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Acute hypotensive episodes (AHEs) are one of the hemodynamic instabilities with high mortality rate that is frequent among
many groups of patients. This study presents a methodology to predict AHE for ICU patients based on big data time series. The
experimental data we used is mean arterial pressure (MAP), which is transformed from arterial blood pressure (ABP) data. Then,
the Hilbert-Huang transform method was used to calculate patient’s MAP time series and some features, which are the bandwidth
of the amplitude modulation, the frequency modulation, and the power of intrinsic mode function (IMF), were extracted. Finally,
the multiple genetic programming (Multi-GP) is used to build the classification models for detection of AHE. The methodology
is applied in the datasets of the 10th PhysioNet and Computers Cardiology Challenge in 2009 and Multiparameter Intelligent
Monitoring for Intensive Care (MIMIC-II). We achieve the accuracy of 83.33% in the training set and 91.89% in the testing set
of the 2009 challenge’s dataset and the 84.13% in the training set and 82.41% in the testing set of the MIMIC-II dataset.

1. Introduction

The acute hypotensive episodes (AHEs) are defined for an
hour at any time of 30 minutes or more during which at
least 90% of the MAP signal measurements are at or below
60mmHg. AHE is the common phenomenon in the ICU,
whichmay result in irreversible organ damage and eventually
death. As a result, the prognoses of AHE are of fundamental
importance in the management of critical ill patients, and the
early detection of AHE will give professionals much more
precious time to determine a proper treatment for patients.

Now theAHEprediction is a hot research topic inmedical
signal processing. Generally, the research of predicting AHE
can be categorized into two types, which are only ABP or
MAP signal analysis and ABP with other physiological infor-
mation analyses. For the only ABP or MAP signal analysis,
Bassale [1] proposed to generate the statistical summaries
of ABP signals to predict hypotension before hypotension

episodes, including the mean, standard deviation, variance,
skewness, and the quantile-quantile. Saeed introduced a
temporal similarity metric, which applied a wavelet decom-
position to characterize time series dynamics atmultiple time
scales to utilize classical information retrieval algorithms
based on a vector-space model. This algorithm was used
to identify similar physiologic patterns in hemodynamic
time series from ICU patients by the detection of imminent
hemodynamic deterioration [2]. Ghaffari et al. [3] used the
neural network multimodels to calculate the MAP signal
in the forecast window of 1 hour and then predicted the
AHE. The first phase mainly trained the models according
to comparison analysis between the current blood pressure
signal and a collection of historical blood pressure templates.
In the second phase, the multimodel structure was employed
to predict the possible occurrence of AHE. Moreover, the
PhysioNet/computers held a research challenge about detect-
ing theAHE in 2009. In this challenge, some valid approaches
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were proposed. Foumier and Roy [4] used KL divergence
between two distributions to identify the discriminative fea-
tures and then utilized these features to train the classification
model based on the nearest neighbor algorithm. Mneimneh
and Povinelli [5] presented a rule-based approach for the
prediction of the AHE.

In theABPwith other physiological information analyses,
Singla et al. [6] showed the correlation between some inde-
pendent variables and the development of early hypotension
episodes.Those variables included age, sex, body mass index,
history of hypertension, diabetes mellitus, anemia, heart rate,
and systolic and diastolic blood pressure. Lin et al. [7] studied
the association of specific variables with the increasing risk
of hypotensive episodes, namely, weight, height, American
Society of Anesthesiologist physical status, surgical category
(orthopedics, plastic surgery, general surgery, obstetrics, and
urology), and systolic blood pressure. Based on these vari-
ables, Lin et al. proposed a logistic regression model to assess
the risk of developing a hypotensive episode. Frölich and
Caton discovered that the higher baseline heart rate, which
possibly reflected a higher sympathetic tone,might be a useful
parameter to predict hypotension in 2002 [8]. Rocha et al.
aimed to detect AHE andMAPdropping regimes (MAPDRs)
using electrocardiogram (ECG) signal and ABP waveforms
in 2010 [9], and this method was based on calculating the
shock occurrence probability with an adaptive network fuzzy
inference system, which incorporated the influences of heart
rate, systolic blood pressure, diastolic blood pressure, age,
gender, weight, and some miscellaneous factors.

This paper demonstrates how AHE can be predicted in
the next 1-hour forecast window. In order to achieve this aim,
the analytic signals are obtained fromMAP with the Hilbert-
Huang transformmethod, and then five features are absorbed
in the analytic signals. Genetic programming (GP) is an
effective method to select features and constructs a classifier
simultaneously [10–12]. In this work, multi-GP is used to
classify the AHE and no AHE patients. (In particular, AHE
means there is an episode of acute hypotension beginning
within the forecast window.) The validation sets consist of
two datasets, 𝐴 and 𝐵. The set 𝐴 is comprised of 110 records
[13], while the set 𝐵 is comprised of 2866 records which
are obtained from MIMIC-II database [14]. The experiment
shows that our method achieved accuracy of 83.33% and
91.89% in the training and testing sets of set 𝐴, respectively,
and of 84.13% and 82.41% in set 𝐵.

In the following section, the database and methods of the
application are described in detail. In Section 2, the datasets
are introduced briefly. In Section 3, the methodology is
introduced, including the Hilbert-Huang transform, features
extraction method, and multi-GP classifier method. The
experiment verification and discussion are given in Section 4.
The last section gives conclusions.

2. Datasets

In the MIMIC-II, patients’ records contain most of the
information that would appear in a medical record, such as
results of laboratory tests, medications, and hourly vital signs.
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Figure 1: ABP, SABP, and DABP diagram.
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Figure 2: Transform ABP to MAP data.

About 5000 records also include physiologic waveforms, such
as ECG, blood pressure, and respiration. The intent is that a
MIMIC-II record should be sufficiently detailed to allow its
use in studies, for example, for basic research in intensive care
medicine or for development and evaluation of diagnostic
and predictive algorithms for medical decision support [13,
14].

The blood pressure signal includes systolic arterial blood
pressure (SABP), diastolic arterial blood pressure (DABP),
heart rate, SpO2, pulse, and respiration. The SABP is the
maximum pressure (Figure 1, red box) when the heart con-
tracts and blood begins to flow. The DABP is the minimum
pressure occurring (Figure 1, green circle) between heartbeats
(see Figure 1).

In this experiment, we focus on MAP signal analysis,
which is calculated as follows:

MAP = DABP + SABP − DABP
3

. (1)

For example, the ABP data during five minutes before 𝑇
0

are transformed into MAP data in Figure 2.
Each data record contains 3-hour data, including 2-hour

data before𝑇
0
and 1-hour data after𝑇

0
. In addition, the 1 hour

after the𝑇
0
point is the forecast window. If the record contains

AHE, the 𝑇
0
is always set at the beginning of the first AHE;

else, the 𝑇
0
is set casually in the case of sufficient data.
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Figure 3: The methodology of predicting AHE.

In this paper, we will put forward a methodology to
predict AHE in the forecast window with the MAP data.
The validation sets consisted of two datasets, 𝐴 and 𝐵. Set
𝐴 is the 2009 challenge dataset which is selected from the
MIMIC-II patients’ records. Because of some missed data,
only 48 records and 37 records are selected as training set and
testing set. Set 𝐵 is a big dataset which contains 2866 records
downloaded fromMIMIC-II 3.0 dataset. For all records used
in the datasets 𝐴 and 𝐵, the sampling frequency is 1Hz and
their signals are MAP.

3. Methodology

An overview of the methodology of this work is proposed
in Figure 3. Firstly, the MAP signal before 𝑇

0
in A is

decomposed by EMD method in B. The analytic signals are
calculated by the IMF signals using the Hilbert transform in
C. After that, in D and E, five features are extracted from
the analytic signals. The amplitude modulation bandwidth
(AMB) and frequency modulation bandwidth (FMB) in D
are the features of the high frequency components of the IMF,
and power of the last IMF is the feature of the low frequency
components. Finally, the features are imported intomulti-GP
to train classification models in F, and the models are used
to distinguish status of the unlabeled MAP signals inG.

3.1. The Hilbert-Huang Transform Method. The Hilbert-
Huang transform (HHT) is an adaptive method for time
series signal analysis, which is proposed by Huang et al.
[15]. HHT is composed of EMD method and the Hilbert
spectrum analysis (HSA) method. The HHT is used in many
applications, such as gravitational wave, biomedicine, and
nonlinear system. In this work, the EMD method is applied
to data decomposition of patients’ MAP signals.

The sifting process of EMD can decompose the complex
signal into a finite number of IMFs adaptively, according to
the local characteristic time scale of the source signal/data.
As a consequence, each IMF component contains the local
characteristics of original signals in different time scales. Each
IMF must satisfy the following conditions.

(1) In the whole data sequence, the number of extreme
values and the number of zero crossing points must
be the same or not more than one at most.

(2) At any time, the envelope mean, defined by the signal
of local maximum and minimum, is zeros.

For a fixed length time series signal 𝑥(𝑡) (for MAP time
series, the length of time series is 2 hours), the EMD process
can be summarized as follows.

Step 1. Find out all the local maximums and minimums of
the signal 𝑥

𝑖
(𝑡) and get the upper envelopes (𝑒max(𝑡)) and

lower envelopes (𝑒min(𝑡)) by connecting the maximums and
minimums, respectively, with cubic spline. Then, the average
curve of envelopes (𝑚(𝑡)) can be calculated by

𝑚(𝑡) =
𝑒max (𝑡) + 𝑒min (𝑡)

2
. (2)

Step 2. Define the intermediate variable ℎ(𝑡) = 𝑥
𝑖
(𝑡) − 𝑚(𝑡)

and detect whether the ℎ(𝑡) is an IMF or not on the above
conditions (1) and (2).

Step 3. When ℎ(𝑡) is an IMF, assign the 𝑐
𝑖
(𝑡) to be a basic IMF

by 𝑐
𝑖
(𝑡) = ℎ(𝑡).

Step 4. Repeat the process with the residual signal 𝑥
(𝑖+1)

(𝑡) =

𝑥
𝑖
(𝑡) − ℎ(𝑡) and Steps 1–3, until residual signal 𝑥

(𝑖+1)
cannot

be decomposed.
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At the end of the decomposition, the original signal𝑥(𝑡) is
defined as the sum of𝑁 IMFs and residual term 𝑟(𝑡) = 𝑥

(𝑖+1)
:

𝑥 (𝑡) =

𝑁

∑

𝑡=1

𝑐
𝑖
(𝑡) + 𝑟 (𝑡) . (3)

3.2. Feature Extraction Method. Feature extraction methods
are important for classification problems [16]. In this paper,
the Hilbert-Huang transform method was used to extract
some features. In the Hilbert-Huang transform method,
the Hilbert spectrum expresses the time-frequency-energy
distribution in the source signal. Each IMF signal means
the local information of source signal; meanwhile, the HSA
can obtain instantaneous significance from the IMF. In a
MAP time series, the instantaneous parameters, including
the instantaneous amplitude, instantaneous frequency, and
instantaneous power, are significant for the features extrac-
tion through the EMD and HSA (further information about
the Hilbert spectrum representation of the nonstationary
data can be found in [15]). For each IMF signal, the Hilbert
transform is defined as follows:

𝑐
𝑖
(𝑡) = 𝑐

𝑖
(𝑡) ∗

1

𝜋𝑡
=
1

𝜋
∫

+∞

−∞

𝑐
𝑖
(𝜏)

𝑡 − 𝜏
𝑑𝜏. (4)

The 𝑐
𝑖
(𝑡) is the Hilbert transform of the 𝑖th IMF signal

𝑐
𝑖
(𝑡). The analytic signal of source signal 𝑥(𝑡) is defined as

𝑧
𝑖
(𝑡) = 𝑐

𝑖
(𝑡) + 𝑗𝑐

𝑖
(𝑡) = 𝑎

𝑖
(𝑡) 𝑒
𝑗𝜃𝑖(𝑡). (5)

The 𝑧
𝑖
(𝑡) is the analytic signal of the IMF signal 𝑐

𝑖
(𝑡).

The 𝑖th IMF signal of the instantaneous amplitude 𝑎
𝑖
(𝑡) and

instantaneous phase 𝜃
𝑖
(𝑡) are defined as follows:

𝑎
𝑖
(𝑡) = √𝑐

2

𝑖
(𝑡) + 𝑐

2

𝑖
(𝑡)

𝜃
𝑖
(𝑡) = arc𝑡 𝑔 (

𝑐
𝑖
(𝑡)

𝑐
𝑖
(𝑡)
) .

(6)

The polar form of analytic signal reflects the physical
meaning of the Hilbert transform, which obtains the local
optimal approximation through a sinusoidal frequency and
amplitude modulation. Therefore, considering the definition
of the instantaneous frequency, the instantaneous frequency
𝑓
𝑖
(𝑡) of 𝑖th IMF signal can be defined as

𝑓
𝑖
(𝑡) =

1

2𝜋

𝑑𝜃
𝑖 (𝑡)

𝑑𝑡
. (7)

In order tomeasure the instantaneous amplitude 𝑎
𝑖
(𝑡) and

the instantaneous frequency𝑓
𝑖
(𝑡), [17] developed the concept

of instantaneous bandwidth and [18] applied this method
in time series signals effectively. The bandwidth of a signal
can be broken up into amplitude modulation and frequency
modulation, which are named AMB and FMB.TheAMB and
FMB can be exactly given as follows:

AMB = √∫
+∞

−∞

(
𝑎


𝑖
(𝑡)

𝑎
𝑖
(𝑡)
)

2

𝑎
2

𝑖
(𝑡) 𝑑𝑡

FMB = √∫
+∞

−∞

(𝑤
𝑖 (𝑡) − ⟨𝑤𝑖⟩)

2
𝑎
2

𝑖
(𝑡) 𝑑𝑡,

(8)

where ⟨𝑤
𝑖
⟩ is the global mean frequency and the ⟨𝑤

𝑖
⟩ can be

defined as follows:

⟨𝑤
𝑖
⟩ =

1

𝐸
∫

+∞

−∞

𝑤
𝑖
(𝑡) 𝑎
2

𝑖
(𝑡) 𝑑𝑡

𝐸 = 2 ∗ lim
𝑎→∞

∫

+𝑎

−𝑎

𝑐
𝑖
(𝑡) 𝑑𝑡,

(9)

where 𝐸 is the energy of analytic signal 𝑧
𝑖
(𝑡). The energy and

the power of 𝑧
𝑖
(𝑡), 𝑃, can be given as follows:

𝑃 = lim
𝑎→∞

𝐸

2𝑎
. (10)

In this work, we select the first three IMFs signals of
AMB and FMB, respectively, and the last IMF’s power as the
seven features for classification. Because energy changesmore
rapidly in the first threeAMBs than it does in the otherAMBs,
coincidentally, the first three FMBs have more significant
changes than the other three ones. Moreover, the last IMF’s
power can express the patient’s blood pressure level.

3.3. Multigenetic Programming Classifiers. Based on the
Hilbert-Huang transform method, we have extracted five
classification features. These features can express the AHE
signals in both time domain and frequency domain. After
that, training the best classifier assists us in predicting
whether the patients suffered from AHE.

GP is an automatic programming technique for evolving
computer programs, which is able to solve problems in a
wider range of disciplines (may be more powerful than
neural networks and other machine learning techniques)
[10] and is widely applied in evolutionary computation [19].
GP is applied in the classifiers design and feature selection
frequently [11, 12]. For example, for the attributes𝐴, 𝐵, and 𝐶
and the target attributes, yes and no, with the mathematical
operator set {+, −, ∗}, one example of GP classifier model can
be shown as in Figure 4.

The classifier is a discriminant function which is defined
as:

𝑓 (𝑥) = (𝐴 − 𝐵 ∗ 𝐴) + 𝐶 ∗ 𝐴. (11)

In this work, binary classifier algorithm based on GP [11,
12] is used for classifier and the fitness function is defined as
follows:

fitness = consig ∗ exp (compl − 1)

consig = (
𝑝

𝑝 + 𝑛
−

𝑃

𝑃 + 𝑁
) ∗

𝑃 + 𝑁

𝑁

compl =
𝑝

𝑃
,

(12)

where 𝑃 and𝑁 are, respectively, the total numbers of “AHE”
and “no AHE” class. The 𝑝 and 𝑛 are the correct number of 𝑃
and𝑁 in the obtained discriminant function 𝑓(𝑥).

In order to avoid model overfitting, the dataset is split
for training models. The process is showed in Figure 5. In
the beginning A, the dataset is split into 𝑁 + 1 partitioned
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subdatasets (𝑁 is odd), which are the 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑁+1
. Among

𝑁 + 1 subdatasets, we supposed the 𝑆
𝑖
is the testing dataset,

and the rest of datasets are used to train𝑁GP classifiersB.𝑁
GP classifiers are combined together for voting for unlabeled
MAP records C, and the voting combination method is
defined as follows:

{
class = AHE, if more than half of 𝑁 output results are AHE

class = no AHE, otherwise.
(13)

By voting combination, the classification model consists
of several discriminate functions (named multigenetic pro-
gramming classifiers). Then, for each record in testing data,
𝑆
𝑖
, the voting combinationmethod is used to predict the AHE

or no AHE in one hour after the 𝑇
0
pointD.

4. Result and Discussion

For clarity, two source signals, no AHE patient (number
3831217 nm) and AHE patient (number 3061778 nm), are
randomly selected to describe the methodology presented in
this paper. The source signals are showed in Figures 6 and 7,
respectively.

As mentioned before, the EMD method provides an
approach to decompose the source signal of patients into a
set of IMFs. The IMFs (𝐶

1
(𝑡)–𝐶
10
(𝑡)) of the no AHE sample

which are obtained by EMD are shown in Figure 8.The IMFs
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Figure 6: Source signal of number 3831217 nm (no AHE).

(𝐶
1
(𝑡)–𝐶
10
(𝑡)) of the AHE sample are obtained by EMD and

are shown in Figure 9.
The first component, which is decomposed by EMD

method, contains higher frequency components than the
second and the others. The first half parts of the IMFs could
be defined as the high frequency components, and the rest are
low frequency components. In the high frequency of IMFs,
no AHE patients are smoother than AHE patients. It can
be found that the AHE patient in Figure 9 is easy to rise
sharp fluctuation in a certain period of time (box parts in
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0

2

−2

0

2

−2

0

5

−5

0

5

−5

0

5

−5

0

2

−2

0

2

−2

0

2

−2

0

5

−5

80

90

100

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

C
2
(t
)

C
4
(t
)

C
6
(t
)

C
8
(t
)

C
10
(t
)

C
1
(t
)

C
3
(t
)

C
5
(t
)

C
7
(t
)

C
9
(t
)

Figure 8: IMFs of the patient of no AHE.

Figure 9 𝐶
1
(𝑡)–𝐶
3
(𝑡)), and the amplitude of fluctuation is

higher compared with Figure 8.
Then, in order to explain the changes of frequency

and amplitude simultaneously, IMFs signals are transformed
into the analytic signals by the Hilbert-Huang transform.
According to the obtained analytic signals, the instantaneous
amplitude (IA) of no AHE and AHE could be calculated and
displayed in Figures 10 and 11. The instantaneous frequency
(IF) could be calculated and displayed in Figures 12 and 13.
Generally, the IA can be interpreted as one patient’s intensity
of blood pressure, and the IF can be interpreted to be the
changing speed of blood pressure.

The extracted features, AMB and FMB, are applied to
measure the abrupt change of the IA and IF, respectively.
According to our experiments, the magnitude of the first

Table 1: The AMB and FMB for no AHE and AHE patients.

𝑎
1
(𝑡) 𝑎

2
(𝑡) 𝑎

3
(𝑡) 𝑓

1
(𝑡) 𝑓

2
(𝑡) 𝑓

3
(𝑡)

No AHE 0.3518 0.1024 0.3518 2.7727 1.9564 1.4410
AHE 0.1988 0.0684 0.1988 1.8754 1.6444 1.3834

three components can clearly distinguish the changing of
patients. Thus, the corresponding values of AMB and FMB
are the inputs of classifier. Table 1 presents a sample of AMB
and FMB values for no AHE and AHE patients.

According to the result of experiments, the first compo-
nent of instantaneous amplitude and frequency is necessary,
which expresses the volatility of a patient’s health condition.
Besides, the second or third component is a complementary
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Figure 9: IMFs of the patient of AHE.

component for distinguishing the AHE and noAHE patients.
Furthermore, the amplitude of the last IMF is much higher
than other components; it could be said that the last IMF
accumulates the most of the energy of the source signal.
The experiment shows that the no AHE patients own the
higher energy than the AHE patients. So the signal power,
a manifestation of energy, is selected as the measurement
parameter for distinguishing the AHE and no AHE patients.

Thus, for multi-GP classifier, the 𝑥
𝑖
(𝑖 = 1, 2, 3, 4, 5)

represent five features which are the AMBs (𝑎
1
(𝑡) ∼ 𝑎

2
(𝑡)),

FMBs (𝑓
1
(𝑡) ∼ 𝑓

2
(𝑡)), and the power. The multi-GP classifier

parameters settings are as follows.The function sets are {+, −,
∗, /, sqrt, exp, ln, 𝑥2, 𝑥3, 𝑥1/3, sin, cos, atan}, the population
size is 30, the mutation and crossover rate are 0.15 and 0.8,
respectively [10], the stop criteria is 1000 generations, and the
Roulette method is used as the selection method.

Because the set 𝐵 is a big dataset, the dataset
is randomly divided into 10 subdatasets (datasets
𝑆
𝑖=1,2,3,4,5,6,7,8,9,10

). For each subdataset (𝑆
𝑗
), we train 9

models (𝑀
𝑖=1,2,3,𝑗−1,𝑗+1,5,6,7,8,9,10

) to test it. For example,
suppose the testing subdataset 𝑆

1
, we train 9 different models

(𝑀
𝑖=2,3,4,5,6,7,8,9,10

) to predict the 𝑆
1
, and the results are given

in Table 2. Each function model is a classifier for testing 𝑆
1

and the variables 𝑑(1), 𝑑(2), 𝑑(3), 𝑑(4), and 𝑑(5) are five

features. Each training accuracy is the value of a classification
model 𝑀

𝑖
in classifying the training subdatasets 𝑆

𝑖
, and

the testing accuracy is the value of classifier in predicting
the testing subdataset 𝑆

1
. Each record in 𝑆

1
is voted by 9

classification models (𝑀
𝑖=2,3,4,5,6,7,8,9,10

). By integrating these
9 classification models, we get the accuracy of 82.87% in
testing 𝑆

1
. Moreover, the results of set 𝐴 and set 𝐵 in 10

cross-validation by multi-GP are summarized in Table 3.
The accuracy of the multi-GP classifier is 83.33% and

91.89% with the proposed features in the training data and
testing data of set𝐴, and the accuracy is 84.13% and 82.41% in
set𝐵, respectively. Furthermore, within the same training and
testing set, the SVMmethod with radial basis function kernel
(𝜎 = 2.4) is used to compare with multi-GP classification
method. For accuracy, multi-GP obtains better performance
than SVM in both set𝐴 and set 𝐵. The results of experiments
confirm that the multi-GP method improves the prediction
of AHE with higher accuracy compared with the SVM.
However, there are two sides to every coin. Multi-GP is not
always better than the SVM in sensitivity and specificity. In
set 𝐵, the sensitivity which multi-GP obtained is less than
but very close to the SVM in both training and testing steps.
In set 𝐴, the specificity which multi-GP obtained is less
than the SVM in training step but is better than SVM in
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Figure 10: IA of the patient of no AHE.

0

20

40

0

10

20

0

10

20

0

10

20

0

10

20

0

20

40

0

20

40

80

90

100

0

20

40

0

20

40

0 500 1000 1500

0 500 1000 1500

0 500 1000 1500

0 500 1000 1500

0 500 1000 1500 0 500 1000 1500

0 500 1000 1500

0 500 1000 1500

0 500 1000 1500

0 500 1000 1500

a 1
(t
)

a 3
(t
)

a 5
(t
)

a 7
(t
)

a 9
(t
)

a 2
(t
)

a 4
(t
)

a 6
(t
)

a 8
(t
)

a 1
0
(t
)

Figure 11: IA of the patient of AHE.
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Figure 12: IF of the patient of no AHE.

Table 2: The 9 models𝑀
𝑖=2,3,4,5,6,7,8,9,10

and predicted result for 𝑆
1
.

Number Function model Training
accuracy

Testing
accuracy

𝑀
2

𝑦 = atan(8.276855) − 𝑑(1) − 𝑑(4) − 𝑑(1)2 − 2.032959 ∗ 𝑑(5) + (1.029083 ∗ 𝑑(2) + 𝑑(3) − 8.341217) ∗
(𝑑(5) − 𝑑(2) + 𝑑(1)) + 𝑑(5) + 9.255707

82.81% 80.07

𝑀
3

𝑦 = ((𝑑(5) + 1)
1/9
− 𝑑(5)) + 𝑑(3) ∗ ((2.114654)

1/3
∗ 𝑑(5))

1/3
− 𝑑(5) + (𝑑(5) + cos(log(𝑑(1))))1/9 − 𝑑(5) 82.46% 82.52%

𝑀
4

𝑦 =

cos((−2.783417)2/3−(𝑑(5)+𝑑(4))6)+(4.241791)2/3−(𝑑(3))2∗(𝑑(5))6+(𝑑(1)−sqrt(𝑑(2))−1.911591+𝑑(2)) 83.51% 80.42%

𝑀
5

𝑦 = exp(sin(cos((sin(𝑑(1)) − 𝑑(3) + 3.382782 − 0.25711 ∗ 𝑑(3))))) + (𝑑(4)/𝑑(5) − 𝑑(4))/7.3240352 −
sqrt(9.826538) ∗ 𝑑(5)3 + sin(𝑑(5)) 84.21% 82.17%

𝑀
6

𝑦 = 𝑑(1) ∗ 𝑑(5)
2
/𝑑(2) ∗ 𝑑(4) ∗ sin(−1.272094 ∗ 𝑑(1)) + cos(−5.55658) + 𝑑(5)/((𝑑(1) + 𝑑(4) +

cos(−9.998444)) ∗ 𝑑(5)9) 83.51% 80.77%

𝑀
7

𝑦 =

sin(𝑑(3))+(log((𝑑(5)3/𝑑(5)))∗(𝑑(1)−3.335144∗𝑑(3)))3+sin(2.472626−𝑑(1)−8.545624∗𝑑(3)+8.884186) 85.26% 82.52%

𝑀
8

𝑦 = sin(sin((atan(𝑑(2) − 9.370483) − (𝑑(4) + 𝑑(3)) ∗ 0.103424 ∗ 𝑑(5)))) + (−6.42218 ∗ 𝑑(5)) +
5.710449 + 𝑑(3)/𝑑(5) + cos(𝑑(3)) ∗ 𝑑(5)1/3 + atan(cos(((𝑑(5) + 𝑑(3))3 ∗ (𝑑(2) ∗ 𝑑(2) − 4.0403443)))) 85.26% 81.12%

𝑀
9

𝑦 = (𝑑(3)/(−7.988801) − 𝑑(5) + 𝑑(4))
2
− 𝑑(5) + ((2 ∗ 𝑑(2) − 𝑑(5) + 1.333496)/𝑑(5) ∗

(−3.684052)/(𝑑(2) − 1.333496))
3
+ sin(𝑑(4)/1.333496 − 𝑑(5)) − 2 ∗ 𝑑(5) − 𝑑(2) 88.07% 82.52%

𝑀
10

𝑦 = 5.938172 ∗ (𝑑(1) ∗ 𝑑(5) + 𝑑(2)) ∗ exp(𝑑(4))/𝑑(5) + exp(𝑑(1)3 ∗ (−4.706238 − 𝑑(4)) − 𝑑(3) ∗ 𝑑(5) ∗
(𝑑(4) + 𝑑(5))) + exp(𝑑(2)3 − 𝑑(3) + 𝑑(4)) − (𝑑(3) ∗ 𝑑(5) ∗ (𝑑(4) + 𝑑(5))) 82.13% 78.32%
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Figure 13: IF of the patient of AHE.

Table 3: The results obtained by Multi-GP and SVM.

Set 𝐴 Set 𝐵
Multi-GP SVM Multi-GP SVM

Training Testing Training Testing Training Testing Training Testing
Sensitivity 84% 92% 68% 80% 85.88% 84.40% 86.93% 84.98%
Specificity 82.60% 91.66% 86.96% 83.33% 78.25% 76.06% 69.83% 67.59%
Accuracy 83.33% 91.89% 77.08% 81.08% 84.13% 82.41% 82.45% 79.74%

testing step. We think the reason is that the multi-GP is a
random and evolutionary method. It is inevitable that multi-
GPmethod is not stable in the problem solving. According to
further experiments, the results show that themulti-GP could
perform better if more CPU times are provided for evolving
and searching.

5. Conclusion

Time series data is pervasive across almost all human endeav-
ors, including medicine, finance, science, and entertainment.
As such, it is hardly surprising that time series data mining
has attracted significant attention. As typical medical time
series data, MAP signals are analyzed tentatively in this
work. As a nonlinear and nonstationary signal processing

tool, EMD method is used to decompose the MAP time
series into a number of IMFs. The complex and unordered
MAP data become regular and become ordered by the
decomposition. After features extraction, multi-GP method
is used to establish the classifier for AHE prediction. The
result shows that the classification model can provide the
medical guidance for predicting, which is significant for the
care and cure of AHE in ICU.

For future work, as a much potential method, EMD is
worth analyzing and applying withmore effort.More features
can be extracted in the IMFs. After that, we can select useful
features based on the GP’s ability of feature selection. In
the multi-GP classifier voting decision theory, we can assign
different parameters in different model [20]. Furthermore,
the methodology of this paper could be applied into other
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applications, such as internet of things, mobile computing,
and cloud computing [21, 22].
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