area and TREEPSI is constructed. Supposing the small world
phenomenon occurs with the increase of the link addition probability p from 0 to 1, the char-
acteristic path length decreases by about 45%, and the clustering coefficient increases from 0
to 0.2 simultaneously. Both the characteristic path length and the clustering coefficient suffer
from the small world phenomenon, which will greatly influence the information propagation
and the epidemic in some way.

Simulations of percolation thresholds and epidemic propagations on small worlds are pre-
sented in this section. We observe the time evolution of the infected number in the small world
of SCT by plentiful experiments, supposing that there is a portion of infected nodes in the
initial stage. Say that the node i is susceptible, and it has ki neighbors, of which kinf are
infected. Then, i will become infected with probability kinf/ki. Propagations based on the
mathematical analysis are also presented in this section. Simulations show that the mathe-
matical analysis reveals dynamic characteristics of epidemic propagations with or without the
uniform immunization strategy.

6.1 Percolation Thresholds

The percolation probability at which the outbreak of the epidemic occurs is observed. The
percolation threshold of Cayley tree is 1 when there is no shortcut in the network. The tree
topology transforms into a chain structure with K = 2. If the random link addition probability

p increases from 0 to 1, the percolation threshold can be calculated as hc =
√

(2p+1)2+8p−(2p+1)

4p .
As shown in Figure 4, the percolation threshold hc keeps decreasing with the increase of the
link addition probability p. It shows hc = 0.67 with p = 0.15, hc = 0.61 with p = 0.2, hc = 0.52
with p = 0.3, and hc = 0.41 with p = 0.5. Table 1 shows the variety of the percolation threshold
hc.

Table 1 The percolation threshold of small world

p 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

hc 0.74 0.67 0.61 0.56 0.52 0.49 0.46 0.44 0.41

The simulation result coincides with the reality. In a regular tree topology, the epidemic
propagates along fixed bonds with a large percolation threshold. Due to shortcuts in small
worlds, the epidemic propagation becomes much drastic in tree-based networks when the ran-
dom link addition probability p increases from 0. The percolation threshold decreases at the
same time. In an entire random network, the percolation threshold is small. The viruses easily
attack the network from one side to another.

For K > 2, it is difficult to solve (39), but the variety is similar with that with K = 2. When
the random link addition probability p increases, the percolation threshold hc keeps decreasing.
At p = 1, there exists the smallest percolation threshold in the tree-based sensor network.
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p

h c

Figure 4 The variety of the percolation threshold hc with K = 2

6.2 Epidemiological Processes

Figure 5 shows epidemiological processes on a small world of the SCT. There is one infected
node in the initial stage. Say that the node i is susceptible, and it has ki neighbors, of which kinf

are infected. Then, i will become infected with probability kinf/ki. In the simulation, certain
parameters are set with p = 0.3 and N = 2000. For the theoretical parameters based on [5]
and used in Figure 5(a), the infection extends exponentially in most time on the small world
of the SCT. In the late stage of the epidemic, the exponential evolution process experiences a
decline for the reduction of remaining susceptible nodes in the network. The number of infected
nodes keeps increasing until all nodes are infected. Figure 5(b) shows that the total number
of infected nodes still increases exponentially in most time although the uniform immunization
reduces the prevalence speed. The larger the immunization factor ρ is, the slower the speed of
the prevalence is. The uniform immunization is equivalent to the removal of individuals from
the relevant population and reduces the effective average number of neighbors per node.
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(b) The number of infected nodes without the immunization

Figure 5 The epidemic on the small world of the SCT

The epidemiological processes and prevalence behaviors with the uniform immunization on
the proposed small-world abstract are observed in Figures 6 and 7. The simulations show that
our theoretical analysis reflects dynamic characteristics of the virus propagation in small-world
networks.
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(c) The number of infected nodes with a(t′) = CK(K − 1)t′

Figure 6 Epidemiological processes on the proposed small-world abstract

For a(t′) = CK , a certain number of nodes are infected on the underlying tree topology in
each time unit. Due to shortcuts, the infection extends exponentially with t on the basis of
(44). In the simulation, certain parameters are set with p = 0.3, h = 0.8, and CK = 3. Each
time unit includes 10 seconds. Figure 6(a) shows the time evolution of the infected number in
the epidemiological process with N = 500, 2000, and ∞. Figure 7(a) shows the time evolution
of the infected number with the uniform immunization factor ρ = 0.05, 0.15, and 0.3 in the
epidemiological process for N = 1000. From this figure we see that the speed of the infection
decreases as ρ increases. At t = 43s, the infected number in the network is 950 with ρ = 0.05,
511 with ρ = 0.15, and 201 with ρ = 0.3. Figure 7(b) shows the prevalence process with
ρ = 0.05, 0.15, and 0.3 when N is infinity. At t = 30s, the infected number in the network is
160 with ρ = 0.05, 103 with ρ = 0.15, and 53 with ρ = 0.3.

For a(t′) = CK t′, certain parameters are set with p = 0.3, h = 0.8, and CK = 3 in the
simulation. Each time unit includes 10 seconds. C1 and C2 can be approximately calculated
at t = 0 and t = 10s. Figure 6(b) shows the time evolution of the infected number in the
epidemiological process with N = 50, 500, and ∞ on the basis of (49). Figure 7(c) shows the
time evolution of the infected number with the uniform immunization factor ρ = 0.05, 0.15,
and 0.3 in the epidemiological process for N = 1000. At t = 53s, the infected number in the
network is 924 with ρ = 0.05, 657 with ρ = 0.15, and 377 with ρ = 0.3. Figure 7(d) shows the
prevalence process with ρ = 0.05, 0.15, and 0.3 when N is infinity. At t = 30s, the infected
number in the network is 61 with ρ = 0.05, 50 with ρ = 0.15, and 36 with ρ = 0.3.
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Figure 7 Epidemiological processes with the uniform immunization on

the proposed small-world abstract
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For a(t′) = CK(K − 1)t′ , certain parameters are set with p = 0.3, h = 0.8, CK = 3, and
K = 3 in the simulation. Each time unit includes 10 seconds. C3 and C4 can be approximately
calculated at t = 0 and t = 10s. Figure 6(c) shows the time evolution of the infected number in
the epidemiological process with N = 100, 2000, and ∞ on the basis of (58). Figure 7(e) shows
the time evolution of the infected number with the uniform immunization factor ρ = 0.05, 0.15,
and 0.3 in the epidemiological process for N = 1000. At t = 32s, the infected number in the
network is 778 with ρ = 0.05, 520 with ρ = 0.15, and 279 with ρ = 0.3. Figure 7(f) shows the
prevalence process with ρ = 0.05, 0.15, and 0.3 when N is infinity. At t = 30s, the infected
number in the network is 518 with ρ = 0.05, 356 with ρ = 0.15, and 199 with ρ = 0.3.

Table 2 shows the number of infected nodes with p = 0.3, h = 0.8, CK = 3, K = 3, and
N = ∞ at t = 30s when the uniform immunization factor ρ increases. As we have analyzed, the
total number of infected nodes increases exponentially when different epidemiological processes
occur on the underlying topology. The larger N is, the closer the result approaches that when N
is infinity. Although the uniform immunization reduces the prevalence speed, the total number
of infected nodes still increases exponentially. The larger the immunization factor ρ is, the
slower the speed of the prevalence is.

Table 2 The number of infected nodes

ρ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

a(t′) = CK 160 129 103 83 66 53 43 34 27

a(t′) = CKt′ 61 56 50 45 40 36 32 28 25

a(t′) = CK(K − 1)t′ 518 430 356 294 242 199 163 133 108

7 Conclusions

The tree topology is a kind of architecture used frequently, which is ubiquitous in the de-
ployment of wireless sensor nodes. Due to shortcuts in small worlds, the epidemic propagation
becomes much drastic when the sensor worm attacks the network. Based on the abstract tree
model, Cayley tree with link additions, epidemics on small worlds of tree-based networks are
studied. The emergence and distribution of the cluster, in which infected nodes connect with
each other, are considered. The percolation threshold at which the outbreak of the epidemic
takes place is calculated. The infection dies out fast when the infection probability is smaller
than the percolation threshold. On the contrary, the virus easily attacks the network from one
side to another while the infection probability is larger than the percolation threshold. The
analysis in this paper focuses on the spatial-temporal dynamics of the epidemic prevalence on
the hierarchical tree-based small world. The number of infected nodes increases exponentially
when different epidemiological processes occur on the underlying tree topology. In the further
study, the uniform immunization procedure which consists of the random introduction of im-
mune individuals is conducted in small-world networks. Although the immunization effectively
reduces the prevalence speed by a factor (1−ρ), where ρ is the fraction of immune nodes in the
network, the number of infected nodes still increases exponentially when the infection extends.
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The uniform immunization is equivalent to the removal of susceptible individuals from the rele-
vant population. It reduces the effective average number of susceptible neighbors per node and
controls the propagation. We believe that the analysis in this paper can be of great help in the
understanding of the epidemic on small worlds of tree-based wireless sensor networks.
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