
Soft Comput (2018) 22:659–676
https://doi.org/10.1007/s00500-016-2365-x

METHODOLOGIES AND APPLICATION

Evolutionary programming with a simulated-conformist
mutation strategy

Han Huang1 · Shujin Ye1 · Zhun Fan1 ·
Zhiyong Lin1 · Liang Lv1 · Zhifeng Hao1

Published online: 12 October 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Evolutionary programming has been widely
implemented as a continuous optimization algorithm. Prior
studies have come to a bottleneck because most of the evolu-
tionary programming algorithms are unable to robustly solve
different types of optimization problems. We argue that such
a bottleneck results from the existing mutation strategies’
making little use of the population information. Inspired
by a psychological model which describes how a person
optimizes his/her social activities by conformity behavior,
this study proposes a variation vector of the mutation to
simulate the conformity behavior with behavior-reference,
majority-impact, and distinctive-impact factors. These fac-
tors, respectively, correspond with three types of population
information for each mutated individual: heuristic informa-
tion, optimal gradient, and population diversity. We use the
proposed vector to design an improved evolutionary pro-
gramming with a simulated-conformist mutation strategy.
The results show that the population information produced
by the three factors enhance the robustness of the perfor-
mance of evolutionary programming in solving both uni-
and multimodal functions. The finding is verified by empir-
ical analyses of two sets of benchmark functions proposed
in 1998 and 2013. The numerical results indicate that the
proposed algorithm performs significantly better on average
than the existing EPs and some other algorithms with similar
strategies.
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1 Introduction

As one of the classical evolutionary algorithms (EAs) in
evolutionary computation (Rozenberg et al. 2011), evolu-
tionary programming (EP) has a paralleled position with
the genetic algorithm (GA) and evolutionary strategy (ES)
and has played a prominent role in the field of continu-
ous optimization. It was first proposed as an approach for
the finite-state machine (Fogel 2009), but its application has
been expanded to the fields of engineering optimization (Duo
et al. 1999; El-Sharkh et al. 2003; Hershkovitz et al. 2011).
EP is often used to tackle various problems of continuous
optimization and has been applied to electrical technology
(Hershkovitz et al. 2011), power systems (Chung et al. 2010;
El-Sharkh et al. 2003; Sinha et al. 2003), and other engi-
neering optimization problems (Dong et al. 2009; Tan et al.
2011).

Improving EP to be more robust is one of the most
important topics in EP research. Since EP is applied to
solve several types of optimization problems, its optimization
process is bound to tackle different features of the problems,
i.e., the high-dimensional problems, the low-dimensional
problems, the unimodal problems, and the multimodal prob-
lems. According to the no-free-lunch theorem (Wolpert
and Macready 1997), it is difficult for EP or evolutionary
algorithms to effectively solve the problems with different
features. Therefore, our study of EP robustness improvement
is also a challenging topic in evolutionary computation.

In this study, the robustness of EP is strengthened by
improving its mutation operator. EP consists of two main
operators: tournament selection and adaptivemutation. Tour-
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nament selection is known to give non-elite individuals a
better survival rate, which is different from GAs and other
classical EAs. Adaptive mutation is based on stochastic
strategies, and is used to generate a new individual from an
individual with its renewed variation vector. Adaptive muta-
tion strategy is a popular topic of EP research since it has
had great impact on the design of other algorithms such as
particle swarm optimization (PSO) (Ratnaweera et al. 2004)
and differential evolution (DE) (Brest et al. 2006). Yao et al.
(1999) and Lee and Yao (2004) have proposed several EP
versions with mutation schemes based on different probabil-
ity distributions. Later studies (Alam et al. 2011, 2012) of
EP improvement are to design novel adaptive mutation oper-
ators. Our study also focuses on the improvement of adaptive
mutation since it is attractive in EP research.

The population information is useful to the improvement
of EP mutation operator. Despite its popular implementation
in engineering optimization (Duo et al. 1999; El-Sharkh et al.
2003; Hershkovitz et al. 2011), there is little evidence of the
advantages of EP over other meta-heuristic algorithms, such
as PSO (Ratnaweera et al. 2004), DE (Brest et al. 2006), and
memetic algorithms (Nguyen et al. 2009). Driven by itswide-
ranging applications, researchers have sought to improve EP
performance through hybrid selection of mutation distribu-
tion functions (Mallipeddi et al. 2010) and operators (Alam
et al. 2011, 2012). Most EPs (Brest et al. 2006; Nguyen et al.
2009; Ratnaweera et al. 2004) have been based on pure prob-
ability distribution mutations, yet their performances were
inferior to some heuristic mutation EPs (Alam et al. 2011,
2012) in which the population information is used for evolu-
tion.

In this paper, we attempt to improve EP by better utilizing
population information. The population information refers to
the information produced by the individuals in the process
of searching the optimum. Considering an individual of EP
population as a person of a group, we refer a psychological
model of conformity behavior (Asch 1956) to improve the
adaptive mutation for the individual based on useful pop-
ulation information. Inspired by Asch’s (1956) argument,
three types of population information are used to design
EPmutation, including behavior-reference, majority-impact,
and distinctive-impact factors.We designed a heuristic muta-
tion strategy using the population information tomake the EP
solutionmore robust for both unimodal andmultimodal func-
tions. The proposed strategy strictly follows the framework
of classical EPs (Brest et al. 2006; Nguyen et al. 2009; Rat-
naweera et al. 2004), and thus, the modification focuses on
themutation operatorwithout any further changes to the orig-
inal method. It requires our improvement of EP to be flexible
in its applications given its wide applications in several fields
of engineering optimization.

This paper proposes an improved EP with a simulated-
conformist mutation strategy (EP-SMS). A brief review of

EP algorithm research is provided in Sect. 2. The concept of
simulated-conformist mutation strategy, the proposed algo-
rithm, and its analysis are presented in Sect. 3. Experimental
results comparing EP-SMS and other EPs are presented in
Sect. 4, and Sect. 5 offers our conclusions.

2 Evolutionary programming

In this section, we introduce a general framework of the EP
algorithm and a brief review of EP research.

2.1 A brief introduction to evolutionary programming

EP is commonly used to solve minimization problems.With-
out loss of generality, we assume that EPs aims to solve a
minimization problem in a continuous search space, defined
as follows:

Definition 1 Let S ⊆ Rn be a finite subspace of the n-
dimensional real domain Rn , and let f : S → R be
an n-dimensional real function. A minimization problem,
denoted by the 2-tuple (S, f ), is to find an n-dimensional
vector, xmin ∈ S, such that ∀x ∈ S, f (xmin) ≤ f (x).

The general process of evolutionary programming is pre-
sented in Algorithm 1. In Step 1, the generated individuals
are the real vectors vi = (xi , σ i ), where i = 1, 2, . . . , k,
xi = (xi1, xi2, . . . , xin) is the decision vector of n elements,
and σ i = (σi1, σi2, . . . , σin) is the variation vector of n
elements that affect the generation of offspring. xi j is the
decision variable, and σi j is the variation variable, where
j = 1, 2, . . . , n. We set the initial iteration number t = 0
and the initial σi j ≤ 2 ( j = 1, 2, . . . , n), as proposed in Yao
et al. (1999).

Algorithm 1: Evolutionary Programming
Input: population size k, problem dimension n, and population

v1, v2, . . . , vk
Output: v1, v2, . . . , vk and their evaluation function value.
Initialization of v1, v2, . . . , vk // Step 1
Evaluate the population v1, v2, . . . , vk // Step 2
while Evaluation Number < Maximum do

for i = 1 ← k do // Step 3

(xi , σ i ) = Mutation(xi , σ i ) (1)

end
Evaluate the offspring // Step 4
Tournament Selection // Step 5

end

The fitness values in Steps 2 and 4 are calculated from the
objective function of the target problem. In Step 3, a single
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offspring v̄i = (x̄i , σ̄ i ) is generated for each individual vi
(i = 1, 2, . . . , k) by a mutation operator. The mutation is the
core of EP, so we propose a novel strategy to improve it in
this study.

In Step 5, for each individual in the set of all parents and
offspring,q different opponent individuals are uniformly ran-
domly selected for comparison. If the fitness value of the
opponent is more (for minimization problem) than the fit-
ness value of the selected individual, the individual obtains
a win. The top k individuals with the most wins are selected
to be the parents in the next iteration.

Most published EPs follow the framework ofAlgorithm 1,
such asFEP (Yao et al. 1999), LEP (Lee andYao2004),RTEP
(Alam et al. 2011), CEP (Fogel 1991), Direct EP (Hedar and
Fukushima 2006), adaptive EP with reinforcement learning
(Zhang and Jing 2008), EP on non-uniform mutation (Zhao
et al. 2007), EP using a mixed mutation strategy (Dong et al.
2007), andDGEP (Alam et al. 2012). The difference between
these EPs lies mainly within the treatment of Eq. (1) in Step
3.

2.2 Related work

Prior EP studies converge on three themes: the probabilis-
tic distribution of mutation, the mutation ensemble, and the
capacity of explorations and exploitations (Alam et al. 2011,
2012).

Early EP research focused on using only one probabilis-
tic distribution as a mutation factor. Arguably, the first EP
was the one with Gaussian mutation, which has been labeled
as classical evolutionary programming (CEP) (Fogel 1991).
This work has been intensively analyzed by Fogel (1993,
1992), Bäck and Schwefel (1993), and Schwefel (1993).
Subsequently, Yao et al. (1999) proposed a fast evolution-
ary programming algorithm (FEP) with Cauchy mutation.
Computational experiments showed FEP to be superior to
CEP for multimodal and dispersed peak functions. Lee and
Yao (2004) proposed an evolutionary programming based on
Lévymutation (LEP). Empirical analysis (Lee andYao 2004)
showed that LEP performs better than CEP and FEP in solv-
ing multimodal and very dispersed peak function problems
(Yao et al. 1999) on average. Later, a directed EP (Hedar and
Fukushima 2006) was proposed to improve the performance
of FEP and LEP. An EP based on reinforcement learning
(RLEP) (Zhang and Jing 2008) was proposed and was shown
to outperform EPs with four basic mutation operators pro-
posed in Fogel (1991), Hedar and Fukushima (2006), Lee
and Yao (2004), Yao et al. (1999). Another EP was based on
a non-uniform mutation, named as NEP (Zhao et al. 2007).
NEP is faster and more robust than LEP (Lee and Yao 2004)
and FEP (Yao et al. 1999) for most multimodal benchmark
functions.

The second strand of research is centered on the muta-
tion ensemble. The no-free-lunch theorem (Wolpert and
Macready 1997) argues that none of the single mutation
operators are efficient in solving all optimization problems.
An ensemble of different mutation operators may be bet-
ter than single mutation operator. A linear combination of
the Gaussian distribution and the Cauchy distribution was
indicated to be more efficient than either of the distributions
alone (Chellapilla 1998). Mallipeddi et al. (2010) proposed
an ensemble approach where each mutation operator has its
associated population, which benefits from every function
call. Mixed strategy (Dong et al. 2007; Yao and Liu 1998)
has also been shown to perform equallywell or better than the
best performing operator among theGaussian,Cauchy, Lévy,
and single-point mutation operators. Hedar and Fukushima
(2006) and Zhang and Jing (2008) concluded that the ensem-
ble performed better than algorithms with single mutation
strategies. Alipouri et al. (2012) improved EP by promoting
its accuracy and convergence speed. To improve the perfor-
mance of mutation ensemble, Hong et al. (2014) proposed a
step size-based self-adaptive mutation operator for EP. For
similar purpose, Anik et al. (2013) embedded a dualmutation
strategy to EP.

The capacity of explorations and exploitations is another
important topic of EP research. Self-adaptive parameters
(Liang et al. 2001) performwellwhen exploiting high-quality
solutions. Alam et al. (2012) proposed a diversity-based
selection strategy to improve EP performance by preserving
and exploiting genetic diversity (Chen et al. 2009), and this
approachwas shown to be effective in optimizingmultimodal
functions. Alam et al. (2011) proposed a novel approach for
numeric optimization with a recurring two-stage EP (RTEP)
based onmutation. The algorithm (Alamet al. 2011) attempts
to maintain a balance between global explorations and local
exploitations through its two recurring stages. Its perfor-
mance is stable in solving different styles of benchmark
functions (Yao et al. 1999).

To some extent, EP studies for continuous optimization
have come to a bottleneck, despite there being more applica-
tions such as economic load dispatch (Sinha et al. 2003) and
improvement of fuzzy clusteringmethod (Rajan and Christo-
ber 2011). TheEPmutations [e.g., FEP (Yao et al. 1999), LEP
(Lee andYao 2004), CEP (Fogel 1991), Direct EP (Hedar and
Fukushima 2006), adaptive EP with reinforcement learning
(Zhang and Jing 2008), and EP on non-uniform mutation
(Zhao et al. 2007)] of single probabilistic distribution are only
applicable to the respective optimization functions. They
are not robust enough to solve different styles of optimiza-
tion problems. Mutation ensemble EP (Dong et al. 2007;
Mallipeddi et al. 2010; Yao and Liu 1998) performance relies
on its different mutation operators. Thus, the ensemble may
fail to obtain a high-quality solution when its mutation oper-
ators cannot generate a high-quality solution to the objective
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problem. A proper balance between global explorations and
local exploitations (Alam et al. 2011, 2012) is essential to
improving EP performance, but the mechanism to attain and
maintain the balance is a challenging research problem.

EP can be improved to be more robust for different
optimization functions when the features (e.g., the proper-
ties of separable or non-separable, unimodal or multimodal,
shifted, rotated) of the functions are known. Regrettably,
such features are oftentimes unavailable in real optimiza-
tion. However, the feature of the optimization function can be
reflected by theEPpopulation during each iteration. Thus,we
propose to improve EP by implementing a heuristic mutation
based on the iterating population. Following the mutation,
the population will be updated according to a simulated-
conformist mutation strategy inspired by the psychological
model of conformity behavior.

3 Evolutionary programming based on
simulated-conformist mutation strategy

This section presents the proposed evolutionary program-
ming based on a simulated-conformist mutation strategy
(denoted as EP-SMS). The core of the mutation strategy is
a simulated-conformist vector. The concept of such a vector
arises from a psychological model of conformity behavior
(Asch 1956).

3.1 Simulated-conformist mutation strategy

Every individual of EP represents a solution of the optimiza-
tion problem and evolves via themutation operator.Most EPs
(Fogel 1991; Hedar and Fukushima 2006; Lee andYao 2004;
Yao et al. 1999) are based on the variation vector calculated
from stochastic distribution functions. If the mutation sim-
ply relies on a single probabilistic distribution while ignoring
the features of the optimization function, the variation vector
is updated in a non-heuristic way, which may lead to ineffi-
ciencies of the EPs (Fogel 1991; Hedar and Fukushima 2006;
Lee and Yao 2004; Yao et al. 1999). We modify the approach
of the variation vector by extracting heuristic information
from the iterating population. Our aim is to help EP evolu-
tion becomemore heuristic according to the population status
rather than the fixed value range of a stochastic distribution
function.

Our idea is inspired by a psychological model of confor-
mity behavior proposed by Asch (1956). The model reveals
how a person refers to others’ behaviors in the same group
to adjust his/her behavior to achieve an optimal social per-
formance. By simulating the model of conformity behavior,
we modify the variation vector of Eq. (1) in Algorithm 1 to
update the individual adaptively through referring to more
information of the population. There are three aspects of

Asch’s model, which will be discussed below. Following
model, the proposed mutation simulates the situation that
a person, or a group member, usually refers to others’ behav-
iors in their group to optimize their action. In the following
introduction and analysis, the person and the group of the
model metaphorically represent the individual and the pop-
ulation of EP, respectively.

The first aspect is behavior reference. A person may
refer to the behaviors and ideas of others in the group
for decision-making. Practically speaking, the reference of
others’ performance is needed more when the person is unfa-
miliar with the situation. For EP algorithms, every individual
needs to be renewed with other individuals’ information of
the population when faced with an unknown optimization
problem. Therefore, the proposed updating variation vector
will contain a factor generated by other individuals.

The second aspect includes the person’s belief regarding
others and the attraction of the majority to the individual.
He/she will fully trust the group when it is high-cohesion. A
high-cohesion group always has a powerful leader or other
elite members who have a positive impact on other members’
behaviors and ideas. For theEP algorithm, the elite individual
exerts a positive influence on the updating of every individual
for optimization. As a result, a factor of the elite individual’s
information is added for updating the variation vector.

The last aspect is the negative effects of the fear of being
distinctive in the group. An elite member may feel lonely
and unsupported by others when he/she is too distinctive.
Even though his/her idea may be sound, they may still relin-
quish it if it is different from others’. Yet, blind obedience
to a collective will exert a negative effect on that elite mem-
ber’s development; thus, the distinctive idea is necessary. In
a similar way, the individual in an EP algorithm cannot be
optimizedwhen the population converges to a local optimiza-
tion status. Therefore, it is necessary to modify the variation
vector by adding a factor that helps the individual stands out
from others when the population is premature convergence.

The simulated-conformist idea was introduced to update
the variation vector, which is the key role of an EP algorithm.
For example, the decision vector xi in Eq. (1) is considered
as the person (group member), and the variation vector σ i is
their decision. The xi is updated by using the σ i , and it likes
the person improves his behavior by making a new decision.
The simulated-conformist idea is used to update the σ i . This
operation is analogous to make a decision by referring to
others’ ideas and behaviors.

The proposed evolutionary operator is a mutation with a
simulated-conformist vector. Our design focuses on Step 3
of Algorithm 1. The variation vector for each individual is
updated by the simulated-conformist vector including three
factors inspired from Asch’ s model of conformity behavior
(Asch 1956). The factors are computed with individuals in
the EP population. Thus, the offsprings are generated through
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renewing individuals by the updated variation vector. The key
point of our proposed strategy focuses on the computational
indicator of the simulated-conformist vector.

3.2 Simulated-conformist vector

The decision variable of each individual is considered to be a
basic element for computing the simulated-conformist vec-
tor. The simulated-conformist vector for the i th individual
is �i , and is used for the mutation of vi = (xi , σ i ), where
i = 1, 2, . . . , k. �i is calculated by three factors simulating
the three aspects of the conformity behavior model (Asch
1956). The factors for vi are the behavior-reference factor,
Γ

(1)
i ; the majority-impact factor, Γ

(2)
i ; and the distinctive-

impact factor Γ
(3)
i , as follows.

(1)Behavior-reference factor The behavior-reference fac-
tor simulates the aspect of behavior reference. It is a
difference between the decision variable of the mutated indi-
vidual and themean of a randomly selected group. The group
are generated by randomly selecting other Mi individuals of
the current population. The group size Mi is calculated by a
Poisson distribution that

P(Mi = y) = ( k2 )
y · e−( k2 )

y! (2)

Poisson distribution is usually used to estimate a number
of random incidents (such as receiving calls, meeting peo-
ple in the street, and other social behavior by people) in an
unit time. Therefore, we use this distribution to estimate the
number of persons in the aspect of behavior reference. When
Mi is obtained and Mi individuals are selected, the behavior-
reference factor is calculated by Expression (3).

Γ
(1)
i, j = xi, j − 1

Mi

Mi∑

m=1

xrm , j , (3)

where i = 1, 2, . . . , k; j = 1, 2, . . . , n; rm is the ran-
dom integer from 1 and k such that rm �= i . Where
m = 1, 2, . . . , Mi . r1, r2, . . . , rMi represent the indexes
of the selected individuals in population. They are differ-
ent from each other and used to calculate the Γ

(1)
i, j . The

behavior-reference factor simulates a person’s decision based
on the behaviors of other Mi persons. Γ

(1)
i, j is added to �i

to renew the mutated individual vi , so xi is updated by
xr1 , xr2 , . . . , xrMi

with the behavior-reference factor. Once
the k − 1 probabilities are calculated by expression (2), they
will be normalized to sum up to 1. The Mi is obtained by a
roulette of k − 1 probabilities.

The behavior-reference factor calculated from Eq. (3)
only contains stochastic information from the selected indi-

viduals. However, the factor may not necessary guide the
mutated individual toward the optimal solution. It is therefore
important to add factors into the calculation of the simulated-
conformist vector to make the mutation better suited for
optimization.

(2) Majority-impact factor The majority-impact factor
simulates the attraction of the leader or elite members to the
majority of individuals. The best-so-far individual is used to
simulate the leader or elite members of the group. They are
considered to have most information for global optimization
among the population (Liang et al. 2006; Zhang and Jing
2008).

Let vbest = (xbest , σ best ) be the best-so-far individual.
We choose the best decision vector xbest as a part of the
majority-impact factor Γ

(2)
i for vi . The majority-impact fac-

tor is added to the simulated-conformist vector for the i th
individual to be mutated,

Γ
(2)
i, j =

(
1 + |S j |

k

)
· (xbest, j − xi, j ) (4)

where j = 1, 2, . . . , n; S j is the set of individuals that meet
two properties. The individual in S j has two properties that
its elements are closer to xbest than xi in j th dimension, and
that the evaluation value of its elements is better than the
one of xi . Expression (4) indicates that the weight of the
j th dimension will be larger if there are more individuals
closer to xbest in j th dimension and better than xi . There-
fore, the majority-impact factor Γ

(2)
i, j enhances the impact of

xbest on the mutated individual according to the majority of
the population. Hence, the simulated-conformist vector for
the i th individual includes a behavior-reference factor and a
majority-impact factor. Every �i is calculated with a shared
vector xbest which is useful for fast convergence (Gämperle
et al. 2002).

From Eqs. (3) and (4), the behavior-reference factor and
the majority-impact factor are both produced by the past
population including parents and the best-so-far individual.
Besides them, the diversity of population is also very impor-
tant for global optimization (Alam et al. 2011; Liang et al.
2006). However, there is no characteristic inclined to help
individuals with diversity in Eqs. (3) and (4). One efficient
method for increasing diversity is tomake the offsprings very
different from the parents. Therefore, we simulate the group
member’s distinctive behaviors to improve the simulated-
conformist vector for population diversity.

(3) Distinctive-impact factor As discussed above, �i will
contain a factor tomake themutated individual different from
others in the population. Inspired by the strategy of using a
Gaussian distribution (Alam et al. 2011; Fogel 1992), we
apply a distinctive-impact factor for the i th individual to be
mutated,
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Γ
(3)
i, j = N j (0, δ), (5)

where j = 1, . . . , n; and N j (0, δ) is a random number by
Gaussian distribution, generated for each j . Furthermore,

δ =
(
xmax
j − xmin

j

)
/D, (6)

where [xmin
j , xmax

j ] is the feasible interval for the decision
variable in the j th dimension andD is an adaptive parameter
to control the standard deviation of N j (0, δ).

The adaptive setting of D is described as follows. D is used
for adjusting the standard deviation.Afixed D corresponds to
a special searching scope of the Gaussian distinctive-impact
factor. In the initialization of the proposed algorithm EP-
SMS, setting D to 10 can cause a large mutation step with a
high probability to make the search jumps of EP-SMS large.
As D increases, δ becomes smaller and the search scope
of EP-SMS converges. We use a counting variable, count ,
and threshold, τ , to control the increment of D. The vari-
able count is set to record the number of times the offspring
is better than the parent through the proposed mutation. τ

is a threshold value of the variable count , D will increase if
count < τ ,where τ = 10%of thepopulation size, set empir-
ically. D is reset to 10 when D ≥ 1030. In each iteration,
D = D/10 when count < τ ; D = 10D when count > τ .
The factor of 10 acts like a longer jump adaptive setting for
the parameter rather than the factor of 2, making the dynamic
change of Dmore obvious. Our approach is supported by the
empirical results presented in Table 1.

The addition of the distinctive-impact factor produces a
change to the previous result based on the linear combina-
tion of parents and best-so-far individual. Consequently, the
distinctive-impact factor of Eq. (5) is inclined to mutate an
offspring to make it more different from its parent.

The three factors are summed to be the simulated-
conformist vector,

�i, j = Γ
(1)
i, j + Γ

(2)
i, j + Γ

(3)
i, j , (7)

where j = 1, 2, . . . , n.
The performance of the three factors and their combina-

tion are analyzed in Sect. 4.2.

3.3 Mutation by simulated-conformist vector

The proposed EP follows the framework of Algorithm 1. The
mutation of the proposed algorithm is presented by Algo-
rithm 2

The mutation runs like seeking differences while reserv-
ing common parts. Every dimension of the variable will be
updated by the selected simulated-conformist vector with
mutation probability, Pm . Each element of the j th dimen-
sion remains unchanged with probability 1− Pm . Thus, only

some dimensions of the variation vector are able to change
in the mutation operator, unlike blind searching by stochastic
distributions.

Equations (8) and (9) are used to renew the j th dimension
value of the decision variable with probability Pm , while the
value remains unchanged through Eqs. (10) and (11) with
probability 1 − Pm .

Algorithm 2: Simulated-conformist Mutation (Eq. (1)
in Algorithm 1)
Input: i th individual vi and problem dimension n.
Output: i th mutated individual vi .
for j = 1 ← n do

generate random real numbers r j ∈ [0, 1] and p j ∈ [0, 1]
if r j < Pm then

//�i j is calculated by Eq. (7)

σ i j = �i j , (8)

xi j = (1 − p j ) · xi j + p j · σ i j , (9)

else

σ i j = σi j , (10)

xi j = xi j , (11)

end
end

Other steps of the proposed EP are the same as Algorithm
1.

4 Experimental results

We verified the effectiveness of our proposed EP-SMS by
conducting three numerical experiments.

(1) We investigated the desired setting of the systematic para-
meters used in EP-SMS (Sect. 4.1).

(2) Wemainly comparedEP-SMSwithdifferentEPsobtained
by using different combinations of the proposed three
factors, i.e., the behavior-reference factor, the majority-
impact factor, and the distinctive-impact factor (Sect.
4.2).

(3) We conducted the benchmark problems (Yao et al. 1999)
to compare EP-SMSwith the existing representative EPs
(Alam et al. 2011, 2012; Lee and Yao 2004; Yao et al.
1999) and other algorithms (Bratton et al. 2007; Brest
et al. 2006;Hansen 2006;Hansen et al. 2003)with similar
strategies to evolutionary programming (Sect. 4.3).
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4.1 Experimental setting of EP-SMS

Three parameters need to be set in advance: population size k,
mutation probability Pm , and divided/multiple factor D. The
population size of EP-SMS was set to be 100, similar to the
setting for FEP (Yao et al. 1999), ALEP (Lee and Yao 2004),
and RTEP (Alam et al. 2011). The mutation probability was
set to Pm = 0.1, following the suggestion of Jung (2003).
The divided/multiple factor of D is set to be 10 according to
the results in Table 1.

To make a fair comparison, we took the evaluation of
fitness value as the basic operation of the compared algo-
rithms. The 23 benchmark functions (Yao et al. 1999) were
used in our experimental studies. Functions F1–F13 are
high-dimensional functions. Functions F1–F7 are unimodal
functions. Functions F8–F13 are multimodal functions.
Functions F14–F23 are low-dimensional functions with
many valleys and multiple minimum values. The detailed
calculation of each benchmark function is given in Table 2.

For F1–F13, themaximum evaluation number was 150,000,
which is consistent with the setting of DGEP (Alam et al.
2012), RTEP (Alam et al. 2011), ALEP (Lee and Yao 2004),
Self-Adaptive DE (Brest et al. 2006), PSO (Ratnaweera et al.
2004), and DE (Brest et al. 2006). For example, the popu-
lation size and maximum iteration number of Self-Adaptive
DE (Brest et al. 2006) are 100 and 1500, respectively, i.e.,
the total number of evaluations does not exceed 150,000. For
F14–F23, we set a uniform maximum evaluation number =
10,000. This is the same as for DGEP (Alam et al. 2012),
RTEP (Alam et al. 2011), PSO (Ratnaweera et al. 2004), and
DE (Brest et al. 2006). The setting also corresponds to ALEP
(Lee and Yao 2004) and Self-Adaptive DE (Brest et al. 2006)
except for F16 and F18. The maximum evaluation number
of ALEP and Self-Adaptive DE for F16 and F18 was 3000.

Besides the constant parameters, there is an adaptive para-
meter, D [Eq. (6)]. In this study, D was set in an adaptive
way rather than as a constant. In order to verify whether
the adaptive way has advantage, four candidate strategies

Table 1 Investigation of different D settings to solve the benchmark functions (Yao et al. 1999) in 1998

Function Adaptive D = D/10 or D = 10D Adaptive D = D/2 or D = 2D D = 1000 Non-D

F1 5.19e−57 1.11e−56 6.04e−07† 1.24e−22†

F3 3.01e−12 8.05e−10† 4.24e−02† 3.95e−01†

F10 7.10e−15 6.68e−15 3.93e−04† 4.06e−06†

F12 1.57e−32 1.57e−32 3.06e−08† 7.35e−23†

F13 1.34e−32 1.34e−32 1.10e−08† 4.97e−21†

F14 9.98e−01 9.98e−01 9.98e−01 9.98e−01

F15 3.08e−04 3.10e−04 3.10e−04 3.08e−04

F18 3.00e+00 3.00e+00 3.00e+00 3.00e+00

† The p value is significant (p value < 0.01) at a 0.01 level of significance by one-way ANOVA test
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Fig. 1 Investigated results of different D settings. The horizontal axis is the number of generations. The vertical axis is the fitness value, which is
the average value after running 51 times
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Table 2 Twenty-three benchmark functions used in experiments, where n is the dimension of the function. Fmin is the minimum value of the
function, and S ⊆ Rn

Benchmark function n S Fmin

f1(x) = ∑n
i=1 x

2
i 30 [−100, 100]n 0

f2(x) = ∑n
i=1 |xi | + ∏n

i=1 |xi | 30 [−10, 10]n 0

f3(x) = ∑n
i=1(

∑i
j=1 x j )

2 30 [−100, 100]n 0

f4(x) = maxi {|xi |, 1 ≤ i ≤ n} 30 [−100, 100]n 0

f5(x) = ∑n−1
i=1 [100(xi+1 − x2i )

2 + (xi − 1)2] 30 [−30, 30]n 0

f6(x) = ∑n
i=1(
xi + 0.5�)2 30 [−100, 100]n 0

f7(x) = ∑n
i=1 i x

4
i + random[0, 1) 30 [−1.28, 1.28]n 0

f8(x) = ∑n
i=1 −xi sin(

√|xi |) 30 [−500, 500]n −12,569.5

f9(x) = ∑n
i=1[x2i − 10 cos(2πxi ) + 10] 30 [−5.12, 5.12]n 0

f10(x) = −20 exp

(
−0.2

√
1
n

∑n
i=1 x

2
i

)

− exp( 1n
∑n

i=1 cos 2πxi ) + 20 + e
30 [−32, 32]n 0

f11(x) = 1
4000

∑n
i=1 x

2
i − ∏n

i=1 cos(
xi√
i
) + 1 30 [−600, 600]n 0

f12(x) = π
n

{
10 sin2(πyi ) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2

(πyi + 1)] + (yn − 1)2
} + ∑n

i=1 υ(xi , 10, 100, 4)
yi = 1 + 1

4 (xi + 1)

υ(xi , a, k,m) =
⎧
⎨

⎩

k(xi − a)m), xi > a
0, −a ≤ xi ≤ a
k(−xi − a)m , xi < −a

30 [−50, 50]n 0

f13(x) = 0.1
{
sin2(3πx1) + ∑n−1

i=1 (xi − 1)2[1 + sin2(3πxi+1)]
+(xn − 1)[1 + sin2(2πxn)]

} + ∑n
i=1 υ(xi , 5, 100, 4)

30 [−50, 50]n 0

f14(x) =
[

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−ai j )6

]−1

2 [−65.536, 65.536]n 1

f15(x) = ∑11
i=1

[
ai − x1(b2i +bi x2)

b2i +bi x3+x4

]2
4 [−5, 5]n 0.0003075

f16(x) = 4x21 − 2.1x41 + 1
3 x

6
1 + x1x2 − 4x22 + 4x42 2 [−5, 5]n −1.0316285

f17(x) = (x2 − 5.1
4π2 x

2
1 + 5

π
x1 − 6)2 + 10(1 − 1

8π )cosx1 + 10 2 [−5, 10] × [0, 15] 0.398

f18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x21 − 14x2 + 6x1x2
+ 3x22 )] × [30 + (2x1 − 3x2)2(18 − 32x1 + 12x21+ 48x2 − 36x1x2 + 27x22 )]

2 [−2, 2]n 3

f19(x) = − ∑4
i=1 ci exp[−

∑4
j=1 ai j (x j − pi j )2] 4 [0, 1]n −3.86

f20(x) = − ∑4
i=1 ci exp[−

∑6
j=1 ai j (x j − pi j )2] 6 [0, 1]n −3.32

f21(x) = − ∑5
i=1[(x − ai )(x − ai )T + ci ]−1 4 [0, 10]n −10

f22(x) = − ∑7
i=1[(x − ai )(x − ai )T + ci ]−1 4 [0, 10]n −10

f23(x) = − ∑10
i=1[(x − ai )(x − ai )T + ci ]−1 4 [0, 10]n −10

of D were investigated when solving 8 selected benchmark
instances: non-D [Eq. (5)] is removed from Eq. 7), constant
D = 1000, adaptive D = D/10 or D = 10D, and D = D/2
or D = 2D. The selected instances include two unimodal
functions (F1 and F3), three high-dimensional multimodal
functions (F10, F12, and F13), and three low-dimensional
multimodal functions (F14, F15, and F18).

Each instance was calculated 51 times using the proposed
EP-SMSwith the four D settings, and the results are shown in
Table 1 and Fig. 1. Aswe have discussed, D is used to control

the standard deviation of Gaussian distribution in Eq. (5),
which adjusts the diversity of the population. A larger D can
cause a smaller mutation step and accelerate the convergence
of EP-SMS. A smaller D can cause a larger mutation step
and make the search jumps of EP-SMS larger. When EP-
SMS shows a good searching performance, increasing D can
help EP-SMS quickly converge to the optimum. When the
searching performance of EP-SMS is decreased, decreasing
D can help EP-SMS make a larger search jump and find the
better solution with the high probability. The experimental
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results shown inTable 1 andFig. 1 prove that the adaptiveway
is better than non-D and constant D. Besides, the adaptive
D = D/10 or D = 10D shows a significant performance
improvement. Therefore, the adaptive D = D/10 or D =
10D is a reasonable way. Empirically, we chose it to adjust
the diversity of the EP population for the main comparison.

4.2 Performance investigation of simulated-conformist
vector

In our proposed EP-SMS algorithm, the mutation is based
on the simulated-conformist vector, which is constructed
by combining the behavior-reference, majority-impact, and
distinctive-impact factors. We investigated the effectiveness
of these three factors by comparing multiple possible EP-
SMS variants using different combinations of the factors.
Specifically, we consider seven EP-SMS variants,

(1) EP-SMS-1: The simulated-conformist vector only
includes a behavior-reference factor [Eq. (3)].

(2) EP-SMS-2: The simulated-conformist vector only
includes a majority-impact factor [Eq. (4)].

(3) EP-SMS-3: The simulated-conformist vector only
includes a Gaussian distinctive-impact factor [Eqs. (5),
(6)].

(4) EP-SMS-1-2: The simulated-conformist vector contains
behavior-reference factor and majority-impact factors
[Eq. (12)].

�i, j = Γ
(1)
i, j + Γ

(2)
i, j . (12)

(5) EP-SMS-1-3: The simulated-conformist vector contains
a behavior-reference factor and a distinctive-impact fac-
tor [Eq. (13)]. So for the i th individual to be mutated
( j = 1, . . . , n),

�i, j = Γ
(1)
i, j + Γ

(3)
i, j . (13)

(6) EP-SMS-2-3: The simulated-conformist vector contains
a majority-impact factor and a distinctive-impact factor
[Eq. (14)], So for the i th individual to be mutated ( j =
1, . . . , n),

�i, j = Γ
(2)
i, j + Γ

(3)
i, j . (14)

(7) EP-SMS-1-2-3 (i.e., the proposed EP-SMS): simulated-
conformist vector is made up of three factors [Eq. (7)].
EP-SMS-1-2-3 is a complete version of the proposed
EP-SMS algorithm.

We compared the EP-SMS variants by testing them on the
eight benchmark functions (Yao et al. 1999), i.e., F1, F3,
F10, F12–F15, and F18. Each instance was calculated 51

times. These functions are representative, and they cover all
possible types of the benchmark functions: high-dimensional
unimodal functions, high-dimensionalmultimodal functions,
and low-dimensional functions with many valleys and mul-
tiple minimum values.

The means and the standard deviations of the minimized
evaluation functions for the different algorithms and func-
tions are shown in Table 3. We used an ANOVA test for
significance testing. The statistical result shows that EP-SMS
variants using only one factor, i.e., EP-SMS-1, EP-SMS-
2, and EP-SMS-3, are inferior to other EP-SMS variants.
EP-SMS-1-2 shows some improvement over EP-SMS-1 and
EP-SMS-2, which indicates the combination of the behavior-
reference and the majority-impact factors is better than any
single case. Similar results can be observed for EP-SMS-1-
3 versus EP-SMS-1 or EP-SMS-3, and EP-SMS-2-3 versus
EP-SMS-2 or EP-SMS-3. EP-SMS-1-2-3 is the highest per-
forming among the EP-SMS variants, which shows the
effectiveness of the proposed simulated-conformist vector
(combining three factors).

The behavior-reference factor contributes heuristic infor-
mation from the parents to the mutation. The performance of
EP-SMS-2-3 is unstable in different instances. EP-SMS-1-
2-3 is more robust than EP-SMS-2-3 owing to the heuristic
information of individuals which makes the optimization
capacity ofmutation adaptivelyfit to different kinds of bench-
mark functions.

The optimization acceleration guarantees the mutation in
a direction of global optimization. EP-SMS-1-2-3 improves
on EP-SMS-1-3 in the quality of solutions, i.e, its index value
is significantly closer to optimal. The superiority of EP-SMS-
1-2-3 to EP-SMS-1-3 is significant for F12, F13 and F15
while their performance difference is not significant for the
other five functions.

The distinctive-impact factor of Gaussian distribution
assists the mutation in diversifying the evolutionary popula-
tion. The solution of EP-SMS-1-2 was apparently trapped in
local optimization. However, it makes substantial progress
when the factor of Eq. (5) was added to the simulated-
conformist vector, since the distinctive-impact factor
improves the diversity of the population. As a result, EP-
SMS-1-2-3 performs significantly better than EP-SMS-1-2
for F1, F3, F10, F12 and F13, while there are no signifi-
cant differences among other three functions.

EP-SMS-1-2-3 is the best performing algorithm. The high
performance verifies the advantage of the combination of
the three factors, each of which is needed to an optimal EP
mutation.

4.3 Comparison of EP-SMS with other EPs

To verify the effectiveness of the proposed mutation strategy
with the simulated-conformist vector, EP-SMS was com-
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Table 3 Comparison of seven EP-SMS variants in the index “mean (standard deviation) of minimal evaluation function value” to solve the
benchmark functions (Yao et al. 1999) in 1998

Function EP-SMS-1-2-3 EP-SMS-1 EP-SMS-2 EP-SMS-3 EP-SMS-1-2 EP-SMS-1-3 EP-SMS-2-3

F1 5.20e−57 2.59e−40† 6.47e+00† 2.27e−37† 4.17e−34† 4.56e−57 4.39e−36†

(2.44e−57) (1.25e−40) (2.32e+00) (6.12e−37) (1.94e−33) (1.97e−57) (1.00e−35)

F3 3.02e−12 9.24e−04† 1.64e+04† 5.32e+01† 1.11e−01† 4.93e−12 8.43e+01†

(5.25e−12) (1.49e−04) (3.24e+03) (3.65e+01) (4.85e−01) (9.98e−12) (4.88e+01)

F10 7.11e−15 8.15e+00† 1.27e+00† 3.71e−14 2.34e−07† 7.11e−15 3.97e−04†

(1.82e−15) (2.86e+00) (2.80e−01) (5.23e−15) (1.13e−06) (0.00e+00) (1.94e−04)

F12 1.57e−32 7.05e+00† 3.00e−02† 2.00e−02† 4.00e−02† 1.20e−01† 5.40e−03†

(5.47e−48) (1.23e+01) (3.00e−02) (4.00e−02) (2.00e−02) (3.00e−02) (2.00e−02)

F13 1.35e−32 2.57e+01† 2.80e−01† 8.23e−04† 5.71e−03† 8.06e−26† 1.48e−03†

(5.58e−48) (3.51e+01) (7.00e−02) (2.37e−04) (9.38e−03) (3.95e−25) (3.24e−03)

F14 9.98e−01 4.65e+00† 1.04e+00† 1.43e+00† 9.98e−01 9.98e−01 9.98e−01

(9.93e−17) (5.44e+00) (1.94e−01) (1.08e+00) (9.41e−11) (3.76e−13) (1.58e−04)

F15 3.08e−04 1.23e−03† 1.72e−02† 6.84e−03† 4.00e−04 1.15e−03† 3.15e−03†

(3.06e−07) (3.90e−03) (1.87e−02) (8.11e−03) (2.94e−04) (3.93e−03) (5.96e−03)

F18 3.00e+00 3.00e+00 1.25e+01† 3.00e+00 3.00e+00 3.00e+00 3.00e+00

(0.00e+00) (0.00e+00) (1.37e+01) (0.00e+00) (0.00e+00) (0.00e+00) (0.00e+00)

The standard deviations of 0.00 is just a small number with the precision of 1e−308 because the number will be displayed to be 0.00 in MATLAB
when it is smaller than 1e−308
† The p value is significant(p value <0.01) at a 0.01 level of significance by one-way ANOVA test

pared to other EPs, CEP (Yao et al. 1999), FEP (Yao et al.
1999), ALEP (Lee and Yao 2004), RTEP (Alam et al. 2011),
and DGEP (Alam et al. 2012) by calculating the 23 bench-
mark functions (Yao et al. 1999). The first three algorithms
are classical, whereas the remainder are recent EPs. CEP,
FEP, and ALEP are EPs with mutation based on stochastic
distribution. They have been shown to be effective in solv-
ing benchmark functions of different minima characteristics,
respectively, corresponding to their different stochastic dis-
tributions. RTEP, and DGEP are EPs with heuristic mutation.
RTEP is easy to implement for its smart framework, as its
mutation was based on a linear combination of a neighbor-
ing item and a stranger item. It has been shown to be robust
in solving unimodal and multimodal functions (Alam et al.
2011). DGEP is a two-level mutation EP based on the diver-
sity of population, which is proved to be more powerful in
solvingmultimodal functions rather than unimodal functions
(Alam et al. 2012).

CEP, FEP, ALEP, DGEP, RTEP, and EP-SMS were
implemented and run 51 times for each instance. The five
algorithms to be compared are programmed strictly follow-
ing the parameter settings of (Alam et al. 2011, 2012; Lee
and Yao 2004; Yao et al. 1999). Table 4 shows the means
and standard deviations of the minimization values and sub-
sequent significance tests. The items denoted by “Null” are
those that corresponding results cannot be directly obtained
from the original literature (Alam et al. 2011; Lee and Yao
2004; Yao et al. 1999).

In general, none of the algorithms perform best for all of
the benchmark functions.

– DGEP (Alam et al. 2012) achieves the best performance
for one unimodal function (F6), one high-dimensional
multimodal function (F10), and six low-dimensional
multimodal functions (F16, F18–F22).

– RTEP (Alam et al. 2011) performs best for two unimodal
function (F3 and F6), one high-dimensional multimodal
function (F11), and two low-dimensional multimodal
functions (F16 and F22).

– ALEP (Lee and Yao 2004) performs best for F7.
– CEP (Yao et al. 1999) performs best for F17.
– FEP (Yao et al. 1999) performs best for F4.

The proposed EP-SMS algorithm performs best for six-
teen instances, including five unimodal functions (F1–
F3, F5, F6), four high-dimensional multimodal functions
with many minima (F8, F9, F12, F13), and seven low-
dimensional multimodal functions with many valleys and a
few minima (F14–F16, F18–F20, F23). Furthermore, EP-
SMS achieves the same order of magnitude outcome as the
best algorithm in three low-dimensional multimodal func-
tions (F17, F21, F22).

Thus, the proposed EP-SMS algorithm was effective in
tackling nineteen instances (approximately 82.6%) of the
test functions.
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Table 4 Comparing EP-SMS
with other EPs in terms of the
mean (standard deviation) of
minimal evaluation function to
solve the benchmark functions
(Yao et al. 1999) in 1998

Function EP-SMS DGEP RTEP FEP CEP ALEP

F1 5.19e−57 5.42e−08† 4.56e−43† 7.27e−11† 2.07e−04† 3.43e−05†

(2.44e−57) (1.48e−08) (8.00e−43) (5.85e−11) (3.45e−04) (4.72e−06)

F2 1.79e−29 6.64e−12† 1.26e−27† 7.48e−06† 2.43e−01† Null

(1.35e−29) (3.61e−12) (1.05e−27) (3.69e−06) (3.37e−01)

F3 3.01e−12 4.13e−08† 3.45e+01† 6.99e−11† 1.41e+03† 7.67e+01†

(5.25e−12) (9.25e−09) (1.61e+01) (5.70e−11) (1.07e+03) (1.10e+02)

F4 4.63e−02 1.06† 7.70e−05‡ 4.66e−06‡ 1.85e+01† Null

(6.28e−02) (0.32) (1.08e−04) (2.77e−06) (6.88e+00)

F5 2.78e−01 1.28† 2.67e+00† 9.31e+01† 8.42e+01† 6.21e+01†

(2.48e−01) (0.76) (7.18e−01) (1.18e+02) (8.87e+01) (5.62e+01)

F6 0.00 0.00 0.00 0.00 1.29e+02† Null

(0.00e+00) (0.00e+00) (0.00e+00) (0.00e+00) (3.72e+02)

F7 7.59e−03 1.94e−12‡ Null 3.61e−05‡ 5.62e-02† 8.00e-38‡

(7.48e−04) (8.23e−13) (2.31e−05) (2.38e−02) (0.00e+00)

F8 −12,569.5 −12,567.4† Null −10,997.6† −8012.1† −10,368.3†

(0.00e+00) (0.18) (267) (4.00e+02) (4.36e+02)

F9 0.00 1.56e−02† 1.53e+01† 5.72† 8.34e+01† 6.12e+00†

(0.00e+00) (5.12e−09) (1.07e+01) (1.91) (2.56e+01) (2.40e+00)

F10 7.10e−15 2.47e−16‡ 3.55e−15‡ 1.56e−02† 1.02e+01† 4.47e−03†

(1.82e−15) (6.83e−17) (0.00e+00) (1.16e−03) (3.51e+00) (3.50e−04)

F11 6.51e−03 7.52e−14‡ 8.88e−04‡ 2.00e−02 1.91e−01† 5.93e−02

(1.34e−02) (2.54e−14) (2.45e−03) (1.98e−02) (1.31e−01) (7.98e−02)

F12 1.57e−32 3.32e−12† 1.65e−02† 6.49e−06† 1.23e+00† 4.87e−03†

(1.43e−32) (1.94e−13) (6.47e−02) (1.74e−06) (1.61e+00) (2.43e−03)

F13 1.34e−32 1.74e−04† Null 8.34e−05† 1.52e+00† 5.43e−05†

(6.19e−33) (2.65e−05) (1.65e−05) (1.89e+00) (1.40e−05)

F14 0.998 1.02† Null 1.27† 1.76e+00† Null

(0.00e+00) (0.04) (0.596) (9.97e−01)

F15 3.08e−04 3.17e−04 1.21e−03† 8.88e−04† 8.27e−04† Null

(1.10e−04) (8.20e−05) (1.97e−04) (1.83e−04) (2.15e−04)

F16 −1.031 −1.031 −1.031 −1.31† −1.031† −1.031†

(0.00e+00) (0.00e+00) (0.00e+00) (7.57e−09) (4.58e−08) (5.06e−08)

F17 0.398 0.398 Null 0.398† 0.398‡ Null

(1.86e−07) (2.40e−07) (3.31e−06) (4.58e−09)

F18 3.00 3.00 Null 3.00† 3.04† 3.00†

(0.00e+00) (0.00e+00) (3.31e−09) (1.89e−01) (3.26e−07)

F19 −3.86 −3.86† −3.87† −3.86† −3.86† Null

(2.63e−15) (9.40e−03) (6.28e−02) (4.62e−07) (2.73e−07)

F20 −3.32 −3.32 −2.98† −3.28† −3.27† Null

(5.74e−02) (2.50e−04) (3.38e−01) (5.41e−02) (5.93e−02)

F21 −8.43 −9.87 −9.79 −5.89† −7.03 −6.10†

(2.59e+00) (0.540) (1.48e+00) (2.22) (2.65e+00) (2.41e+00)
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Table 4 continued
Function EP-SMS DGEP RTEP FEP CEP ALEP

F22 −9.29 −10.47‡ −9.75 −6.89† −7.94 −6.56†

(2.28e+00) (0.08) (1.83e+00) (2.95) (2.74e+00) (3.18e+00)

F23 −10.54 −10.51 −10.46 −9.23† −8.35† −8.44†

(1.87e−15) (3.80e−02) (2.69e−01) (2.30) (2.91e+00) (2.88e+00)

The standard deviation of 0.00 is a very small number; MATLAB shows 0.00 when it is smaller than 1e−308
†, ‡ The p value is significant at the 0.01 level of significance by one-way ANOVA test
† The proposed EP-SMS performs better than the corresponding algorithm
‡ The corresponding algorithm performs better than EP-SMS

Table 5 Comparing EP-SMS with other similar-strategy algorithms in terms of the mean (standard deviation) of minimal evaluation function to
solve the benchmark functions (Yao et al. 1999) in 1998

Function EP-SMS Self-Adaptive DE PSO DE Constricted GBest PSO CMA-ES

F1 5.19e−57 1.28e−28† 1.79e−48† 2.10e−18† 3.12e−58‡ 6.06e−29†

(2.44e−57) (1.69e−28) (4.94e−48) (2.11e−18) (1.39e−57) (1.15e−29)

F3 3.01e−12 5.16e−02† 2.83e−05† 5.13e−02† 3.15e−05† 1.28e−26‡

(5.25e−12) (4.22e−02) (4.42e−05) (4.99e−02) (3.23e−05) (2.91e−27)

F5 2.78e−01 1.35e+01† 1.43e+01† 5.15e−08‡ 1.31e+01† 6.85e−26‡

(2.48e−01) (2.33e+01) (2.55e+01) (9.91e−08) (2.73e+01) (2.79e−26)

F8 −12,569.5 −12,569.5 −9657.3† −5168.2† 2.85e+03† −7024.4†

(0.00e+00) (1.86e−12) (6.29e+02) (3.87e+02) (6.70E+02) (5.60e+02)

F9 0.00e+00 2.13e−16 8.65e+01† 1.76e+02† 9.71e+01† 2.24e+02†

(0.00e+00) (7.81e−16) (2.37e+01) (1.85e+01) (2.13e+01) (5.45e+01)

F10 7.10e−15 7.99e−15‡ 1.59e+00† 4.28e−10† 1.11e+00† 1.94e+01†

(1.82e−15) 7.99e−15 (1.03e+00) (1.71e−10) (1.83e+00) (1.42e−01)

F11 6.51e−03 0.00e+00‡ 1.98e−02 5.71e−03 2.35e−02 6.90e−04‡

(1.34e−2) (0.00e+00) (2.72e−02) (7.67e−03) (3.75e−02) (2.41e−03)

F12 1.57e−32 9.02e−11† 5.84e+00† 8.29e−03† 8.16e−01† 9.02e−11†

(1.43e−32) (9.53e−25) (1.88e+01) (2.87e−03) (3.05e+00) (1.14e−22)

F13 1.34e−32 7.90e−11† 6.15e−03† 7.90e−11† 4.21e+01† 7.90e−11†

(6.19e−33) (4.55e−25) (1.23e−02) (4.40e−17) (2.06e+02) (8.04e−23)

F16 −1.031 −1.031 −1.031 −1.031 −1.031 −1.031

(0.00e+00) (5.30e−13) (0.00e+00) (2.02e−16) (0.00e+00) (1.98e−16)

F18 3.00 3.00† 3.00† 3.00† 3.00 3.00

(0.00e+00) (6.71e−10) (3.53e−13) (1.10e−13) (0.00e+00) (0.00e+00)

F21 −8.43 −10.15‡ −6.43† −9.40 −6.44† −4.86†

(2.59) (2.96e−02) (3.47e+00) (1.98e+00) (3.46e+00) (3.40e+00)

F22 −9.29 −9.74 −7.22 −9.53 −6.81† −5.07†

(2.28e+00) (3.72e−04) (3.70e+00) (1.05e+00) (3.58e+00) (3.36e+00)

F23 −10.54 −10.54 −6.00† −10.54 −6.92† −6.06†

(1.87e−15) (5.26e−04) (3.83e+00) (1.47e−11) (3.70e+00) (3.51e+00)

The standard deviations of 0.00 is just a small number; MATLAB displays to be 0.00 when it is smaller than 1e−308
†, ‡ The p value is significant at a 0.01 level of significance by one-way ANOVA test. The mark † means that the proposed EP-SMS performs better
than the corresponding algorithm. ‡ means that the corresponding algorithm performs better than EP-SMS
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Table 6 Comparing EP-SMS with other EPs and CMA-ES in terms of the mean (standard deviation) of minimal evaluation function to solve the
benchmark functions (Liang et al. 2013) in 2013

Function EP-SMS DGEP RTEP FEP CEP ALEP CMA-ES

F1 0.00e+00 0.00e+00 0.00e+00 7.05e+04† 8.37e+04† 7.58e+04† 0.00e+00 †

(0.00e+00) (0.00e+00) (0.00e+00) (1.52e+03) (5.70e+03) (1.29e+04) (2.96e−13)

F2 1.32e+05 3.30e+07† 2.73e+07† 2.21e+09† 2.69e+09† 3.22e+09† 0.00e+00‡

(6.16e+04) (1.92e+07) (5.07e+06) (6.39e+08) (5.11e+08) (9.40e+08) (2.73e−13)

F3 8.94e+07 2.39e+10† 1.99e+09† 8.44e+20† 8.78e+17† 5.72e+22† 1.15e+05 ‡

(1.24e+08) (1.91e+10) (8.01e+08) (3.00e+21) (6.39e+20) (1.60e+23) (5.43e+04)

F4 4.97e+02 6.93e+04† 3.82e+04† 7.38e+04† 7.03e+04† 4.34e+06† 0.00e+00 ‡

(1.65e+03) (9.17e+03) (4.87e+03) (1.97e+04) (8.46e+04) (1.36e+07) (2.91e−13)

F5 0.00e+00 0.00e+00‡ 0.00e+00‡ 5.15e+04† 5.68e+04† 7.54e+04† 0.00e+00 †

(9.91e−14) (0.00e+00) (0.00e+00) (1.82e+04) (1.62e+04) (2.49e+04) (1.89e−09)

F6 1.35e+01 6.00e+01† 3.29e+01† 2.08e+04† 2.04e+04† 2.54e+04† 1.03e+00 ‡

(1.49e+01) (3.42e+01) (8.32e+00) (4.13e+04) (4.21e+03) (5.92e+03) (5.17e+00)

F7 1.11e+02 2.16e+02† 8.42e+01‡ 2.30e+07† 1.49e+07† 9.33e+07† 1.29e+01 ‡

(2.40e+01) (4.91e+01) (1.14e+01) (2.30e+07) (4.64e+07) (1.24e+08) (7.48e+00)

F8 2.09e+01 2.10e+01† 2.10e+01† 2.11e+01† 2.12e+01† 2.12e+01† 2.14e+01†

(8.34e−02) (6.50e−02) (5.13e−02) (7.20e−02) (5.82e−02) (6.19e−02) (7.74e−02)

F9 3.11e+01 3.54e+01† 2.92e+01‡ 4.51e+01† 4.88e+01† 5.05e+01† 4.38e+01 †

(4.90e+00) (2.35e+00) (1.57e+00) (1.94e+00) (1.70e+00) (2.39e+00) (7.34e+00)

F10 1.65e−01 2.61e+00† 3.40e+01† 2.25e+03† 1.05e+04† 1.53e+04† 1.56e−02 ‡

(1.01e−01) (2.37e+00) (1.69e+02) (1.75e+03) (1.88e+03) (1.91e+03) (1.09e−02)

F11 0.00e+00 1.32e−01‡ 2.04e+01† 1.18e+03† 1.33e+03† 1.28e+03† 9.17 + −01†

(0.00e+00) (3.23e−01) (2.52e+00) (5.01e+02) (1.17e+02) (2.21e+02) (2.31e+02)

F12 1.45e+02 3.63e+02† 1.66e+02 1.21e+03† 1.23e+03† 1.29e+03† 7.37e+02 †

(4.55e+01) (8.64e+01) (2.10e+01) (8.59e+02) (1.20e+02) (1.46e+02) (8.98e+02)

F13 1.48e+02 4.26e+02† 1.96e+02† 1.20e+03† 1.18e+03† 1.29e+03† 1.40e+03 †

(6.03e+01) (7.55e+01) (1.83e+01) (9.27e+02) (8.39e+01) (1.89e+02) (1.39e+03)

F14 7.24e−01 3.51e+03† 8.34e+02† 9.59e+03† 9.13e+03† 9.80e+03† 5.09e+03 †

(6.63e−01) (7.52e+02) (1.09e+02) (2.95e+02) (3.90e+02) (3.23e+02) (6.94e+02)

F15 4.24e+03 6.87e+03† 5.51e+03† 9.23e+03† 9.67e+03† 1.02e+04† 5.28e+03 †

(6.88e+02) (3.73e+02) (3.49e+02) (6.42e+02) (4.15e+02) (4.15e+02) (7.84e+02)

F16 1.35e+00 2.50e+00† 2.03e+00† 4.56e+00† 5.48e+00† 5.72e+00† 9.81e−02 ‡

(6.33e−01) (2.48e−01) (2.82e−01) (6.77e−01) (7.67e−01) (1.07e+00) (8.01e−02)

F17 3.90e+01 3.45e+01‡ 6.63e+01† 1.23e+03† 1.02e+03† 1.23e+03† 4.03e+03 †

(3.65e−01) (1.03e+00) (3.95e+00) (3.77e+02) (4.88e+02) (3.76e+02) (8.86e+02)

F18 2.02e+02 5.26e+02† 2.45e+02† 1.19e+03† 1.06e+03† 1.32e+03† 4.00e+03 †

(5.14e+01) (7.81e+01) (1.63e+01) (3.01e+02) (3.41e+02) (3.95e+02) (6.77e+02)

F19 1.66e+00 2.84e+00† 5.56e+00† 1.36e+06† 1.26e+06† 2.15e+06† 3.46e+00 †

(5.10e−01) (1.27e+00) (6.50e−01) (1.29e+06) (2.00e+06) (2.54e+06) (8.36e−01)

F20 1.39e+01 1.46e+01† 1.25e+01‡ 1.50e+01† 1.50e+01† 1.50e+01† 1.40e+01

(8.85e−01) (2.68e−01) (3.18e−01) (1.69e−12) (1.38e−08) (0.00e+00) (1.13e+00)

F21 3.04e+02 2.77e+02 2.05e+02‡ 2.86e+03† 2.74e+03† 3.19e+03† 2.97e+02

(8.54e+01) (7.41e+01) (2.05e+01) (3.27e+02) (6.17e+02) (9.67e+02) (7.67e+01)
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Table 6 continued

Function EP-SMS DGEP RTEP FEP CEP ALEP CMA-ES

F22 1.10e+02 4.25e+03‡ 9.56e+02† 1.02e+04† 1.00e+04† 1.05e+04† 7.06e+03 †

(6.73e+01) (1.03e+03) (1.53e+02) (2.67e+02) (4.35e+02) (2.70e+02) (9.76e+02)

F23 5.16e+03 7.43e+03† 6.08e+03† 9.93e+03† 9.17e+03† 1.06e+04† 6.81e+03 †

(8.86e+02) (4.16e+02) (3.26e+02) (4.47e+02) (3.68e+02) (4.00e+02) (6.95e+02)

F24 2.75e+02 3.13e+02† 2.71e+02‡ 5.52e+02† 5.64e+02† 7.18e+02† 8.48e+02 †

(1.59e+01) (7.88e+00) (4.64e+00) (1.20e+02) (1.08e+02) (1.85e+02) (6.17e+02)

F25 3.03e+02 3.11e+02† 2.99e+02‡ 4.32e+02† 4.19e+02† 4.34e+02† 3.07e+02

(1.38e+01) (3.85e+00) (4.16e+00) (2.40e+01) (2.81e+01) (5.22e+01) (1.35e+01)

F26 2.85e+02 2.08e+02‡ 2.02e+02‡ 4.32e+02† 4.42e+02† 4.93e+02† 4.74e+02†

(8.88e+01) (4.71e+00) (4.27e−01) (1.97e+01) (2.04e+01) (9.43e+01) (4.18e+02)

F27 1.30e+03 1.29e+03‡ 1.04e+03‡ 1.78e+03† 1.88e+03† 2.19e+03† 5.88e+02 ‡

(1.09e+02) (5.97e+01) (5.65e+01) (9.57e+02) (1.08e+02) (2.59e+02) (2.18e+02)

F28 3.00e+02 1.88e+03† 3.00e+02† 8.96e+03† 9.00e+03† 1.02e+04† 1.13e+03 †

(0.00e+00) (6.53e+02) (1.70e−02) (7.94e+02) (1.18e+03) (8.91e+02) (2.60e+03)

†, ‡ The p value is significant at the 0.01 level of significance by one-way ANOVA test. The mark † means that the proposed EP-SMS performs
better than the corresponding algorithm. ‡ means that the corresponding algorithm performs better than EP-SMS
The standard deviation of 0.00 is a very small number; MATLAB shows 0.00 when it is smaller than 1e−308

Comparing to the different algorithms, the performance
of EP-SMS is shown by three aspects:

(1)CEP, FEP, and ALEP EP-SMS is superior to CEP, FEP,
and ALEP in the solution of all benchmark instances except
F4, F7, and F17. Thus, the proposed EP-SMS algorithm is
more effective than the pure stochastic distribution variance
for EP mutation. FEP is more effective in tackling F4 than
EP-SMS because FEP is very fast for unimodal and separa-
ble functions. The evaluation function of F7 is stochastic.
Thus, the mean value of the EP-SMS minimum can eas-
ily change, although EP-SMS reaches the optimum in most
cases. ALEP may be more powerful to solve the problem
of stochastic evaluation function such as F7 than the other
EPs. Furthermore, Table 7 shows that EP-SMS, FEP, and
ALEP are significantly different for F5, F8, F21–F23 by a
Bonferroni test.

(2)RTEP RTEP is stable in unimodal functions andmulti-
modal functions. EP-SMS is superior to RTEP in the solution
precision through all the benchmark functions except for F4
and F11. For F11, RTEP performs the best among the tested
EPs. EP-SMS attained the optimal solution several times in
the 51 runs, but the distinctive-impact factor of Eq. (5) caused
a statistical error. Therefore, the mean value and deviation
of the EP-SMS minimum are weaker than RTEP for F4 and
F11. Table 7 shows that EP-SMS andRTEP are significantly
different for F9 and F20 by a Bonferroni test.

(3)DGEPDGEP is a goodperformer formultimodal func-
tions, F10, F11, F21, and F22, whereas EP-SMS achieved
best performance nearly two-thirds of the multimodal func-
tions. EP-SMS is significantly better than DGEP for twelve

benchmark functions (F1–F5, F8–F9, F12–F14, F19),
and performs comparably well with DGEP for six functions
(F6, F15–F18, F20, F21, F23). Of the DGEP superior
cases (F6, F10, F15, F22), F10 is composed of exponential
and cosinewave functions, and hasmany peaks and valleys to
cause local optimal traps. The EP-SMS capacity to jump out
of the trap depends on its diversity strategy [Eqs. (5), (6)].
However, the strategy independently updates each dimen-
sions of the variation vector. Thus, EP-SMS performs worse
than DGEP in solving F10 since there is a two-level rule to
avoid local optimization in DGEP (Alam et al. 2012). Simi-
larly for F7 and F11, the DGEP is significantly better than
EP-SMS according to the properties of F7 and F11. Table
7 shows EP-SMS and DGEP are significantly different for
F3, F5, F7, and F8 by a Bonferroni test.

The experimental results show that the three advantages
of EP-SMS are a result of the three factors integrated in the
simulated-conformist vector.

(1) EP-SMS is effective for all three types of benchmark
functions on average. Its effectiveness lies in the property
of behavior-reference factor [Eq. (3)]. The behavior-
reference factor makes the mutation execute based on
the heuristic information of the population. The popu-
lation of EP-SMS can adjust itself heuristically during
the solution of different problems. Thus, the adjustment
assists EP-SMS in having a stable optimization capacity.

(2) EP-SMS shows improved solution quality, as shown
by the precision of the mean minimal function in
Table 1. The improvement is based on the majority-
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Table 7 Multiple comparison results of Bonferroni test for compared EPs to solve the benchmark functions (Yao et al. 1999) in 1998

Function p value EP-SMS DGEP RTEP FEP CEP ALEP

F1 3.6562e−07 CEP CEP CEP CEP EP-SMS FEP CEP

RTEP DGEP

ALEP

F2 8.3868e−09 CEP CEP CEP CEP EP-SMS FEP –

DGEP RTEP

F3 4.4249e−25 DGEP CEP EP-SMS FEP DGEP CEP DGEP CEP EP-SMS FEP DGEP CEP

RTEP CEP DGEP

ALEP ALEP

F4 1.2079e−49 CEP CEP CEP CEP EP-SMS FEP –

DGEP RTEP

F5 2.5170e−06 DGEP FEP EP-SMS DGEP FEP EP-SMS EP-SMS EP-SMS

CEP ALEP RTEP CEP RTEP RTEP

F6 0.0208 * * * * * *

F7 1.3092e−38 DGEP CEP EP-SMS FEP – DGEP CEP EP-SMS FEP DGEP FEP

CEP ALEP ALEP DGEP ALEP CEP

F8 6.1288e−142 DGEP FEP EP-SMS FEP – EP-SMS CEP EP-SMS FEP EP-SMS FEP

CEP ALEP CEP ALEP DGEP ALEP DGEP ALEP DGEP CEP

F9 1.4729e−62 RTEP CEP RTEP CEP EP-SMS FEP RETP CEP EP-SMS FEP CEP

DGEP CEP DGEP RTEP

ALEP

F10 2.2858e−64 CEP CEP CEP CEP EP-SMS FEP CEP

DGEP RTEP

ALEP

F11 2.5960e−22 CEP CEP CEP CEP EP-SMS FEP CEP

DGEP RTEP

ALEP

F12 2.0264e−11 CEP CEP CEP CEP EP-SMS FEP CEP

DGEP RTEP

ALEP

F13 1.4724e−10 CEP CEP – CEP EP-SMS FEP CEP

DGEP ALEP

F14 1.6340e−5 CEP CEP – CEP EP-SMS FEP –

DGEP

F15 0.3294 * * * * * *

F16 0.0322 * * * * * *

F17 1.2509e−51 CEP CEP – CEP EP-SMS FEP –

DGEP

F18 0.4104 * * * * * *

F19 0.4218 * * * * * *

F20 9.3154e−12 RTEP RTEP EP-SMS FEP RTEP RTEP –

DGEP CEP

F21 1.6827e−07 FEP ALEP RTEP DGEP FEP EP-SMS RTEP EP-SMS
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Table 7 continued

Function p value EP-SMS DGEP RTEP FEP CEP ALEP

CEP ALEP RTEP RTEP

F22 4.9190e−09 FEP ALEP FEP CEP FEP ALEP EP-SMS DGEP EP-SMS

ALEP DGEP RTEP DGEP RTEP

F23 3.2662e−06 FEP CEP FEP CEP FEP CEP EP-SMS EP-SMS EP-SMS

ALEP ALEP ALEP DGEP RTEP DGEP RTEP DGEP RTEP

* No algorithm is significantly different from others for solving this benchmark function

impact [Eq. (4)] and distinctive-impact factors [Eq. (5)].
Themajority-impact factor helps to speed up theEP-SMS
optimization process, and the distinctive-impact factor
helps increase the population diversity.

(3) EP-SMS is robust enough to solve multimodal func-
tions, which indicates that its population is continuous
diversity during the solution. The adaptive strategy of
the distinctive-impact factor [Eq. (6)] helps maintain the
diversity of the population in different instances of mul-
timodal functions.

EP-SMS performs weaker than DGEP in functions F21–
F22, which are low-dimensional multimodal functions with
many valleys and a few minima. Since the adaptive strategy
always needs certain iterations to make the mutation effec-
tive, the strengthen of EP-SMS is not obvious in the case of
low-dimensional multimodal functions because of too few
iterations.

4.4 Comparison of EP-SMS and other algorithms with
similar components

The EP-SMS simulated-conformist vector has some simi-
larity with DE, Self-Adaptive DE (Brest et al. 2006), PSO
and Constricted GBest PSO (Bratton et al. 2007), such as the
behavior-reference factor Γ (1)

i [Eq. (3)] and majority-impact

factor Γ
(2)
i [Eq. (4)], where i is the number of updated indi-

vidual.
Table 5 shows a performance comparison between EP-

SMS and other similar-strategy algorithms. Self-Adaptive
DE, PSO, and DE are implemented strictly following the
studies (Bratton et al. 2007; Brest et al. 2006). EP-SMS per-
forms significantly better than Self-Adaptive DE for F1, F3,
F5, F12, F13, and F18 (approximately 43% of the func-
tions). EP-SMS is significantly weaker than Self-Adaptive
DE (Brest et al. 2006) for F10, F11, and F21. The differ-
ence is not significant for approximately 36% of the tested
functions. EP-SMS performs significantly better than PSO
(Bratton et al. 2007) in most instances, except for F11 and
F16. Moreover, EP-SMS performs slightly better than PSO
for F11, F16, and F22. The performance difference of EP-
SMS and DE is not significant for benchmark functions

F11, F16, and F21–F23,whereas EP-SMSperforms signif-
icantly better than DE for F1, F3, F8–F10, F12, F13, and
F18, but weaker for F5. EP-SMS is significantly higher per-
formance than constricted Gbest PSO (Bratton et al. 2007)
for F3, F5, F8–F10, F12–F13, and F21–F23, but weaker
for F1.

EP-SMS is generally superior to the other four algorithms
with similar strategies. The goal of the comparisonwas not to
show that EP-SMS was more powerful than DEs and PSOs,
but to reveal a significant difference between the simulated-
conformist vector and other similar-strategy algorithms. We
have not considered other recently developed evolutionary
algorithms such as covariance matrix adaptation evolution
strategy (CMA-ES) (Hansen 2006; Hansen et al. 2003), the
stud genetic algorithm (SGA) (Khatib and Fleming 1998),
and self-adaptive differential evolution with multitrajectory
search (SaDE) (Zhao et al. 2011), whose mutation operators
are considerably different from EP-SMS.

However, the algorithmic framework of CMA-ES is most
similar of all to EP-SMS, and sowe chooseCMA-ES tomake
a comparisonwithEP-SMSon the benchmark functions (Yao
et al. 1999) proposed in 1998. Table 5 shows that EP-SMS
performance is superior to CMA-ES (Hansen et al. 2003) in
solving nine functions (F1, F8–F10, F12, F13, F21–F23),
inferior in solving three (F3, F5, F11), and not significantly
different for two (F16, F19). We also compared CMA-ES
(Hansen et al. 2003) and EP-SMS on the benchmark func-
tions of CEC 2013 (Liang et al. 2013), whose results are
shown in Table 6. EP-SMS is superior to CMA-ES in solving
seventeen functions (F1, F5, F8–F9, F11–F15, F17–F24,
F26, F28), yet inferior in eight (F2–F3, F6–F7, F10, F16,
F27), and not significantly different in solving three (F20,
F21, F25) (Liang et al. 2013).

5 Conclusion

We proposed a simulated-conformist mutation strategy to
improve the robustness of the evolutionary programming
algorithm for different types of numerical optimization
problems. We designed a simulated-conformist vector for
updating variation vector in the mutation operator of EP. The
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simulated-conformist vector is constructed by combining
behavior-reference, majority-impact, and distinctive-impact
factors, each simulating one aspect of a psychological model
of conformity behavior. We verified experimentally that the
behavior-reference factor helps the proposed EP-SMS algo-
rithmperform robustly in solving different types of functions,
that the majority-impact factor accelerates the convergence
of EP-SMS, and that the adaptive distinctive-impact fac-
tor averts EP-SMS’s premature termination of optimization.
These factors are combined as a direct summation to cal-
culate a variation vector in the mutation of the proposed
EP-SMS. Compared with classical and recently published
EPs, the proposed EP-SMS performs better for most bench-
mark functions in terms of themeans and standard deviations
of minimized fitness value.

We thus conclude that the proposed EP-SMS has three
strengths in the application of engineering optimization.

(1) EP-SMS performance is stable and suitable for solving
different types of optimization functions whose proper-
ties are usually unknown in real-world applications.

(2) The improvement is likely to be made in the framework
of classical EPs. Therefore, engineers and programmers
who use CEP, FEP, and ALEP can upgrade the function
of EP algorithms at their own conveniences by revising
the mutation procedure.

(3) The proposed simulated-conformist vector contains three
factors, respectively, impacting three properties of EP-
SMS. Therefore, users of EP-SMS can adjust the weights
of these factors to control the algorithmic capacity
according to the specific requirements in their applica-
tions.

Future research of EP-SMS should focus on optimal
adjustment of the three factors in the simulated-conformist
vector. Although its high performance was verified, EP-SMS
isweak in the solution of some functions, such as F7 and F11
of the 1998 benchmark functions. Direct summation of the
three factors cannot be guaranteed to be the optimal com-
binatorial form for every problem. Different combinations
of these factors need to be tested in different optimization
problems. We suggest that three weight parameters should
be added to the summation for three mutation factors. The
parameters can be changed adaptively based on the reflection
of the problem properties.
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