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At present many hospitals have to deal with the patient’s care and nursing for Acute Hypotensive
Episodes (AHE) occurring in Intensive Care Units. AHE can cause fainting or shock suddenly, leading to
irreversibility organ damage, and even death. Therefore, forecasting of occurrence of AHE is of practical
value. However, the prediction of clinical AHE largely depends on the doctors’ experience, which cannot
guarantee the high rate of success. It is thus very meaningful for the clinical care to use appropriate meth-
ods to predict the AHE with an automatic and reliable method. In this study, a Probability Distribution
Patterns Analysis (PDPA) method is presented to solve the time series prediction problem of AHE. In
the first phase, the features are extracted from the PDPA in the global and integral time series, and the
partial local time series in the fixed time window. In the second phase, the proposed algorithm combining
Genetic Algorithm (GA) and Support Vector Machine (SVM), namely GA-SVM is adopted to select the vital
features for the effective classification. In order to demonstrate the generality of our method, we also con-
duct experiments on a classical time series problem-Control Chart Patterns (CCPs) multi-class time series,
which is a benchmark problem in the process control. For CCPs problem, the experimental results demon-
strate that the proposed method outperforms several traditional methods. The obtained accuracy is
98.65%, which is superior to listed previous works using the same CCPs model. For AHE classification
and forecasting, the methodology is applied in two data sets, a small data set (37 records) and a big
one (2892 records). The test accuracy of 89.19%, sensitivity of 91.67%, specificity of 88% in the small data
set, and a test accuracy of 80.76%, sensitivity of 78.19%, specificity of 81.51% in the big data set are
achieved with the classification model.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Depend on the urgency of the symptom, the hypotensive epi-
sode can be divided into two classes, Chronic Hypotensive Episode
(CHE) and Acute Hypotensive Episode (AHE). CHE is defined as Sys-
tolic Arterial Blood Pressure (SABP) lower than 90 mmHg, and
Diastolic Arterial Blood Pressure (DABP) lower than 60 mmHg.
On the contrary, the AHE is defined as any period of 30 min or more
during which at least 90% of the mean arterial pressure (MAP)
measurements are at or below 60 mmHg. For the normal human
blood pressure, the SABP is between 90 and 140 mmHg, and DABP
is between 60 and 90 mmHg, and the MAP is between 70 and
105 mmHg [1].

The AHE is a series and common postoperative complication in
the Intensive Care Units (ICU), which can damage the patient’s
organs and eventually, cause the patients to decease (If not
promptly and proper treated in time). Thus, the early detection
of AHE by computer becomes vitally important for clinical therapy
and intervention in AHE. As provided in PhysioNet [2], the episodes
of AHE can be predicted with reasonably high specificity (in 2009,
the PhysioNet held a research competition of AHE prediction,
which let the AHE automated prediction become a worldwide
research topic). In this challenge, the data used to AHE prediction
is blood pressure, which is a typical complex and non-linear time
series data. Compared with other problems, the AHE prediction
based on the time series is more complicated, because the human
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1 For interpretation of color in Figs. 1 and 10, the reader is referred to the web
version of this article.
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body produces the blood pressure data quickly, heavily and
dynamically.

Many studies have been done for building automatic prediction
AHE system based on the machine learning and data mining meth-
ods. In these methods, neural network was frequently used to cre-
ate the classifier for AHE prediction. For example, Henriques et al.
developed a multi-models neural network for the forecast of the
AHE [3]. In 2011, Teresa Rocha et al. [4] used the similar method
to solve the AHE problem in a big data sets (the total number of
samples is 2344, the proposed method obtained sensitivity 82.8%,
and specificity 78.4%). Furthermore, Zhou et al. used a Chebyshev
neural network to solve the challenge dataset (110 samples), and
the result shows that the proposed method performs better than
other solutions in AHE prediction [5]. In the thesis of M Ghassemi,
the multi-variate neural network is the best method for AHE pre-
diction which is tested in 1168 samples data sets. For each sample,
the vital values are MAP, respiration rate, oxygenation level and
heart rate. The yielded accuracy is 84% [6].

For other methods, Hoseinnia et al. presented a hybrid approach
for predicting AHE, which is based on the wavelet transform and
neural network. The wavelet transform is used to decompose the
MAP, and the neural network is used to forecast the wavelet
approximation coefficients [7]. Arasteh et al. presented to use
Empirical Mode Decomposition (EMD) method to solve the AHE
prediction. EMD is used to decompose the MAP time series into
several Intrinsic Mode Functions (IMFs), and then some statistical
features are extracted from the IMFs. Finally, the SVM is applied
to the classification [8]. Lehman et al. [9] use a combination of
Gaussian Mixture Model based clustering and K-Nearest Neigh-
bours Classier on 227 patient records from the MIMIC II database
using both Heart Rate and MAP measurements. They achieve an
accuracy of 70% with 74% sensitivity and 60% specicity. Lee et al.
[10], who use 1311 patient records using heart rate, MAP and clin-
ical data from the MIMIC II database. Their algorithm uses 102 sta-
tistical, wavelet-based and clinical features and predicts the event
1 h in advance with 86% accuracy.

In our research group, Sun et al. predict the AHE with the Parti-
cle Swarm Optimizer (PSO) and K-means method. The method
based on PSO and K-means is to extract the vital features of MAP
data, then the SVM method is used to create the classifier model.
The experiment is verified on the 2863 samples, and the best accu-
racy is 81.2% [11]. Jiang et al. used the EMD method to calculate
patient’s MAP data. Then, for features, the bandwidth of amplitude
modulation, the frequency modulation and the power of IMFs were
extracted. The total features are 5. A Multiple Genetic Program-
ming (Multi-GP) is presented for the classification of the AHE
[12,13]. Furthermore, in 2016, Jiang et al. transform the IMFs data
into probabilistic distribution, then the statistic features, such as
Peak, Mode, Skewness, Kurtosis and Shannon Entropy are extracted
in different IMFs probabilistic distribution. Multi-GP was still used
to create the classifier models, and the best achieved training and
testing accuracy are 82.92% and 79.93% respectively [14].

According to the previous research, the features selection and
classification method are two critical factors for improving the pre-
diction performance of AHE. As a natural extension of previous
work [14], this paper presents a generic methodology for time ser-
ies prediction, which extracts features base on statistics and Prob-
ability Distribution Patterns Analysis (PDPA). Furthermore, in order
to describe the dynamic distribution patterns in time series, the
features are not only extracted from the global and integral time
series, but also from the local and partial time series in the fixed
time window. After features extraction, a method, which is com-
bined with Genetic Algorithm and Support Vector Machine (GA-
SVM), is presented to create classifier and select features simulta-
neously. All the features were extracted based on statistic so the
process is very forthright and fast. This characteristic is especially
important when the method is adopted in a real-time monitoring
system of medical device. In addition, this method has a general
applicability on the time series prediction and classification prob-
lem. In the experimental verification, for CCPs problem [15–17],
the obtained accuracy is 98.65%, which is superior to listed previ-
ous works used the same CCPs model. For AHE classification and
forecasting, the methodology is applied in the two data sets, the
test accuracy of 89.19% in the small data set and 80.76% in the
big data set are achieved from the classification model.

The rest of the paper is organized as follows: in Section 2, the
experimental data sets and the prediction of AHE problem are
briefly introduced. Section 3 describes the methodology for feature
extraction and selection. Section 4 is the experiments verification,
includes typical multi-class time series problem, small data sets of
AHE and big data sets of AHE. Section 5 are conclusions and future
research topic.
2. Data sets

As previous work, the data for the AHE experiment was col-
lected from the Multi-Intelligent Monitoring in Intensive Care
(MIMIC) II [18]. The data, where ware got from MIMICII database,
regards a patient as a unit, and records the patients’ vital signs,
such as systolic arterial blood pressure (SABP), and diastolic arte-
rial blood pressure (DABP). The SABP (Fig. 1 red1 box) and DABP
(Fig. 1 green circle) are the maximum pressure and the minimum
pressure respectively. In this experiment, we focus on the mean arte-
rial pressure (MAP), which is actually a combination of the SABP and
DABP, and calculated as follows:

MAP ¼ DABP þ SABP � DABP
3

According to the above calculation method, the ABP data could
be transformed into the MAP data as follows (see Fig. 2):

For AHE prediction, the validation set consists of two datasets,
which are a small dataset and a big one. The small dataset was
obtained from PhysioNet 2009 challenge [19], and the big dataset
is downloaded from MIMICII [18]. In both datasets, instant T0 is a
marked stamp for the prediction. For the small dataset, in the
training set, the data records contain all the data before and after
instant T0. In the testing set, the records are truncated at T0 for
the purpose of performance testing. Which means in the training
set, every record contains the data obtained from 2 h before T0
and 1 h after T0. In the testing sets, the data is only collected from
2 h before T0. In the small dataset, because some data are missing,
only 48 records are selected as the training set, and 37 records as
the testing set (two classification problems, AHE and NO_AHE
problem, AHE means the patient will suffer in during the forecast
widow and NO_AHE means no AHE symptom). The big dataset
contains 2892 records. 600 records are selected randomly as the
training set, which contains 300 AHE records and 300 NO_AHE
records. The remaining is the testing set, which has 2292 records.
3. Methodology

Normally, the pattern in the systems and processes can be con-
veyed in the form of probabilistic distribution functions (PDFs)
[20]. It inspired us to extract data PAP from time series to gain
an insight into the underlying distribution pattern in the global
and integral time series (such as the 2 h data before T0 for AHE
problem) and local distribution pattern in the local and partial time
series in the fixed time window.



Fig. 1. ABP, SABP and DABP.

Fig. 2. Transform ABP to MAP data.
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Actually, probability distribution, global distribution pattern
and local distribution pattern are not new concepts for time series.
For example, E. Bautista-Thompsom and S. Santos De la Cruz
designed histogram and shape similarity to compare two time ser-
ies. The histogram shows the statistical distribution of point to
point difference between two time series, and the shape similarity
between two series is quantified based on descriptive statistical
features from histograms of Euclidean distances [21]. For AHE pre-
diction, TCT Ho and X Chen allocated the MAP data into bines to
form a histogram for analysis, and then the separation of NO_AHE
and AHE can be deduced according to the histogram [22]. Vaibhav
Awandekar and A.N. Cheeran presented to calculate probability
distributions of MAP time series, then the Bhattacharyya distances
is adopted to measure the similarity of two discrete or continuous
probability distributions [23]. Alexander Waldin [24] envisions a
Dynamic Bayesian Network (DBN) system that can use varying
amounts of a patient’s blood pressure history and that can predict
at varying times in the future. This method cut the whole time ser-
ies into sub-segments, and for each sub-segment, three kinds of
aggregate features, including Moments, Trends, and Differentials,
are abstracted for each time step in DBN. According to the above
analysis, it can be roughly categorized that the shape similarity,
Euclidean distances and Bhattacharyya distances are the global
distribution pattern; Moments, Trends, and Differentials are the
local distribution pattern.
In the research of AHE forecast model, the most important thing
is to extract useful features to distinguish AHE occurrence or
NO_AHE occurrence from the original MAP data. Three approaches
are proposed for feature extraction in this paper, namely probabil-
ity distribution, global distribution patterns and local distribution
patterns. The extraction procedure consists of two steps. The first
step gets the shape of data distribution. The second step extracts
features from the global and local distribution pattern of time ser-
ies data. For global distribution pattern, the statistical analysis
methods are used to get features, which include skewness, kurto-
sis, peak, mode, mean, standard deviation (STD), median, mean
absolute deviation (MAD) and Shannon Entropy. For local distribu-
tion patterns, an average method based on fixed-length sliding
window is adopted to get ten features eventually, which will be
discussed in detail later.

However, when the extract procedures is finished, maybe not
all of features are useful for specific problem. Therefore, the feature
selection procedure is necessary. A combination of genetic algo-
rithm (GA) [25] and support vector machine (SVM) [26] (GA-
SVM) are used to select useful features for specific applications.
3.1. Features extraction

As mentioned before, two hours MAP data before T0 is used to
predict AHE. The data we used is real clinical data, which has pos-
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sibly been polluted by noise. Ideally, the noise should be removed
before features extraction. In medicine, the MAP above 140 mmHg
belongs to hypertension, and less than 35 mmHg means the
patient is in coma or death state. In order to achieve better analysis
and forecasting, we only need MAP in the range of 35–140 mmHg.
A simple moving average method, which uses the average of ten
data before the current point to replace this current point, is used
to remove noise.

A. Distribution pattern

Firstly, do some data preprocessing on Time series S ¼
fs1s2 . . . sLg), let s0i ¼ ½si�, where ½�� is rounded up. Then we get a
new series S0 ¼ fs01s02 . . . s0Lg. Next we employ the usual histogram
method to make a statistic on S0. Ci is the number of occurrences
of a certain MAP value.

Pi ¼ CiX
i2M

Ci

Here we give a definition of Pi, which is calculated by the above-
mentioned formula. Obviously, Pi is the probability that particular
MAP value appeared in S0. Furthermore, M is a set of all MAP value
in S0. Draw a line of Pi, i 2 M. Then the the data distribution pattern
was obtianed. The above-mentioned description could be illus-
trated with the following figure (Fig. 3). Two samples (NO_AHE
and AHE respectively) are used to explain the differences of the
probability distribution in different condition.

B. Feature extraction

For the feature extraction of data distribution pattern, the skew-
ness and kurtosis are often extracted as features. Here, we extract
Fig. 3. The Steps for transforming M
more features from distribution pattern of global time series. In
addition, we extract features from local distribution patterns of a
sequence of intervals represented by a sliding time window. The
features extraction in the distribution pattern of global time series
has been described in the previous work [14]. This work is a natu-
ral derivation of the previous work, and the rational of the features
extraction in the global and local distribution pattern is that the
distribution pattern of global time series will miss the time domain
information. Therefore, in order to retain some time domain infor-
mation we divide the whole time series data into a sequence of
time windows and get the distribution information in every time
windows. The procedure of the whole features extraction is illus-
trated in Fig. 4 and 5.

(1) Global features
Peak: Peak value is the max point in the MAP probability
distribution.
AP
Peak ¼ maxfFrex1 ; Frex2 ; . . . ; Frexng

Frexi is the frequency value of MAP value xi, and n is the num-
ber of different MAP values.

Mode: With the Peak value, the Mode value can be obtained.
The Mode value is the most frequently value appeared in each
MAP time series.
Skewness: Skewness is a measure of the asymmetry of the data
around the sample mean.

skewness ¼ Eðx� lÞ3
r3 ¼

1
n

Pn
i¼1 xi � �xð Þ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn
i¼1ðxi � �xÞ2

q� �3

where l is the mean of X ¼ ðx1; x2; . . . ; xnÞ, and r is the stan-
dard deviation of X.
to probability distribution.



Fig. 4. Feature extraction: global distribution pattern and local distribution pattern.

(a)Peak (b) Mode 

(c) Skewness (d) Kurtosis 

(e) Shannon Entropy value

Fig. 5. Peak, Mode, Skewness, Kurtosis, Shannon Entropy value in data distribution pattern.
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Kurtosis: We measure the Kurtosis of the MAP probability dis-
tribution, and which is calculated as follows.

kurtosis ¼ Eðx� lÞ4
r4 ¼

1
n

Pn
i¼1ðxi � �xÞ4

1
n

Pn
i¼1ðxi � �xÞ2

� �2

Shannon Entropy: Shannon Entropy is a complexity measure-
ment method of the system. This paper use the Shannon
Entropy as the index of the complex of the MAP time series.

Shannon Entropy ¼
Xm
i¼1

PilogmPi

where m is the fixed size of for separation in the abscissa axis
of MAP probability distribution. In the AHE prediction, m = 4.
The separation are separated by the three points, which are
Mean� l, Mean and Meanþ l respectively. Then, Pi is the
size in each separation.

Besides the features mentioned above, several classical features
are selected for time series analysis, such as the mean, standard
deviation (std), median and median absolute deviation (MAD).

(2) Local Varying Features

In the extraction procedure of local varying features, a whole
time series S ¼ fs1s2 . . . sLg is divided into M time windows. For
each time window, the feature extraction procedure is the same
as to the procedure on global time series. For example, if we focus
on feature f g , then it will be extracted from each time window, so
we will get a feature sequence Fg ¼ ff g1; f g2; . . . ; f gMg from the M
time windows. Then, the local varying features could be obtained
based on the sequenceFg .

Definition: For a pair of neighbors ff gðiÞ; f gðiþ1Þg in Fg , we define
drift ¼ f gðiþ1Þ � f gðiÞ. As a result, we can get a series of drift D ¼
fdrift1; drift2; . . . ; driftM�1g.

In this way, several local varying features will be extracted from
D which contains largest positive drift (LPD), largest negative drift
(LND), largest absolute drift (LAD), summation drift (SD) and aver-
age absolute drift (AAD) (see Fig. 6).

LPD: LPD ¼ maxfdrift1; drift2; . . . ; driftM�1g, which captures the
largest positive jump of a feature as the time goes on. If all drift
in D are negative, then LPD = 0.
LND: LND ¼ maxf�drift1;�drift2; . . . ;�driftM�1g, which cap-
tures the largest negative mutation of a feature as the time goes
on. If all drift in D are positive, then LND = 0.
Fig. 6. Change of data distribution pattern.
LAD: LAD ¼ maxfjdrift1j; jdrift2j; . . . ; jdriftM�1jg, which captures
the largest jump of a feature as the time goes on. The jump
direction can be positive or negative.

SD: SD ¼ PM�1
i¼1 drifti, which describes the trend of a feature as

the time goes on. If SD > 0, the overall trend of time series
towards to the positive direction, and vice versa.

AAD: AAD ¼ PM�1
i¼1 jdriftij=ðM � 1Þ,which describe the Instability

Grade of a feature as the time goes on.

Remarkably, more features can be extracted from the data dis-
tribution pattern. Taking into account the amount of computation,
only 9 features in global distribution pattern and 10 local varying
features (LPD, LND, LAD, SD, AAD in Mode and Mean) are extracted
for problem solving in this paper. Meanwhile, maybe only a pro-
portion of them are useful for a specific application, so in the next
section, a method will be adopted to select the features needed for
the specific application.
3.2. GA-SVM for features selection

After features extraction, the features selection is a vital part in
the pattern recognition system. For the problem we solved, the
proper set of features should be constructed. However, the irrele-
vant and redundant features will affect the prediction accuracy.
What’s more, for the different problems, the proper features set
may be different for each other. So, it is vital to select the feature
set automatically that is closely related with the occurrence of
AHE. Here, a method that combines Genetic Algorithm (GA) and
Support Vector Machine (SVM), named GA-SVM approach was
used to select the feature set.

Genetic Algorithm (GA), is a self-adaptive and self-learning
search algorithm which can be used to solve complicated opti-
mization problems automatically. Support Vector Machine (SVM)
is an algorithm based on the principle of minimizing structural risk
that contains high generalization ability. In this paper, GA is com-
bined with SVM to find the optimal feature set for the specific
given problems. Furthermore, the K-Fold validation [27] based on
SVM is adopted to get the average classification accuracy (Fig. 7).

(1) Chromosome coding and initial population

Binary coding is adopted in designing the chromosome. A chro-
mosome X ¼ fx1; x2; . . . ; xng xi 2 f0;1g represents a feature set
F ¼ ff 1; f 2; . . . ; f ng. xi ¼ 1 indicates the corresponding feature f i is
selected and xi ¼ 0 indicates f i is unselected. The initial population
consists of Psize individuals generated randomly.

(2) Fitness Calculation
� Get the Training set

In Fig. 8, M is the number of records in the original data set. In
each record, features are selected if the corresponding bit value is
‘1’.

� SVM_K-Fold Cross validation

Cross-validation (CV) is a model validation technique. It is a sta-
tistical analysis method which is used to verify the performance of
the classifier algorithm. In K-Fold Cross validation, the original
samples are randomly partitioned into k equal subset samples.
Then the k� 1 subset samples are used to train the model, and
the last subset samples are used to test the model. After repeat



Fig. 7. The general process of feature selection and classification.

Fig. 8. The process of fitness calculation.
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the cross validation process k times, the average of result from k
fold is the estimation of average accuracy.

� Fitness Function

The individual fitness value is calculated based on the average
accuracy of SVM_K-Fold.

The function is described as follows:

FðXÞ ¼ Fðx1x2 . . . xnÞ ¼ Accðx1x2 . . . xnÞ � k
Xn
i¼1

xi

where X is individual, xi is theith bit. AccðXÞ is the average classifi-
cation accuracy of SVM_K-Fold on X.

Pn
i¼1xi is the quantity of

selected features. k is a parameter which can be used to adjust
the length of features selected and set by the user. For example, if
a smaller value to k is set, relatively high accuracy may be achieved
with more feature selected. On the contrary, if a larger value to k is
set, a feature subset with fewer features may be obtained.

4. Experimental results

This section consists of two parts. Part one is an experimental
verification for solving a multi-class classification problem using
the proposed methodology. Part two attempts to use the proposed
method to solve the binary classification problem for AHE
prediction.

4.1 Multi-class time series

Control Chart Patterns (CCPs) is a typical and classical multi-
class time series, which can be used to test the performance of
the time series classification methods.

(A) Data set

The CCPs have six patterns, which are Downward Trend (A),
Cyclic (B), Normal (C), Upward Shift (D), Upward Trend (E) and
(F) Downward Shift. Fig. 9 shows the six different pattern time ser-
ies and each pattern are consisted with ten examples.

However, it is difficult and time consuming to obtain. Therefore,
the mathematical method, such as GARH (Generalized Autoregres-
sive Conditional Heteroskedasticity Model) [28] has been widely
used to generate the controls chart patterns. The mathematical
equations are utilized in this work can be found in [29] and are
shown as follows.

(A) Downward Trend: yðtÞ ¼ lþ rðtÞr� gt
(B) Cyclic: yðtÞ ¼ lþ rðtÞrþ a sinð2pt=TÞ
(C) Normal: yðtÞ ¼ lþ rðtÞr
(D) Upward Shift: yðtÞ ¼ lþ rðtÞrþ ks
(E) Upward Trend: yðtÞ ¼ lþ rðtÞrþ gt
(F) Downward Shift: yðtÞ ¼ lþ rðtÞr� ks

Where y(t) is time series value; l is mean value; r(.) is normally
distributed random number; t is time; r is standard deviation; a is
amplitude of cyclic variations; g is magnitude of gradient trend; k
is determines shift position; s is shift magnitude; T is period of
cycle.

This dataset, which are obtained from Alcock and Manolopoulos
[30], contains 600 examples of control charts synthetically.

(B) Result

In the experiment we select 70 records randomly from each
class as the training set, and the remaining records are used as
the testing set. The experimental result is as follows in Fig. 10.

After GA-SVM running for 200 generations, 100 relatively good
individuals are obtained (blue dot in Fig. 10, each individual is a
subset of features), which are drawn in the Fig. 10. The ultimate
aim of feature selection is to find a feature subset which contains
as few features as possible and obtains as high classification accu-
racy as possible. Here, the Pareto front [31] is adopted to analyze
the feature subsets in order to get the minimal feature set which
is significantly related to the problem and get the maximal classi-
fication accuracy. In Fig. 10, the red line is Pareto front. The dots on



Fig. 10. Pareto Frontier of feature set of the CCPs.

Table 1
Performance compared with different Pareto frontier feature set for CCPs problem.

ID Feature set K-Fold (

1 15,17,18 96.8333

2 13,14,15, 18 97

3 11,13,15, 18 97

4 1,13,15,17, 18 97.5

5 1,3,13,15, 18 97.5

6 12,15,16,17, 18, 19 97.6667

7 1,3,10,13,14,15, 18 98

8 1,3,9,11,14,15,17,18,19 98.6667

Fig. 9. Example of six control chart patterns.
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the line are non-dominated trade-offs in the space of feature
dimension and classification accuracy.

We focus on the last generation of GA every time. After GA-SVM
approach, the Pareto frontier set contains 6 dots A, B, C, D, E, F.
Actually, dots B and C both have two feature sets, which are ID2,
3 and ID4, 5 respectively (see Table 1). ID2 and ID3 are two feature
sets which have the same feature number (4 features) and same K-
Fold accuracy (97%), and so are ID4 and ID5 (5 features and 97.5%).
Finally, totally 8 subset of features are obtained after GA-SVM
approach (ID1 � ID8).

Fig. 11 shows the frequency of each feature 8 Pareto frontier
features set. According to Fig. 11, we find that two features, mean
(15th) and MAD (18th) are always appear in the features set, which
means that these two features are significantly related to CCPs
classification problem. However, only two features are not enough
%) Data set Accuracy (%)

Training set 98.3333
Testing set 95.5556
Training set 98.5714
Testing set 94.4444
Training set 98.8095
Testing set 93.3333
Training set 98.5714
Testing set 93.8889
Training set 98.3333
Testing set 95
Training set 98.3333
Testing set 93.8889
Training set 99.5238
Testing set 97.7778
Training set 99.5238
Testing set 97.7778



Fig. 11. Frequency of the Pareto frontier feature set of CCPs.

Fig. 12. Pareto Frontier of feature subsets of the small data set.
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for problem solving, and then the features extracted from the prob-
ability distribution pattern analysis approach can help get a better
result.

The result obtained by previous work and our work are list in
Table 2, which shows that our method gets the best average accu-
racy among them.
4.2 MAP time series

(A) The small data set
Independent experiments were conducted 20 times in order to

get a more credible result of the AHE classification. The experi-
ments’ parameter setting is given in Table 3.

We focus on the last generation of GA every time, and get a
statistics result as shown in Fig. 12.

In Fig. 12, the point B has two feature sets, ID 2 and 3, and the
point C has three feature sets, ID 4, 5 and 6. These feature sets are
listed in Table 4.

We therefore can make a histogram on the Pareto frontier set to
check the frequency of every feature selected by the feature sets.
The result is displayed in Fig. 13.
Table 2
Comparison among previous work and the proposed method.

Method Accuracy
(%)

1 Neural Network based classifier [32] 90.47
2 Evolutionary Computation (SARG) based classifier [33] 98.00
3 Multilayer Perceptron Classifier with SAX Preprocessing

[30]
94.78

4 Time-lag Classifier with SAX Preprocessing [30] 98.50
5 Our proposed Method 98.65

Table 3
Parameters setting.

Parameter Description Value

Psize Size of population 100
k Concise weight 0.1
C Punishment coefficient 1
d Width of Gaussian kernels 1=n
w Window size L/20
k K-Fold validation 3
From Fig. 13 and Table 4, the features mode and MAD are most
frequently present together in the Pareto frontier. According to
this, we suggest that the combination of mode and MAD is an
important factor for AHE detection. Coincidentally, the two fea-
tures both describe the centralized trend of the data. That means
that there exist a difference between AHE and NO_AHE on the cen-
tralized trend of MAP. In Table 4, the feature set of ID 1 only has
two features, which are Mode and MAD, and its K-Fold result is
85.8823%. It can be seen that the result of ID 1 still has consider-
able space to improve. After combining with some other PDPA fea-
tures defined in Fig. 13 (i.e. skewness and Shanon Entropy), the
feature set ID 6 gets a higher accuracy, which indicates that the
PDPA features may have a positive role in distinguishing between
AHE and NO_AHE in a more detailed level. In order to get robust
prediction effect on big unknown complex data, the feature set
we finally selected contains all the features appearing in the Pareto
frontier set. In Table 5, all 8 features are used to classify the AHE
and NO_AHE data, and obtain a classification accuracy is 100% in
the training set and 89.1892% in the testing set (see Figs. 14 and
15).

(B) The big data set

From Table 6, we find that the features selected for big data set
are different from those for small data set. One reason for this may
be that the small data is the MAP transformed from ABP signals
sampled at 125 Hz, but the big data is the MAP signal measured
directly on blood pressure sampled at 1 Hz. In this experiment,
the feature 9 mode_AAD and 15 mean appear most frequently in
the Pareto frontier. From the definition of AHE, it is easier to inter-
pret that mean is a valuable feature - a lower mean value of MAP
implies that AHE more likely occurs. The feature mode_AAD is
the average absolute drift of mode as the time goes on, which
describes the instability level of the time series data.

The feature sets listed in Table 7 are selected from the Pareto
frontier. In Table 7, all 7 features are used to classify the ANE
and NO_AHE data and obtain a classification accuracy of 85% in
the training set and 80.7592% in the testing set.

According to Tables 5 and 7, we can find that the feature sets
selected for the small set and the big set are very different. Besides
the different methods of data collection, we think that the different
data scales may be another important factor that contributes to the
difference of features sets selected and used for prediction. To ver-
ify this, we therefore make a cross experiment with the results
shown from Tables 8–11.

According to the result, we can find that in small data set, the
result of Sensitivity, Specificity and Accuracy for training set are
declined 4.55%, 13.64% and 9.09% respectively. Meanwhile, the
Sensitivity, Specificity and Accuracy for testing set are declined



Table 4
Performance compared with different Pareto frontier feature set for Small data set.

ID Feature set K-Fold (%) Data set Sensitivity (%) Specificity (%) Accuracy (%)

1 4, 18 85.8823 Training set 100 96 97.9167
Testing set 91.67 88 89.1892

2 2, 4, 18 87.0588 Training set 100 100 100
Testing set 83.33 88 86.4865

3 1, 4, 18 87.0588 Training set 100 96 97.9167
Testing set 91.67 92 91.8919

4 3, 4, 18, 19 88.2352 Training set 100 92 95.8333
Testing set 91.67 84 86.4865

5 3, 4, 14, 17 88.2352 Training set 100 100 100
Testing set 91.67 88 89.1892

6 1, 4, 18, 19 88.2352 Training set 100 96 97.9167
Testing set 91.67 92 91.8919

Fig. 13. Frequency of the Pareto frontier feature set of the Small data set.

Table 5
Sensitivity, specificity and accuracy obtained with the hybrid feature set.

Feature set Data set Sensitivity (%) Specificity (%) Accuracy (%)

1, 2, 3, 4, 14,
17, 18, 19

Training set 100 100 100
Testing set 91.67 88 89.1892

Fig. 14. Pareto Frontier of feature subsets of the big data set.

Fig. 15. Frequency of the Pareto frontier feature set of the big data set.
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10.01%, 29.41% and 22.22% respectively. However, in big data set,
the results of Sensitivity, Specificity and Accuracy for training set
are improved 7.37%, 0.77% and 4.14% respectively. Meanwhile,
the Sensitivity, Specificity and Accuracy for testing set are declined
8.01%, 2.7% and 3.81% respectively.

It can be seen that the total accuracy is reduced for two differ-
ent features sets. Because the small data set is incomplete, so the
feature sets selected based on the small data set cannot fit more
data very well. However, when the feature sets selected based on
the big data set were used to test the small data set, the test result
is still worse similarly.

Feature sets that be selected based on big data were used to test
the small data.

5. Conclusion

As a typical medical time series data, MAP signals for AHE clas-
sification are analyzed in this study. A PDPA approach is proposed
to solve this time series prediction problem. Then the features are
extracted from the PDPA in the global and integral time series, and
the partial local time series in the fixed time window. Through the
GA-SVM selection process, the features extracted from distribution
pattern and valuable to classify the time series are selected and
used for predication of AHE. The methodology is applied in the
three datasets, including the CCPs, the small set of 10th PhysioNet
Challenge, and the big sets obtained from MIMICII. The result



Table 6
Performance compared with different Pareto frontier feature set for big data set.

ID Feature set K-Fold (%) Data set Sensitivity (%) Specificity (%) Accuracy (%)

1 15 76.3333 Training set 72.67 82 77.3333
Testing set 72.39 81.45 79.4066

2 15, 17 76.5 Training set 85 82 83.5
Testing set 76.04 78.57 76.6143

3 9, 15 76.5 Training set 78.33 84.67 81.5
Testing set 73.94 80.78 79.2321

4 1, 9, 15 77.1666 Training set 81 86 83.5
Testing set 75.29 81.34 79.9738

5 3, 9, 14, 15, 19 78 Training set 77.67 84.67 81.1667
Testing set 77.61 80.16 79.5812

Table 7
Sensitivity, specificity and accuracy obtained with the hybrid feature set.

Feature set Data set Sensitivity (%) Specificity (%) Accuracy (%)

1, 3, 9, 14,
15, 17, 19

Training set 83.67 86.33 85
Testing set 78.19 81.51 80.7592
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shows that the proposed approach achieves good performance not
only in predicting AHE, but also in solving a typical multi-class
time series predication problem.

The methodology presented in this paper is a generic technol-
ogy which has the potential to be applied in different time series
problems. With the transforming the original series into the prob-
abilistic distribution, the feature extraction is used to obtain the
Table 8
Performance comparison with different Pareto frontier feature sets which are obtained by

ID Feature set K-Fold (%) Data set

1 4, 18 71.6667 Training set
Testing set

2 2, 4, 18 72 Training set
Testing set

3 1, 4, 18 72.5 Training set
Testing set

4 3, 4, 18, 19 71.5 Training set
Testing set

5 3, 4, 14, 17 72.1667 Training set
Testing set

6 1, 4, 18, 19 72.1667 Training set
Testing set

Table 9
Sensitivity, specificity and accuracy obtained with the hybrid feature set which are obtain

Feature set K-Fold (%) Data set

1, 2, 3, 4, 14, 17, 18, 19 72.8333 Training set
Testing set

Table 10
Performance comparison with different Pareto frontier feature sets which are obtained by

ID Feature set K-Fold (%) Data set

1 15 71.7647 Training set
Testing set

2 15, 17 71.7647 Training set
Testing set

3 9, 15 68.2353 Training set
Testing set

4 1, 9, 15 69.4118 Training set
Testing set

5 3, 9, 14, 15, 19 72.9412 Training set
Testing set
intrinsic pattern of time series in the aspect of global features
and local varying features. The feature extraction method is very
different from the traditional time series processing strategy. One
of the future research could focus on feature extraction method.
In this paper, only nine features are extracted from the PDPA in
the global and integral time series, and ten features from the global
and integral time series. However, more features can be obtained
according to the requirements of the problem solving. It is hard
to say the features extraction method presented in this paper is
the preferable method for the CPPs and AHE. In many cases, the
most difficult thing for the time series problem is the proper fea-
tures extraction. Furthermore, it is worth to know the difference
and effectiveness of the features presented in this paper. In this
context, the evolutionary approach of genetic programming (GP)
the small data set but used for predication in the big data set.

Sensitivity (%) Specificity (%) Accuracy (%)

84 79 81.5
76.83 75.31 75.6545
89.33 83.00 86.1667
77.22 74.30 74.9564
82.67 81.67 82.1667
76.25 75.93 76.0035
82.00 75.33 78.6667
76.83 75.37 75.6981
83.67 82.67 83.1667
75.29 78.24 77.5742
80.33 81.67 81
75.29 77.23 76.7888

ed by the small data set but used for predication in the big data set.

Sensitivity (%) Specificity (%) Accuracy (%)

90.33 87 88.6667
72.39 79.37 77.7923

the small data set but used for predication in the big data set.

Sensitivity (%) Specificity (%) Accuracy (%)

95.65 88 91.6667
83.33 52 62.1622
95.65 88 91.6667
100 64 75.6757
91.30 92 91.6667
66.67 64 64.8649
95.65 88 91.6667
66.67 68 67.5676
95.65 88 91.6667
75 64 67.5676



Table 11
Sensitivity, specificity and accuracy obtained with the hybrid feature set which are obtained by the big data set but used for predication in the small data set.

Feature set K-Fold (%) Data set Sensitivity (%) Specificity (%) Accuracy (%)

1, 3, 9, 14, 15, 17, 19 67.0588 Training set 95.65 88 91.6667
Testing set 83.33 68 72.973

D. Jiang et al. /Measurement 104 (2017) 180–191 191
has proven to be a powerful approach for solving symbolic regres-
sion and feature extraction problems [34–37]. A holistic frame-
work which combines the GP in the present methodology can be
formulated and the difference in analysis can be obtained.
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