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Abstract The existing spectrum index-based methods

for detecting vegetation coverage suffer from an overde-

pendence on spectrum. To address these issues, this pa-

per proposes a graph cut based variational level set seg-

mentation algorithm that combines multi-channel local

wavelet texture (MCLWT) and color. First, the prior

color is generated by automatic estimation based on

the mathematical morphology with a color histogram.

Then, local wavelet texture features are extracted using

a multi-scale-and-orientation Gabor wavelet transfor-

mation followed by local median and entropy filtering.

Next, in addition to the energy of color, that of M-

CLWT is integrated into the variational level set model

based on kernel density estimation. Consequently, all

energies are integrated into the graph cut based vari-

ational level set model. Finally, the proposed energy
functional is made convex to obtain a global optimal

solution, and a primal-dual algorithm with global rela-

beling is adopted to accelerate the evolution of the lev-

el sets. A comparison of the segmentation results from

our proposed algorithm and other state-of-the-art al-

gorithms showed that our algorithm effectively reduces

the over-dependence on color and yields more accurate

results in detecting vegetation coverage.

Keywords Variational level set · detecting vegetation

coverage · local wavelet texture · graph cut

1 Introduction

Detection of vegetation coverage (DVC) is a highly im-

portant aspect of machine vision-based agricultural au-
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tomation applications. DVC methods are generally based

on visible spectral indexes (VSIs), including the Excess

Green index (ExG) [1], Excess Red index (ExR) [2],

Color Index of Vegetation Extraction (CIVE) [3], Ex-

cess Green minus excess Red index (ExGR) [4] and the

Vegetative index (VEG) [5]. The advantages of VSI-

based methods are that they can accurately segment

vegetation, soil and sky and that visible spectral sen-

sors are not very expensive. Other DVC methods based

on multi-spectral images have advantages of wider cov-

erage and better accuracy than VSIs, although only at

considerably higher cost. However, both the VSI-based

and multi-spectral-based methods share a common de-

ficiency: they have an over-dependence on spectrum or

color while neglecting wider spatial information such as

texture.

Therefore, combinations of spectral indexes and oth-

er methods have been proposed to improve the accura-

cy of DVC. Ponti [6] presented a combination of spec-

tral indexes and mean shift (MS) to segment balloon-

captured remote sensing images, including MS+CIVE,

MS+ExG and MS+VVI. To improve the robustness of

DVC in the presence of illumination variations or plan-

t canopy shadows, Bai et al. [7] used particle swarm

optimization (PSO) clustering and morphology mod-

elling to segment vegetation from soil in color images

acquired by an off-the-shelf digital camera affixed to an

image acquisition device. Unsupervised methods such

as MS or PSO clustering help in determining an ap-

propriate threshold for spectral indexes from images,

although errors always occur when the spectra of the

foreground and background overlap.

In addition to spectrum information or color, other

cues such as texture and shape have been considered in

DVC. Feng et al. [8] used colors in the RGB color space

and textures based on the gray-level co-occurrence ma-
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trix (GLCM) as the input for a random forest to map

urban vegetation from UAV-captured remote sensing

images. Aksoy et al. [9] exploited both spectral- and Ga-

bor filter-based texture and shape properties to detect

hedgerows using decision-making methods. Texture fea-

tures based on GLCM have a problem determining the

scale and orientation of objects, while multi-resolution

analysis based methods such as Gabor filters can ex-

tract the textural features of vegetation at different s-

cales and orientations. Machine learning methods are

also often used [10], but these methods rely on the avail-

ability of numerous good training samples, and they are

prone to overfitting and other issues.

Image segmentation methods based on the varia-

tional level set (VLS) model [11] have attracted a sub-

stantial amount of attention [12,13]. Unger M. et al.

[14] proposed a variational level set segmentation mod-

el based on graph cut and total variation (GCTV) that

further exploited the primal-dual and global relabeling

(PDGRL) method to minimize the primal-dual ener-

gy interval. However, GCTV uses only prior color as

an external energy and, consequently, suffers from an

over-reliance on it. The VLS segmentation model has

a different problem: a non-convex functional leads to

a local optimal solution. To eliminate the non-convex

factors, Chan et al. [15] proposed convexity transform

algorithms for certain non-convex minimization prob-

lems. These transform algorithms are called Algorithms

for Finding Global Minimizers (AFGM).

Hence, we propose an improved method based on

GCTV to perform DVC that improves the segmenta-

tion accuracy by integrating more features, such as tex-

ture and automatically generated prior color, and by

convexity transforms of the non-convex energy func-

tionals. In our method, multi-channel textures are ex-

tracted by the Gabor wavelet transform combined with

local mean and entropy filters in a process called multi-

channel local wavelet texture (MCLWT). MCLWT was

shown to be effective in vegetation segmentation in our

previous work [16]. Prior color is obtained automatical-

ly by mathematical morphology and color histogram.

Then, these features are integrated into the energy func-

tional of GCTV to evolve the level sets.

The rest of this paper is organized as follows: Sec-

tion 2 discusses the VLS model based on GCTV and

the convexity transform method. Then, the proposed

algorithm is described in detail in Section 3. Section

4 presents the experimental results and a discussion.

Finally, Section 5 provides conclusions.

2 Background

The graph cut divides all pixels in an image into three

categories: source, sink and boundary pixels. Only when

a pixel is classified into the category to which it truly

belongs is the cut set minimized. The graph cut prin-

ciple can be used to model the energy functional of a

level set [14][17].

Based on GCTV, Bresson et al. [17] also presented

a VLS model and defined a boundary weight function

for the total variation. In these methods, the source

pixels indicate the object, whose cost is denoted by cf .

The sink pixels indicate the background; their cost is

denoted by cb. The boundary pixels separate the object

from the background; their cost is denoted by ce. Using

the graph cut principle, an image segmentation problem

can be viewed as one of classifying all the pixels into the

above three classes. A minimal cut set is obtained only

when all pixels have been correctly classified. Thus, the

segmentation problem can be viewed as minimizing the

following energy functional:

Egctv =

∫
Ω

ce |∇u|+
∫
Ω

cbudx+

∫
Ω

cf (1− u) dx

s.t.u (x) ∈ {0, 1} ,
(1)

where Ω ⊂ R2 is an open set representing the image

domain and u is a characteristic function.

To obtain a minimum of the functional in Eq. (1),

ce is set to be inversely proportional to the boundary

gradient and cf and cb are estimations of the probabil-

ity distribution of the object color and the background

color, respectively. These estimations can be obtained

automatically using the method described in Section

3.1.

One problem in GCTV is that the functional in Eq.

(1) contains a binary function u. In other words, it is

a non-convex problem that has only a local optimal

solution. Therefore, the problem must be transformed

into a convex one. We use a convexity transform method

proposed by Chan et al. [15] to solve this problem. We

refer readers to [15] for details.

3 Method

Our method includes three major processes: feature

extraction, model adaptation and post-processing, as

shown in Fig. 1. To improve segmentation accuracy

by integrating more features, three kinds of features—

automatically estimated prior color, the a* channel col-

or from the L*a*b* color space and multi-channel local

wavelet texture (MCLWT)—are extracted. To utilize

the extracted features as supplementary energies in the
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Fig. 1: Flow chart of the proposed method, including pre-processing, segmentation and post-processing.

level set model, the features are integrated as external

energies into the graph cut based level set segmentation

model. To achieve global optimization more convenient-

ly, the proposed energy functional is transformed into a

convexity functional using Chan’s convexity transform

method [15] as described above. We also adopt PDGRL

to speed up the level set evolution in our method. Fi-

nally, in the post-processing stage, mathematical mor-

phology operations are used to erase tiny islands and

fill in small holes in the segmentation results.

3.1 Automatic estimation of prior color

To obtain prior color, manual labelling is widely used in

[18,14]. However, manual labelling requires human in-

teraction and its efficiency is low—especially for large

data sets. To address this problem, automatic estima-

tion of prior color (AEPC) is required. Here, we pro-

pose an approach based on CIVE and mathematical

morphology that can automatically generate approxi-

mate probability distributions of vegetation and non-

vegetation. CIVE is used here to generate estimated
segmentation results. Then, mathematical morphology

is applied to obtain the primary components of the ob-

jects and background. These processes are described

below:

1) A given image f (x, y) is first segmented using CIVE

to obtain binary segmentation results. CIVE is com-

puted as follows:

fCIV E = 0.441R− 0.811G+ 0.385B + 18.787, (2)

where R, G and B are the values of the color chan-

nels of f (x, y) in the RGB color space. Then Otsu

thresholding is used to transform fCIV E into a bi-

nary value, fbw.

2) To obtain the AEPC for vegetation, we use the fol-

lowing steps:

a) A mathematical morphology shrink operator is

applied to the inverse of fbw, shrinking the areas

of vegetation to connected lines or points. The

results are denoted by fobj shk.

b) Next, a mathematical morphology thicken oper-

ator is applied, making fobj shk one pixel thicker.

c) Finally, a mathematical morphology open oper-

ator is imposed to reserve the most likely areas

of vegetation using a structuring element (SE),

which is a line 10 pixels long at a 2-degree angle.

The result is denoted by fobj .

3) To obtain the AEPC for non-vegetation, we use the

following steps:

a) A shrink operator is applied to fbw.

b) Then, a mathematical morphology dilate opera-

tor is used to find the likely areas of non-vegetation

using an SE line 8 pixels long at a 2-degree angle.

The result is denoted by fbkg.

4) Using fobj and fbkg as masks [14], color histograms

of the vegetation hf and non-vegetation hb are cal-

culated.

5) The histograms are smoothed by a Gaussian filter

and then linearly interpolated at each pixel’s inten-

sity value from the original image, yielding the final

prior color histograms, Hf and Hb, respectively.

Fig. 2 shows an example of AEPC. The visualized image

of AEPC fAEPC in Fig. 2h is composed as follows:

fAEPC = [R,G,B] ,

R = fbkg, G = 0, B = fobj .
(3)

3.2 Multi-channel local wavelet texture

Because vegetation usually has different textural fea-

tures than those of surrounding soil, water, etc., we

introduce a texture feature called multi-channel local

wavelet texture (MCLWT) into the proposed model for

vegetation segmentation. A Gabor wavelet transform

is insensitive to illumination variation and geometric

transformation. Therefore, we use it here to transfor-

m the original image into a multi-resolution frequency

domain. The two-dimensional Gabor wavelet transform

w (·, ·) for an image f (x, y) with a frequency of f0 and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: An AEPC example: (a) the original image from

DB1, (b) the segmentation results by CIVE, (c) the

shrink operator results on the inverse of (b), (d) the

thicken operator results on (c), (e) the prior color es-

timation results of vegetation by the open operator on

(d), (f) the shrink operator results on (b), (g) the prior

color estimation results of non-vegetation by the dilate

operator on (f), and (h) a visualized image of AEPC.

an orientation of θ can be written as follows:

wf0,θ (u, v) =

∫∫
f (x, y)h∗G (u− x, v − y) dxdy,

hG (x, y) =
f20

πσxσy
exp

(
−
(
f20x

2
r

σ2
x

+
f20 y

2
r

σ2
y

))
· exp [j2πf0xr] ,

xr = x cos (θ) + y sin (θ) ,

yr = −x sin (θ) + y cos (θ) ,

(4)

where * denotes the complex conjugate, hG (·) is the

Gabor wavelet function, and σx and σy are the scal-

ing parameters along the wave and perpendicular to
the wave, respectively. Here, σx = σy = 1, and we

use a bank of filters defined in a specific frequency

range and orientation. An example of this filter bank

with 2 frequencies (f0 = 0.2, 0.5) and 4 orientations

(θ = 0,π/4,π/2,3π/4) is shown in Fig. 3, which yields

8 channels after the transform. Then, the local wavelet

texture feature fMCLWT is extracted based on the Ga-

bor wavelet transform defined in Eq. (4):

fMCLWT = (fmed, fetp) ,

fmed = median

(
wf0,θ

(p,q)∈W
(p, q)

)
,

fetp = entropy

(
wf0,θ

(p,q)∈W
(p, q)

)
,

(5)

where median (·) and entropy (·) are functions of the

median and entropy filters of a filtered window W with

a size of n in wf0,θ, respectively. Using this feature ex-

traction approach, fMCLWT has 16 channels of MCLWT-

based textures in total.

(a)

(b)

Fig. 3: Gabor filter bank with 2 frequencies and 4

orientations (θ = 0,π/4,π/2,3π/4): (a) f0 = 0.2, (b)

f0 = 0.5.

3.3 Integration of color and texture energies

First, the energy of prior color Ep can be produced by

AEPC and integrated directly into the proposed energy

functional using Eq. (1) as follows:

Ep =
∫
Ω

(cb − cf )udxdy,

s.t. u (x, y) ∈ {0, 1} , (6)

where cb = Hb and cf = Hf . The item
∫
Ω
cfdx at the

right of Eq. (1) is omitted because it is independent of

u.

Second, the energy of the a* color channel in the

CIE L*a*b* color space, denoted by Ec, is added as a

fidelity term based on the idea of the C-V model and

[19], which is given by

Ec =

∫
Ω

(
H (φ) (c′1 − fa∗ (x, y))

2

+ (1−H (φ)) (c′2 − fa∗ (x, y))
2

)
dxdy,

c′1 =

∫
Σ

fa∗ (x, y)dxdy

/
|Σ|,

c′2 =

∫
Ω\Σ

fa∗ (x, y)dxdy

/
|Ω\Σ|,

(7)

where fa∗ is the a* color channel. Because H (φ) ∈
{0, 1}, it can be replaced by u. Then, Ec is transformed

as follows:

Ec =

∫
Ω

(
(1− u)(c′1 − fa∗ (x, y))

2

+u(c′2 − fa∗ (x, y))
2

)
dxdy

=

∫
Ω

(
(c′2 − fa∗ (x, y))

2

−(c′1 − fa∗ (x, y))
2

)
udxdy.

(8)

The item
∫
Ω

(
(c′1 − fa∗ (x, y))

2
)
dxdy at the right of

Eq. (8) is omitted because it is independent of u.

Third, the texture energy based on MCLWT is in-

tegrated into our model. There are several approaches

for integrating texture into a variational level set mod-

el, including mean value-based approaches such as the

C-V model [20], the Gaussian mixed model (GMM)-

based [21], kernel density estimation (KDE)-based [22],
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and so on. However, because the mean value-based ap-

proaches are not reliable enough for textured objects,

and GMM based approaches are well-known for overfit-

ting, we adopt KDE to build the texture energy based

on MCLWT using the following steps:

a) For each channel of f iMCLWT, i = 1, 2, ..., C, KDE is

used to estimate each channel’s probability distri-

bution pj
(
f iMCLWT

)
, j = 1, 2, where C is the total

number of channels of fMCLWT, and p1 and p2 de-

note the probability distributions of the object and

background, respectively.

b) Calculate the total texture probability distributions

of the object and background by

tf =
∑
i

p1
(
f iMCLWT

)
, tb =

∑
i

p2
(
f iMCLWT

)
, (9)

where tf is the MCLWT texture energy of the ob-

ject, and tb is the texture energy of the background.

Subsequently, the MCLWT texture energy is integrated

into the GCTV model. The proposed texture energy

functional Et is

Et =

∫
Ω

tbudxdy +

∫
Ω

tf (1− u) dxdy

=

∫
Ω

(tb − tf )udxdy.

(10)

The item
∫
Ω
tfdxdy at the right of Eq. (10) is omit-

ted because it is independent of u. Therefore, the final

functional of our model EMCLWT is given by

EMCLWT =

∫
Ω

ce |∇u| dxdy+ λ1Ep + λ2Ec + λ3Et,(11)

where λ1, λ2 and λ3 are positive constants. The first

term to the right of Eq. (11) is the total variation; the

others are the fidelity terms of prior color, a* color and

MCLWT texture energies, respectively. Using Eq. (11),

the color and texture energies are integrated into the

GCTV framework in a unified manner.

3.4 Global optimization based on convexity transform

To achieve global optimization, we adopt AFGM to e-

liminate the non-convex factors in the proposed func-

tional defined by Eq. (11). First, u ∈ {0, 1} is relaxed by

u : R2 → [0, 1]. Then, a globally optimal solution, uλ,

can be achieved. Finally, a binarized solution of the o-

riginal problem is obtained using the threshold method.

The details can be found in [15].

For fast convergence, we use PDGRL [14] to min-

imize the energy functional in Eq. (11). The PDGRL

algorithm reduces the energy interval between the orig-

inal and its dual problem using iterative and threshold

methods, thereby increasing the algorithm’s efficiency.

4 Experiments

Our experiments were performed on a PC with a 2.5

GHz Intel Core 2 Q8300 processor and 4 GB of 800

MHz DDR2 RAM under MATLAB 2013b. We used t-

wo image databases of vegetation, DB1 and DB2 from

[6] and [7] respectively, to perform segmentation ac-

curacy comparisons. DB1 contains 12 images of bean

fields, while DB2 contains 200 images of rice fields. The

ground truths for all the images were manually labeled

by specialists. The default parameter settings were as

follows: n = 11, λ1 = λ2 = 1, and λ3 = 100.

4.1 Accuracy evaluation

We used the metric from [6], denoted as Acc1, to com-

pare the proposed segmentation algorithms on the DB1

images. The Acc1 metric is defined as follows:

Acc1 = 1−
∑r

i=1
Erri

/
2r

Erri = ei,1 + ei,2,

ei,1 =
FPi

N −Ni
, ei,2 =

FNi
Ni

, i = 1, ..., r,

(12)

where FP is the number of false positives, and FN is

the number of false negatives. FPi is the number of

pixels of region j 6= i misclassified into region i, FNi
represents the pixels of region i misclassified into other

regions, N is the number of pixels in a given image,

and Ni denotes the pixels that belong to region i. For

binary segmentation, here r = 2.

We use the metric called the Jaccard index (J ) from

[7] to evaluate the segmentation performance on the

DB2 images. The Jaccard index is calculated as follows:

J = TP/(TP + FP + FN). (13)

where TP is the number of true positive pixels.

In addition to the above measures, the metrics of

sensitivity (Sens), specificity (Spec), accuracy (Acc2),

precision (Prec) and F-measure (F ) were calculated in

our experiments for further quantitative comparison.

The formulas of these metrics are given in Eqs. (14)–

(18), respectively:

Sens = TP/TP + FN, (14)

Spec = TN/FP + TN, (15)

Acc2 = (TP + TN)/(TP + FP + TN + FN), (16)

Prec = TP/TP + FP , (17)

F = 2 ∗ Prec ∗ Sens/(Prec+ Sens). (18)

where TN is the number of true negative pixels.
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4.2 Numerical tests

First, the proposed algorithm was compared to 8 state-

of-the-art vegetation segmentation algorithms on the

DB1 images. These algorithms cover the major type-

s of effective segmentation techniques. Among these

algorithms, the one proposed by Cheng et al. [23] is

clustering-based; the ones presented by Kataoka et al.

[3], Gée et al. [24] and VVI [6] are VSI-based; and the

Mean Shift combined with VVI (MS+VVI), Mean Shift

combined with ExG (MS+ExG) and Mean Shift com-

bined with CIVE (MS+CIVE) algorithms proposed in

[6] are hybrid methods that combine the preceding t-

wo types of methods. The GCTV algorithm [14] is the

most similar to ours. Table 1 lists the accuracy scores

of the comparison results measured by Acc1 as defined

in Eq. (12) for the DB1 images, where µ and σ denote

the mean and standard deviation of Acc1, respective-

ly. As shown in Table 1, CIVE has the lowest accu-

racy (66.1%). This result occurs because CIVE simply

uses each pixel’s color to perform segmentation. The

algorithms that combine clustering and VSI such as M-

S+ExG and MS+CIVE use the mean values of region-

al features to merge or split areas based on the seg-

mentation results of the VSI algorithms. These hybrid

algorithms achieve higher accuracies than do the VSI-

based ones, 85% and 86.4%, respectively. Using AEPC,

GCTV achieves a high accuracy of 88.9%. Our method

integrates both color and textures in the proposed level

set segmentation model; consequently, it achieves the

highest accuracy (89.1%) and the lowest standard de-

viation (5.7%).

A sample image from DB1 and the segmentation

results of ExG, CIVE, MS+ExG, MS+CIVE and our

method are shown in Fig. 4. These compared algorithm-

s were claimed to be superior to other VSI-based algo-

rithms in [6]. Fig. 4a and Fig. 4b show the original im-

age and the ground truth, respectively. From a visual

comparison, the index methods (ExG and CIVE) ob-

tain the worst results because they contain numerous

FPs or FNs, as shown in Fig. 4c and Fig. 4d. The hy-

brid methods (MS+ExG and MS+CIVE) perform bet-

ter than the indexed methods, as depicted in Fig. 4e

and Fig. 4f, respectively, because they consider region-

al color features during segmentation. Our results are

quite similar to those of the hybrid methods, although

some details are different, as demonstrated in Fig. 5.

Fig. 5 shows two areas cropped from the original

image marked by the two labeled white boxes in Fig.

4a. The 1st row of Fig. 5 refers to box No. 1 and the

2nd row to box No. 2. As shown, the hybrid methods

segment more background pixels as vegetation. Appar-

ently, the background areas segmented by our method

Table 1: Comparison data of the state-of-the-art algo-

rithms using DB1

Algorithm µ (%) σ (%)
CIVE [3] 66.1 11.9
ExG [24] 78.5 8.6
MS [23] 76.5 10.7
VVI [6] 70.4 10.5

MS+VVI [6] 72.6 13.3
MS+ExG [6] 85 8.4

MS+CIVE [6] 86.4 7.2
GCTV [14] 88.9 6.1

Proposed 89.1 5.7

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4: Comparison of our algorithm with 4 other state-

of-the-art algorithms reported in [6]. The black pix-

els denote vegetation and the white pixels represen-

t the background. (a) An original image from DB1,

(b) ground truth, (c)–(g) the segmentation results by

ExG, CIVE, MS+ExG, MS+CIVE and our algorithm,

respectively.

are more precise compared to those obtained the other
two methods. Note that the ground truth obtained by

manual labelling tends to lose some details of the vege-

tation and background, while our method catches these

subtle differences surprisingly well.

We also compared the segmentation qualities of the

proposed algorithm with GCTV [14] and those of six

other methods reported in [7] on the DB2 images. A-

mong these algorithms, ExG&Otsu and ExGExR are

VSI-based methods; EASA, GMM and ColourHist are

statistical methods; and ClusterMorph is a hybrid method

that uses clustering and mathematical morphology. The

performances of these algorithms are compared using

the means µ and standard deviations σ of the metric

defined by Eq. (13) in Table 2.

According to the experiments, the VSI-based meth-

ods (ExG&Otsu and ExGExR) performed the worst,

their means on the J metric were only 76.2% and 62.3%,

respectively. EASA, GMM and ColourHist use the prob-

ability density function of color instead of the thresh-

olding used by the VSI-based methods, and they yielded
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(a) (b) (c) (d) (e)

Fig. 5: Comparison of our algorithm and the hybrid al-

gorithms on an image of DB1 [6]: (a) Two areas cropped

from the original image are marked by the two labeled

white boxes in Fig. 4a. The first row refers to box No.

1 and the second row refers to box No. 2. (b) Ground

truth. (c)–(e) the segmentation results of the areas by

MS+ExG, MS+CIVE and our method, respectively.

Table 2: Segmentation results of state-of-the-art algo-

rithms on the DB2 images

Algorithm µ (%) σ (%)
ExG&Otsu [25] 76.2 7.7

ExGExR [25] 62.3 18.1
EASA [26] 80.2 7.8
GMM [27] 86.9 6.9

ColourHist [28] 82.1 6.4
ClusterMorph [7] 88.1 4.7

GCTV [14] 82.9 9.7
Proposed 92.7 4.3

better results: µ > 80%. ClusterMorph obtained a high

µ of 88.1 through its use of particle swarm optimiza-

tion clustering and morphology modelling in the CIE

L*a*b* color space, although it also required an extra

offline learning stage. Our algorithm performs the best

(µ = 92.7% and σ = 4.3%), which is much better than

GCTV.

Fig. 6 depicts some segmentation examples from D-

B2 obtained by ClusterMorph and our algorithm. Clus-

terMorph was chosen for comparison here because it-

s performance is superior to the other methods based

on the results in Table 2. The 3 rows demonstrate 3

examples under different illumination: the black pixels

represent rice areas and the white pixels represent the

background. As shown, ClusterMorph produced more

FPs than did our algorithm under these different illu-

mination conditions—especially in shaded areas.

In addition to the preceding evaluation, Table 3 and

Table 4 list the means and standard deviations of the

other performance metrics defined by Eqs. (14)–(18)

obtained by our algorithm on the DB1 and DB2 im-

ages, respectively. Among these metrics, the mean value

of Spec is approximately 83%, while those of the other

metrics are all above 90%.

(a) (b) (c) (d)

Fig. 6: Examples of segmentation results by our al-

gorithm and ClusterMorph from [7]. The black pix-

els represent rice and the white pixels represent the

background: (a) The original images from DB2; (b) the

ground truth; (c)–(d) the results by ClusterMorph and

our algorithm, respectively.

Table 3: Other performance metrics of our algorithm

on the DB1 images (µ and σ denote the mean values

and standard deviations, respectively)

Sens Spec Acc2 Prec J F
µ (%) 95.04 83.17 93.90 98.07 93.31 96.47
σ (%) 4.98 10.55 4.67 1.72 5.27 2.91

Table 4: Other performance metrics of our algorithm

on the DB2 images (µ and σ denote the mean values

and standard deviations, respectively)

Sens Spec Acc2 Prec F Acc1
µ (%) 99.08 82.95 94.65 93.49 96.14 91.15
σ (%) 2.52 9.24 3.08 4.04 2.50 3.84

5 Conclusion

The proposed method, which integrates both multi-

channel local wavelet texture and color, obtains a higher

vegetation segmentation accuracy compared to several

other state-of-the-art methods. By combining the prior

color of the estimated object and the background with

local wavelet texture features, the proposed method us-

es both the colors of pixels and regional texture fea-

tures. In addition, it avoids the strong dependence on

prior color exhibited by GCTV-based methods and sub-

stantially improves the accuracy of segmentation result-

s. Due to the regional texture fidelity term, the segmen-

tation results for areas with similar colors but different

textures are more accurate.
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