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Abstract—Decomposition-based multiobjective evolutionary
algorithm has shown its advantage in addressing many-objective
optimization problem (MaOP). To further improve its conver-
gence on MaOPs and its diversity for MaOPs with irregular
Pareto fronts (PFs, e.g., degenerate and disconnected ones),
we proposed a decomposition-based many-objective evolution-
ary algorithm with two types of adjustments for the direction
vectors (MaOEA/D-2ADV). At the very beginning, search is only
conducted along the boundary direction vectors to achieve fast
convergence, followed by the increase of the number of the
direction vectors for approximating a more complete PF. After
that, a Pareto-dominance-based mechanism is used to detect
the effectiveness of each direction vector and the positions of
ineffective direction vectors are adjusted to better fit the shape
of irregular PFs. The extensive experimental studies have been
conducted to validate the efficiency of MaOEA/D-2ADV on many-
objective optimization benchmark problems. The effects of each
component in MaOEA/D-2ADV are also investigated in detail.

Index Terms—Adjustment of direction vectors, convergence,
decomposition, diversity, many-objective optimization.

I. INTRODUCTION

MOST real-world optimization problems involves the
simultaneous optimization of multiple objectives.

Different from a single-objective optimization problem that
has an optimal solution, a set of Pareto-optimal solutions that
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represent the tradeoff relationship between different objec-
tives, exist in an multiobjective optimization problem (MOP).
The set of such solutions is called Pareto set (PS) and the
image of (PS) on the objective vector space is called Pareto
front (PF) [54].

In the past decades, multiobjective evolutionary algo-
rithms (MOEAs) have been recognized as a major methodol-
ogy for approximating the PF [9], [11], [13], [14], [16], [19],
[25], [33], [63], [71]. However, the existing MOEAs mainly
focus on addressing MOPs with two or three objectives. The
performance of MOEAs, especially Pareto-dominance-based
MOEAs, deteriorate when the number of objectives increases
to four or above [56], [66]. How to design effective MOEAs
to address MOPs with more than three objectives, com-
monly referred to as many-objective optimization problems
(MaOPs) [38], has drawn a great deal of attention. MaOPs
are very challenging due to the following reasons [38], [49].

1) With the increase of the number of objectives, the selec-
tion pressure of Pareto dominance-based MOEAs dete-
riorate drastically, due to the facts that most solutions
become nondominated to each other [26], [45], [57].
Some classical MOEAs (e.g., NSGA-II [19]) work well
on MOPs with two or three objectives but cannot work
well in MaOPs [37].

2) It is well-known that, the PF of an m-objective nonde-
generate MOP (or MaOP) is an (m − 1)-dimensional
manifold [34], [43] [PFs of degenerate MOPs (or
MaOPs) are less than (m − 1)-dimensional], which indi-
cates that the number of solutions required to approx-
imate the entire PF increases exponentially with the
increase of the number of objectives. Nevertheless, it
is impractical to use such a huge population for an opti-
mizer in MaOPs due to the unaffordable computational
and space complexity [49].

Over the recent years, numerous efforts have been made to
address MaOPs and a number of many-objective evolutionary
algorithms (MaOEAs) have emerged. These MaOEAs can be
roughly divided into two categories.

1) Objective space reduction [20], [39], [40], [61].
2) Design of new selection methods [1], [5], [32], [33],

[37], [53], [60].
The former category can be further divided into two sub-

categories.
1) The objective reduction [8], [31], [40] takes advantage of

the correlation between objectives or conducts machine
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learning techniques such as feature selection, to reduce
the number of objectives either online or offline.

2) Preference-based methods [10], [27], [44], [48] integrate
users’ preference information to reduce the search region
in the objective vector space and make the search focus
on one or several parts of the PFs.

The latter category focuses on designing new selection
methods of solutions to achieve better balance between con-
vergence and diversity for obtaining good approximation to
the set of Pareto optimal solutions [7], [22]. Convergence can
be measured as the distance of solutions toward the PF, which
should be as small as possible. Diversity can be measured
as the spread of solutions along the PF, which should be as
uniform as possible. Based on different selection methods, the
latter category can be further classified into modified-Pareto-
dominance-based [24], [37], [59], [60], [68]–[70], [72],
diversity-based [1], [53], indicator-based [5], [6], [73],
co-evolutionary-based [65]–[67], and decomposition-
based [4], [32], [33], [71] MaOEAs, as follows.

1) Modified-Pareto-dominance-based approaches directly
relax the Pareto-dominance relation to have solu-
tions further distinguished to each other, to fur-
ther increase the selection pressure toward PFs
for MaOPs. Such modified-Pareto-dominance-based
approaches include ε-dominance [18], [46], grid-based-
dominance [69], volume-dominance [47], and subspace-
dominance [2], [3].

2) Diversity-based approaches further enhance the selec-
tion pressure of MOEAs by better diversity maintenance.
Adra and Fleming [1] introduced a diversity manage-
ment mechanism based on the spread of the population.
Li et al. [53] proposed a shift-based density estimation
as a diversity maintenance scheme to further enhance
the selection pressure for MaOPs.

3) Indicator-based approaches use indicator metric directly
as the selection criteria. For example, hypervol-
ume [74] is a widely used indicator, where the
higher the hypervolume, the better the approximation.
Emmerich et al. [23] proposed a S-metric selection by
maximizing the hypervolume of the solution sets for
MaOPs. To further reduce the computational complex-
ity of calculating hypervolume, Bader and Zitzler [5]
proposed a hypervolume estimation algorithm, where,
instead of calculating the exact values of hypervolume,
Monte Carlo sampling is adopted to approximate it.

4) Co-evolutionary-based approaches use the co-evolution
of decision-maker preferences together with a popu-
lation of candidate solutions [65]. It has been further
hybridized with the decomposition approach in [66] and
with brushing technique in [67].

5) Decomposition-based approaches decomposes an MOP
or MaOP into a number of subproblems by lin-
ear or nonlinear aggregation functions and solve
them simultaneously. MOEA based on decomposition
(MOEA/D) [71] is a representative of such algorithms.
In MOEA/D, each solution is associated with a sub-
problem, and two subproblems are called neighbors
if their direction vectors are close to each other.

Recent research indicates that decomposition-based
approaches [34], [35] (e.g., MOEA/D [71]) has very
good performance on MaOPs. However, the diversity
of MOEA/D is maintained by a set of preset direction
vectors, which is usually very sensitive to the shape of
unknown PFs.

Some recent works focus on the hybridization of decompo-
sition and dominance approaches [17], [28], [31], [52], [62].
For instance, Deb and Jain [17], [41] proposed a
reference-point-based MaOEA (NSGA-III) as an extension
of NSGA-II [19]. A MaOEA based on both dominance and
decomposition is also proposed to address MaOPs [52]. In
addition, some other recent studies focus on the associa-
tion methods between solutions and subproblems (direction
vectors) (e.g., [4] and [10]), for the decomposition-based
MaOEA.

Since the decomposition-based approaches have shown their
great potential to address MaOPs, we continue to conduct
research along this direction. In this paper, we propose a
MaOEA based on decomposition with two types of adjust-
ments for the direction vectors (MaOEA/D-2ADV)—one type
aims to adjust the number of direction vectors for approx-
imating a more complete PF after fast convergence along
the boundary direction vectors and the other type aims
to adjust the positions of the ineffective direction vectors
for MaOPs with irregular PFs (e.g., disconnected and/or
degenerate).

In the remainder of this paper, some preliminaries are given
in Section II. The motivations are presented in Section III.
The proposed algorithm, MaOEA/D-2ADV, is detailed in
Section IV. In Section V, the experimental results are ana-
lyzed and discussed in detail. The effects of components in
MaOEA/D-2ADV are also investigated in this section. Finally,
the conclusion is drawn in Section VI.

II. PRELIMINARIES

A. Basic Definitions

Without loss of generality, an MOP can be defined as

minimize F(x) = (f1(x), . . . , fm(x))T

subject to x ∈ � (1)

where � is the decision space, F : � → Rm consists of
m real-valued objective functions, and {F(x)|x ∈ �} is the
attainable objective set.

Let u, v ∈ Rm, u is said to dominate v, denoted by u ≺ v,
if and only if uj ≤ vj for every j ∈ {1, . . . , m} and uk < vk

for at least one index k ∈ {1, . . . , m}.1 Given a set S in Rm, a
solution x ∈ S is called nondominated if no other solution in S
can dominate it. A solution x∗ ∈ � is Pareto-optimal if F(x∗)
is nondominated in the attainable objective set. F(x∗) is then
called a Pareto-optimal (objective) vector. In other words, any
improvement in one objective of a Pareto optimal solution is
bound to deteriorate at least another objective [54].

1In the case of maximization, the inequality signs should be reversed.
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The ideal objective vector and nadir objective vector are
two important concepts to define the ranges of a PF. The
ideal objective vector z∗ is a vector z∗ = (z∗

1, . . . , z∗
m)T ,

where z∗
j = minx∈� fj(x), j ∈ {1, . . . , m}. The nadir objec-

tive vector znad is a vector znad = (znad
1 , . . . , znad

m )T , where
znad

i = maxx∈PS fi(x), i ∈ {1, . . . , m}.

B. Decomposition Approaches

In principle, many methods can be used to decompose
an MOP into a number of scalar optimization subprob-
lems [54]. Penalty boundary intersection (PBI) approach [71],
which can be seen as a variant of normal-boundary
intersection approach [15], is one of the popular decomposition
approaches.

Let λi = (λ1, . . . , λm)T be a direction vector for the ith
subproblem, where λj ≥ 0, j ∈ 1, . . . , m and

∑m
j=1 λj = 1.

The ith subproblem is defined as

minimize gpbi(x|λi, z∗) = di
1 + θdi

2

di
1 = (

F(x) − z∗)T
λi/

∥
∥λi

∥
∥

di
2 = ∥

∥F(x) − z∗ − (
di

1/
∥
∥λi

∥
∥
)
λi

∥
∥

subject to x ∈ � (2)

where ||·|| denotes L2-norm and θ is the penalty parameter.

C. Approaches With Adaptive Direction Vectors

To address MOPs with irregular PFs, there have already
been several related works on adjusting the direction vec-
tors (weight vectors) for MOEA/D. For example, the direction
vectors were adjusted using a linear interpolation of the non-
dominated solutions to approximate the PF in [29] and [30].
However, as it is difficult to give a method of estimating the
PF and uniformly generate points on the high-dimensional
PF [29], [30].

Jiang et al. [42] proposed Pareto-adaptive weight vectors
(paλ) based on hypervolume metric for MOEA/D. However,
this approach needs to assume that the PF is symmetric of
the form f p

1 + f p
2 + · · · + f p

m = 1 (m is the number of objec-
tives and p is a parameter to estimate the shape of PF), which
limits its use on MaOPs with PFs that do not follow this
assumption.

In EMOSA [50], two sets of weight vectors (direction vec-
tors) are maintained: Q evenly distributed weight vectors and
Cm−1

H+m−1 predefined candidate weight vector set �, where H is
a positive integer number and Cm−1

H+m−1 	 Q. The adjustment
of weight vectors are implemented as follows. For the current
solution xs (corresponding to λs), its closest nondominated
neighbor xt (corresponding to λt), is tracked. The new weight
vector λ is picked from the candidate weight vector set � to
replace the current weight vector λs, based on two conditions:
1) dist(λs, λt) < dist(λ, λt) and 2) dist(λ, λs) ≤ dist(λ,�).
EMOSA is applied to bi- and tri-objective knapsack and trav-
eling salesman problems. However, it may not be able to be
extended to MaOPs, due to the following reason. The number
of the predefined candidate weight vectors, |�|, would increase
dramatically, as Cm−1

H+m−1 becomes extremely large when m is
larger than 5 and H > m, where (H > m) is to guarantee

not all the generated weight vectors are on the boundaries
of PFs.

In NSGA-III [41], the reference points (direction vectors)
are adjusted by simply deleting nonuseful ones (the ones with
no solution associated with) and adding a simplex of m points
centering around an existing reference point. These inserted m
points have the same distance as the distance between two con-
secutive reference points on the original simplex. This method
can be applied to many-objective problems with irregular PFs.
However, it generates m new reference points by adding m
fixed vectors to each of the original reference points, which
may lead to low efficient adjustment, especially on MaOPs
with the degenerate PFs, as most of the newly generated
reference points would be ineffective.

In MOEA/D-AWA [58], a decomposition working popula-
tion and an external archive are adopted. The direction vectors
are adaptively adjusted by estimating the sparsity of both
working population and nondominated solutions in the exter-
nal archive. More specifically, the direction vectors are deleted
in the overcrowded area of the working population and the new
direction vectors are inserted by using the objective vectors of
the nondominated solutions (of the external archive), with the
best sparsity level in the working population. MOEA/D-AWA
is demonstrated to perform well on MaOPs with degenerate
PFs. However, a parameter nus is used to control the number
of direction vectors to be deleted, which is very difficult to
set. The improper setting of it would lower the efficiency of
the adjustment. In addition, MOEA/D-AWA needs to main-
tain a large number of nondominated solutions, stored in an
external archive. The extra computational time is needed for
density estimation and nondominated sorting on this exter-
nal archive, both of which are known to be computational
expensive, especially on MaOPs.

Cheng et al. [10] also proposed a reference (direction) vec-
tor regeneration strategy in RVEA to improve the performance
on problems with irregular PFs. In RVEA [10], the new direc-
tion vectors are randomly generated inside the range specified
by the minimum and maximum objective values calculated
from the candidate solutions. Since the reference vectors are
generated globally and randomly, the local solution density is
not guaranteed [10]. This is very likely to lead to a low effi-
cient adjustments on MaOPs whose effective PFs only account
for a very small proportion of the whole (m − 1)-dimensional
manifold (m is the number of objectives).

Wang et al. [66] proposed a co-evolutionary algorithm with
weights (PICEA-w), in which weights (direction vectors) are
co-evolving with the candidate solutions during the optimiza-
tion process. The new weights are generated randomly in each
generation and the weight vectors with the highest contribu-
tions to nondominated solutions are maintained based on two
criteria. First, for each candidate solution, the selected weight
must be the one that ranks the candidate solution as the best.
Second, if more than one weight is found by the first crite-
rion, the one that is the furthest from the candidate solution
is chosen. PICEA-w shows its effectiveness on MaOPs with
irregular PFs. However, like the method in [10], the globally
random generation of weight vectors may not be very efficient
on MaOPs with the degenerate PFs.
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Fig. 1. Illustration of the domination regions of different Pareto optimal
solutions in a bi-objective optimization problem. The boundary solutions (B1
and B2) dominate the largest regions (denoted by shaded regions) compared
with other Pareto optimal solutions (denoted by �). The nadir point znad,
approximated by the boundary solutions, can be used to define the domination
regions by boundary solutions.

III. MOTIVATIONS

Although the current MOEAs/D are very promising to
address MaOPs, the following issues need to be further
considered [36].

1) In MOPs, the neighborhood subproblems play an impor-
tant role in helping each other speeding up the conver-
gence. However, in many-objective optimization where
the number of direction vectors is very limited com-
pared to the huge objective space, the direction vectors
of subproblems may too far away to have much effects
on helping each other during the evolutionary pro-
cess. Arguably, the boundary solutions of a PF provide
more domination information as they dominate more
regions in objective space than other Pareto optimal
solutions [64], as shown in Fig. 1. The subproblems
along the boundary direction vectors are most impor-
tant as the Pareto optimal solutions of these subproblems
may help most for the convergence of other parts of a
PF. After fast convergence along the boundary direction
vectors, proper adjustments by inserting new direction
vectors can be further adopted for achieving better
diversity.

2) As described in Section I, the diversity of
decomposition-based multiobjective optimization
approaches are implicitly achieved by a set of
predefined direction vectors. An underlying assumption
is that each subproblem has a unique Pareto optimal
solution. This is true when the PF of a MaOP is
regular, as shown in Fig. 2(a). However, for MaOPs
with irregular PFs (e.g., degenerate ones), as shown in
Fig. 2(b), the optimal solutions of many subproblems
are not Pareto-optimal.2 In other words, many of the
predefined direction vectors are ineffective for MaOPs
with irregular PFs. To maintain better diversity for
such MaOPs, the positions of the ineffective direction
vectors need to be adjusted once the direction vectors
are verified as ineffective.

2Assume PBI is used with a large θ value for decomposition.

(a) (b)

Fig. 2. Illustrations of tri-objective optimization problems with regular and
irregular (degenerate) PFs. A arrowed dashed line denotes a direction vector
of a subproblem. (a) Illustration of a tri-objective optimization problem with a
regular PF, where the optimal solutions of all subproblems are also the Pareto
optimal solutions, denoted by “•.” The direction vectors of all the subproblems
are effective. (b) Illustration of a tri-objective optimization problem with an
irregular (degenerate) PF, where the optimal solutions of most subproblems
are not the Pareto optimal solutions, denoted by “◦.” The direction vectors of
such subproblems are ineffective.

Actually, the above two issues are not independent to each
other. On one hand, the adjustment of direction vectors can
be effective only when the population is converged to some
extent [58]. On the other hand, it has been demonstrated in [66]
that adapting direction vectors during the search may affect
the convergence performance of MaOEAs. It is even more
desirable to achieve better balance between convergence and
diversity when adjusting the direction vectors for MaOPs with
irregular PFs [49].

Based on the above considerations, in this paper, we pro-
pose an MaOEA/D-2ADV. At the beginning, search is only
conducted along the boundary direction vectors for fast con-
vergence to approximate boundary Pareto optimal solutions.
After that, the number of direction vectors is expanded for
approximating a more complete PF. For MaOPs with irregular
PFs (e.g., disconnected and degenerate), a simple Pareto-
dominance-based approach is used to detect the effectiveness
of each direction vector and the positions of the ineffective
direction vectors are adjusted by iteratively deleting ineffec-
tive ones and inserting new ones between effective direction
vectors. It is worth noting that the approximated boundary
Pareto optimal solutions remain helpful for maintaining the
convergence of the population during the adaptations of the
direction vectors and the fast convergence and the adap-
tation of direction vectors are complementarily key steps
for MaOEA/D-2ADV for achieving better balance between
convergence and diversity.

In addition, different from schemes of direction vectors
adjustments in [29], [30], and [50], our approach can be eas-
ily extended to MaOPs. Different from method in [58], our
approach does not have any parameter for adjusting direc-
tion vectors and does not need to use a large number of
nondominated solutions (usually maintained in an external
archive). Alternatively, it takes advantages of the effective
neighboring direction vector pairs. This is based on two of our
perspectives.

1) A direction vector can be considered as a representa-
tive of a subregion in the objective space. When the
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Algorithm 1: Main Framework of MaOEA/D-2ADV
Input : a stopping criterion;

N: maximum population size;
T: neighborhood size;
m: the number of objectives.

Output: a solution set P
/* K is the population size */

1 K = m;
/* Initialization */

2 [P, DV, B, z∗, znad] =INITIALIZATION(K, m);
3 t = 1;
/* Main loop */

4 while the stopping criteria is not satisfied do
5 [Q, z∗] =VARIATION(P, B, z∗, N, m);
6 P =ASSOCIATION_BASED_SELECTION(P ∪

Q, DV, z∗, znad, N);
7 if mod(t, φ1) == 0 and K == m then // The

adjustment for the number of
direction vectors

8 if �t < 10−4 then
9 [P, DV, B, znad] =

DV_ADJUSTMENT1(P, DV, N, T, m);
10 K = N;
11 end
12 end
13 if mod(t, φ2) == 0 and K == N then // The

adjustment for the positions of the
ineffective direction vectors

14 [DV, B] =DV_ADJUSTMENT2(P, DV, T);
15 end
16 t = t + 1;
17 end

accurate density estimation of a large number of the non-
dominated solutions becomes much more expensive in
MaOPs [58], the effective direction vectors provides a
cheaper alternative.

2) Without knowing the shape of PF a priori, inserting
new direction vectors at the midpoint of two distant
and effective neighboring direction vectors would be
more efficient than globally random generation of direc-
tion vectors [10], [66] or generating around each of
the original reference points [41], especially on MaOP
whose effective PF only accounts for a small pro-
portion of the whole (m − 1)-dimensional manifold
(e.g., degenerate PF).

IV. MAOEA/D-2ADV

A. Main Framework

Algorithm 1 presents the framework of MaOEA/D-2ADV.
The algorithm maintains the following.

1) A population P.
2) A set of direction vectors DV = {λ1, . . . , λK}, where λi

is the direction vector of the ith subproblem and K is the
number of direction vectors and/or the population size.

Algorithm 2: Initialization (INITIALIZATION)
Input : K: the population size or number of direction

vectors;
m: the number of objectives;

Output: an initial population P = {x1, . . . , xK};
initial direction vectors DV = {λ1, . . . , λK};
neighborhood index sets B = {B1, . . . , BK};
the initial ideal point z∗;
the initial nadir point znad.

1 Randomly generate an initial population,
P = {x1, . . . , xK};

2 for j = 1 to m do
3 λ

j
j = 1, λ

j
i = 0, i = 1, . . . , m, i �= j;

4 Bj = ∅;
5 z∗

j = min
x∈P

fj(x);

6 znad
j = +∞;

7 end

Algorithm 3: Offspring Generation (VARIATION)

Input : P = {x1, . . . , xK}: parent solutions;
B = {B1, . . . , BK}: neighbourhood index set;
z∗: the ideal point;
N: maximum population size;
m: the number of objectives;

Output: an offspring population Q = {y1, . . . , yK}, z∗.
1 Q = ∅;
2 foreach xi ∈ P, i = 1, 2, . . . , K do

/* Selection of neighborhood index
set */

3

D =

⎧
⎪⎨

⎪⎩

∅ K = m
Bi K = N and rand() < δ

{1, . . . , K} otherwise
(3)

/* Reproduction */
4 if D = ∅ then
5 Perform a mutation operator on xi with probability pm

to produce a new solution yi;
6 else
7 Randomly select two indexes r1 and r2 from D, and

then generate a solution yi from xi, xr1 and xr2 by a
DE operator;

8 end
/* Update z∗ */

9 for j = 1 to m do
10 if z∗j > fj(yi) then
11 z∗j = fj(yi);
12 end
13 end
14 Q = Q ∪ {yi};
15 end

3) The neighborhood index sets B = {B1, . . . , BK}, where
Bi is the neighborhood index set for the ith subproblem.
It is mainly used in restricted mating (variation).

It is worth noting that the number of direction vectors K
may change during the evolutionary process.
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Algorithm 4: Association (ASSOCIATION)
Input : P: current population;

z∗: ideal point;
DV = {λ1, . . . , λK}: direction vectors.

Output: Solutions associated with direction vectors
S1, . . . , SK .

1 Sk = ∅ for all k = 1, . . . , K;
2 foreach xi in P do
3 for j = 1 to m do
4 xi

j
′ = xi

j − z∗
j ;

5 end
/* Refer to (4) */

6 k = argminλk∈DVarccos( xi ′·λk

||xi′||||λk|| );
7 Sk = Sk ∪ {xi};
8 end

The main procedures of MaOEA/D-2ADV include the
following steps.

1) The initialization of P, DV, and B.
2) Variation.
3) Association-based selection.
4) The adjustment for the number of direction vectors.
5) The adjustment for the position of ineffective direction

vectors.
In the following sections, each step of MaOEA/D-2ADV is

introduced in detail.

B. Initialization

In the initialize procedure (Algorithm 2), the population size
and/or the number of the direction vectors is set to m. A pop-
ulation P is randomly generated and m initial direction vectors
DV along the boundary objective directions [i.e., all the per-
mutations of (1, 0, . . . , 0)] are initialized. The neighborhood
index set Bi of the ith subproblem is set to ∅. Each objective
of z∗ is initialized as the minimum value of the objective in
P and each objective of znad is set to +∞ as the initial value.

C. Variation

In the variation step, an offspring population Q is generated
from P by variation (Algorithm 3).

In Algorithm 3, for each solution xi in P, a mating pool
D is used to store its mating solutions for generating a new
offspring. When K = m, D is set to ∅ and a simple muta-
tion is applied to xi; otherwise, D is set to either Bi or
{1, . . . , K} based on a small probability δ. The differential
evolution (DE) [55] with polynomial mutation operator [16]
is applied on xi and D to generate a new offspring yi. After
that, yi is used to update z∗. The whole process is iterated until
K offspring solutions are generated for Q.

D. Association-Based Selection

After combining the parent population P with the off-
spring population Q, association-based selection (Algorithm 5)

Algorithm 5: Association-Based Selection
(ASSOCIATION_BASED_SELECTION)

Input : P: current population;
DV = {λ1, . . . , λK}: direction vectors;
z∗: the initial ideal point;
znad: the initial nadir point;
N: maximum population size.

Output: the selected population Q.
1 S = P, Q = ∅;
2 if K == N then

/* Space reduction */
3 S = ∅;
4 foreach x in P do
5 if fj(x) ≤ znad

j for all j = 1, . . . , m then
6 S = S ∪ {x};
7 end
8 end
9 end

10 [S1, . . . , SK] = ASSOCIATION(S, DV, z∗);
/* Selection */

11 for k = 1 to K do
12 if Sk = ∅ then
13 randomly select a solution from S and add to Q;
14 end
15 if |Sk| > 1 then
16 x = argminx∈Sgpbi(x|λk, z∗);
17 Q = Q ∪ {x};
18 end
19 end

Algorithm 6: Adjustment for the Number of Direction
Vectors (DV_ADJUSTMENT1)

Input : P: current population;
DV: the old set of direction vectors;
N: maximum population size;
T: neighborhood size;
m: the number of objectives.

Output: new population Q;
a new set of direction vectors DV;
updated neighborhood index set B;
the nadir point znad.

1 for k = 1 to m do
2 znad

k =max
x∈P

fk(x);

3 end
4 Generate N direction vectors DV = {λ1, . . . , λN};
5 B =TRACK_NEIGHBORS(DV, T);
6 Q =ASSOCIATION_BASED_SELECTION(P, DV);

is called, where K solutions are selected from the merged
population as follows.

As explained in Fig. 1, the nadir points contain the informa-
tion of domination regions by the boundary solutions, which
can be used to reduce the possible objective space that PF
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Algorithm 7: Track Neighborhood Index Set B
(TRACK_NEIGHBORS)

Input : DV = {λ1, . . . , λK}: direction vectors;
T: neighborhood size;

Output: neighborhood index set B.
1 for i = 1 to K do
2 di,i = +∞;
3 for j = i + 1 to K do
4 di,j = dj,i = |λi − λj|;
5 end

/* I stores the index of direction
vectors after sorting di */

6 [di, I] = sort(di), j = 1, . . . , K, j �= i;
7 Bi = I(1:T);
8 end

Algorithm 8: Detection of the Effective Direction Vectors
(DETECTION)

Input : P: current population;
DV = {λ1, . . . , λK}: direction vectors;
z∗: ideal point;

Output: effective direction vectors DV .
/* Find all dominated solutions */

1 Pdom =NONDOMINATED(P);
2 [S1, . . . , SK] = ASSOCIATION(Pdom, DV, z∗);
3 DV = ∅;
4 for k = 1 to K do
5 if Sk �= ∅ then
6 DV = DV ∪ {λk};
7 end

/* |DV| ≤ |DV| */
8 end

exists. The solutions S located inside the nadir point are first
selected.

After that, each solution is associated with its closest direc-
tion vector (Algorithm 4). The closeness between a solution x
and a direction vector λ is defined as follows:

arccos

(
(F(x) − z∗) · λT

‖F(x) − z∗‖‖λ‖
)

(4)

where ||·|| calculates the norm.
To maintain a good diversity, a direction vector is allowed to

associate with one and only one solution. Nevertheless, if the
number of solutions associated with a direction vector exceeds
one, the solution with minimum aggregated objective func-
tion value gpbi(x|λk, z∗) is kept. If a direction vector has no
associated solution, a solution is randomly selected from S to
associate with it.

E. Adjustment for the Number of Direction Vectors

At tth generation, if the relative decrease along m direction
vectors (�t) is lower than a very small value (10−4), which
indicates all the subproblems have been well-converged, the
adjustment for the number of direction vectors is activated,

Algorithm 9: Adjustment for the Positions of Ineffective
Direction Vectors (DV_ADJUSTMENT2)

Input : P: current population;
DV = {λ1, . . . , λK}: direction vectors;
T: neighborhood size;

Output: updated direction vectors DV = {λ1, . . . , λK};
updated neighborhood index set B.

// Identify the effective direction vectors
DV

1 DV =DETECTION(P, DV, z∗);
2 while |DV| < K do

3 if
(|DV|

2

) ≤ (K − |DV|) then
// Calculate the midpoints for all

possible pairs in DV
4 for i = 1 to |DV| do
5 for j = i + 1 to |DV| do
6 λ∗ = (λi + λj)/2;
7 DV = DV ∪ {λ∗};
8 end
9 end

10 else
// find the distance of each λ ∈ DV to

its nearest neighbor
11 Pair = {(1, 2), . . . , (i, j), . . . , (|DV| − 1, |DV|)};
12 d = (d1,2, . . . , di,j, . . . , d|DV|−1,|DV|) = (0, . . . , 0);

13 for i = 1 to |DV| do
14 di,i = +∞;
15 for j = i + 1 to |DV| do
16 di,j = |λi − λj|;
17 end
18 dmin(i) = min

1≤j≤|DV|
(di,j);

19 end
20 dmax = max(dmin(1), . . . , dmin(|DV|));

// Sort d in an ascending order and
then sort Pair based on d

21 [d, I] = sort(d);
22 Pair = Pair(I);

// Select K − |DV| pairs of direction
vectors

23 Mid = find(d == dmax);
24 l = min(Mid);
25 r = max(Mid);
26 while r − l + 1 < K − |DV| ∧ l > 1 do
27 l − −;
28 end
29 while r − l + 1 < K − |DV| do
30 r + +;
31 end

// Generate new direction vectors
32 for k = l to r do
33 λ∗ = (λPair(k).1 + λPair(k).2)/2;
34 DV = DV ∪ {λ∗};
35 end
36 end
37 end
38 DV = DV;
39 B =TRACK_NEIGHBORS(DV, T);

presented in Algorithm 6. �t is defined as follows:

�t =
K∑

k=1

⎛

⎝

∥
∥
∥
∥
∥
∥

F
(
xk

t

) − F
(

xk
t−φ1

)

F
(
xk

t
)

∥
∥
∥
∥
∥
∥

⎞

⎠ (5)
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TABLE I
SORTED DISTANCE VECTORS d AND CORRESPONDING Pair FOR FIG. 3(a), WHERE dmax IS HIGHLIGHTED IN THE BOLDFACE

TABLE II
CORRESPONDING di,j AND dmin(i) FOR FIG. 3(a),
WHERE dmax IS HIGHLIGHTED IN THE BOLDFACE

TABLE III
SETUPS OF DTLZ TEST PROBLEMS

where K is the size of the population, xk
t denotes the kth

solution at tth generation.
In Algorithm 6, the nadir point znad is first updated

(lines 1–3). After that, N direction vectors are generated by
methods used in either [15] or [52] (line 4) and the neighbor-
hood index set Bi for each direction vector λi is computed
by selecting its T closest direction vectors (Algorithm 7,
line 5). The newly generated direction vectors (subproblems)
are assigned with existing solutions in line 6.

F. Adjustment for the Positions of the Ineffective
Direction Vectors

After the number of direction vectors K are expanded from
m to N, many ineffective direction vectors may exist in MaOPs
with irregular PFs. These ineffective direction vectors are
detected and adjusted (lines 13–15 of Algorithm 1) by calling
Algorithm 9.

In Algorithm 9, the effective and ineffective direction vec-
tors are first detected. The detection of the effective vectors
is given in Algorithm 8 by a simple Pareto-dominance-based
method as follows. Each nondominated solution is associated
with a direction vector (lines 1 and 2). If a direction vector
contains no associated nondominated solutions, the subregion
such direction vector covers is very likely to contain no Pareto
optimal solutions and this direction vector is considered to be
ineffective (line 4-8); otherwise it is considered to be effective.

After detecting effective direction vectors DV (|DV| ≤
|DV|), the rest (|DV| − |DV|) (|DV| == K) direction vectors
are generated by inserting new ones at the midpoints between
every two effective direction vectors. It can be known that

TABLE IV
POPULATION SIZES FOR DIFFERENT ALGORITHMS ON

MAOPS WITH DIFFERENT NUMBER OF OBJECTIVES

there are at most
(∣

∣DV
∣
∣

2

)

=
∣
∣DV

∣
∣ × (∣

∣DV
∣
∣ − 1

)

2
(6)

possible pairs of effective direction vectors, whose indexes can
be denoted by

Pair = {
(1, 2), . . . , (i, j), . . . ,

(|DV| − 1, |DV|)}. (7)

The distance vector of vector pairs can be denoted as

d =
(

d1,2, . . . , di,j, . . . , d|DV|−1,|DV|
)
. (8)

As (i, j) is equivalent to (j, i), we only have i < j for
convenience.

If
(|DV|

2

)
is smaller than K − |DV|, all

(|DV|
2

)
pairs are used

to generate new direction vectors (lines 3–9). This process is
iterated until |DV| exceeds K (line 2).

Otherwise, (K − |DV|) pairs are selected from all
possible

(|DV|
2

)
pairs to generate new direction vectors,

as follows.
The distance of every ith direction vector to its nearest

neighbor, denoted by dmin(i), is computed (lines 13–19). The
pair index set, denoted by Mid, that has the maximum distance
dmax out of all possible dmin(i), is selected (lines 20–23). The
lower index of Mid is stored as l and the upper index of Mid
is stored as r (lines 24 and 25). The range between l and r are
expanded, first move l backwards and then move r forwards,
until the range |r − l + 1| reaches (N − |DV|) (lines 26–31).
(K − |DV|) new direction vectors are generated by inserting
midpoints of (upper−lower) vector pairs in DV (lines 32–35).
Lastly, the neighborhood index set B is updated for the new
set of direction vectors by calling Algorithm 7.

G. Example for Algorithm 9

In this section, an example of the procedures for
Algorithm 9 is given in Fig. 3 for a bi-objective problem. The
piecewise lines are the real PF. The population size K is set
to 8. Among all the eight direction vectors, six (a, b, c, f , g,
and h) are identified effective (arrowed solid lines) and the
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TABLE V
MEAN VALUES OF IGD, OBTAINED BY MOEA/D-DE, GREA, NSGA-III, MOEA/DD, AND MAOEA/D-2ADV ON DTLZ INSTANCES

(a) (b)

Fig. 3. Example of adjusting the positions of direction vectors (Algorithm 9)
for a bi-objective problem. In (a), out of eight direction vectors, six (arrowed
solid lines) are effective and two (arrowed dashed lines) are ineffective. In
(b), one new direction vectors (i) is inserted in the midpoint between b and
c and another one (j) is inserted in the midpoint between f and g.

other two are ineffective (arrowed dashed lines), as shown in
Fig. 3(a). It is worth noting that direction vectors d and e
are effective as there exist Pareto optimal solutions associated
with them.

Based on the six effective direction vectors, the distance
vector di,j of all the possible vector pairs is calculated, as
well as the distance of every ith direction vector to its nearest
neighbor dmin(i) (lines 13–19). The maximum distance dmax
out of all possible dmin(i) is calculated (line 20). The values
of di,j, dmin(i) and dmax are presented in Table II, where the
value of dmax = 0.2970 is highlighted in boldface.

After that, all the distance vectors d are sorted in an
ascending order (line 21) and all the vector pairs, Pair, are
sorted based on d (line 22). The sorted distance vector,
d = (da,b, dg,h, . . . , da,h) = (0.1838, 0.1979, . . . , 1.4141) and
its corresponding pair vector, Pair = {(a, b), (g, h), . . . , (a, h)}
are presented in Table I. Then, dmax is tracked in d, whose
index vector Mid is 4 (only one variable in Mid, also l =
r = 4) (lines 23–25). After two while loops (lines 26–31),
the value of l is 3 and the value of r is 4. The correspond-
ing vector pair Pair(3) [i.e., (b, c)] and Pair(4) [i.e., (f , g)] are
selected. Two new direction vectors (i and j) are inserted in
the midpoints of the selected pairs (lines 32–35), as shown in
Fig. 3(b). After the adjustment, the effective direction vectors
are a, b, g, h, i, and j and the direction vectors c and f become
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TABLE VI
MEAN VALUES OF IGD, OBTAINED BY MOEA/D-AWA, RVEA, AND MAOEA/D-2ADV ON DTLZ INSTANCES

ineffective as no Pareto optimal solutions are associated with
them anymore.

H. Computational Complexity

In MaOEA/D-2ADV (Algorithm 1), the initialization pro-
cedure (Algorithm 2) requires O(m) computations, where m
is the number of objectives. The generation of offspring
(Algorithm 3) needs O(K) computations, where K = m or N
is the current population size. The computational complexity
of the association procedure (Algorithm 4) is O(mK2). The
procedure of the association-based selection (Algorithm 5)
includes the space reduction, which needs O(mK) computa-
tions and the selection, which needs O(K) computations.

For two types of adjustment for direction vectors in
MaOEA/D-2ADV, the adjustment for the number of the direc-
tion vectors (Algorithm 6) is carried out only once, which
needs O(mK2) computations. The adjustment for the posi-
tions of the ineffective direction vectors (Algorithm 9) includes
two steps: 1) the detection of the effective direction vector
(Algorithm 8) and 2) the subsequential adjustments. The for-
mer step needs O(mK2) computations and the latter step needs

O(mL2) computations, where L is the number of the effective
direction vectors.

In summary, the worst computational complexity of
MaOEA/D-2ADV (Algorithm 1) within one generation is
O(mN2).

V. EXPERIMENTAL STUDIES AND DISCUSSION

DTLZ [21] test suite is used as the benchmark problems
in our experiments. Its setups are listed in Table III. In the
experiments, each algorithm was run 30 times independently
for each benchmark problem. A maximum of 300 000 func-
tion evaluations is given to all the compared algorithms. The
population sizes of all the compared algorithm for MaOPs
with different number of objectives are listed in Table IV. To
make fair comparisons, PBI is used in all the decomposition-
based algorithms, except for RVEA [10]. The angle-penalized
distance [10] remains being adopted in RVEA. Inverted gen-
erational distance (IGD) [12] metric is used to measure
the performance of compared algorithms. Generation interval
parameter φ1 is set to 500 and φ2 is set to 50 in all the
experimental studies.
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Fig. 4. Parallel coordinate plots for true PFs and PF approximations obtained by MaOEA/D-2ADV, MOEA/DD, NSGA-III, MOEA/D-DE, MOEA/D-AWA,
and RVEA on MaOPs with irregular PFs (DTLZ5–DTLZ7).

To investigate the performance and understand the behavior
of MaOEA/D-2ADV, the experimental studies are conducted
on the following.

1) Comparisons of MaOEA/D-2ADV with many-
objective optimizers (MOEA/D-DE [51], GrEA [69],
NSGA-III [17], and MOEA/DD [52]).

2) Comparisons of MaOEA/D-2ADV with decomposition-
based many-objective optimizers with the adjust-
ments of direction vectors (MOEA/D-AWA [58] and
RVEA [10]).

3) Sensitivity analysis of generational interval parameters
φ1 and φ2.

4) The effects of fast convergence (see Section I in the
supplementary material).

5) The effects of adjustments for the positions of the
directions vectors (see Sections II and III in the sup-
plementary material).

A. Comparison With State-of-the-Art MaOEAs

In this section, MaOEA/D-2ADV is compared with
four many-objective optimizers: 1) MOEA/D-DE [51];

2) GrEA [69]; 3) NSGA-III [17]; and 4) MOEA/DD [52].
The performances of all the compared algorithms, in terms of
IGD, is presented in Table V. Wilcoxon’s rank sum test at a
0.05 significance level is performed between the MaOEA/D-
2ADV and each of the other competing algorithms. The best
mean IGD values are highlighted in boldface. A positive num-
ber in last column of Table V indicates the degree of IGD value
obtained by MaOEA/D-2ADV over that obtained by the sec-
ond best algorithm while a negative value indicates the degree
of IGD value obtained by the best algorithm over that obtained
by MaOEA/D-2ADV.

It can be observed that MaOEA/D-2ADV is significantly
better than MOEA/D-DE, on all the test problems.
Meanwhile, MaOEA/D-2ADV is significantly better than
all the four compared algorithms on DTLZ1, DTLZ5,
and DTLZ6, except for four-objective DTLZ1. MOEA/DD
achieves very good performance on DTLZ2–DTLZ4,
although its IGD values are actually very close to that
of MaOEA/D-2ADV on these problems. Furthermore,
MaOEA/D-2ADV is always significantly better than all the
compared algorithms on DTLZ5 and DTLZ6 which have
degenerate PFs.
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(a) (b)

(c) (d)

Fig. 5. Mean IGD values obtained by MaOEA/D-2ADV with different values
of interval parameter φ1 on (a) DTLZ2, (b) DTLZ3, and (c) DTLZ7 over 30
runs. (d) Legend.

B. Comparisons With State-of-the-Art Decomposition-Based
MOEAs With the Adjustment of Direction Vectors

In this section, MaOEA/D-2ADV is compared with
MOEA/D-AWA [58] and RVEA [10], two state-of-the-art
decomposition-based MOEAs that also use the adjustments of
the direction vectors to address MaOPs with irregular PFs.
The results of three compared algorithms are presented in
Table VI. It can be observed that MaOEA/D-2ADV has sig-
nificantly better performance than that of MOEA/D-AWA and
RVEA on most test problems. It is also worth to note that
MaOEA/D-2ADV achieves remarkable improvements over
MOEA/D-AWA and RVEA on the performance of DTLZ5
and DTLZ6, whose PFs are degenerate.

To visualize the performance of the six compared algo-
rithms on MaOPs with irregular PFs [degenerate ones
(DTLZ5 and DTLZ6) or disconnected one (DTLZ7)], the
parallel coordinate plots for true PFs and PF approxima-
tions obtained by MaOEA/D-2ADV, MOEA/DD, NSGA-III,
MOEA/D, MOEA/D-AWA, and RVEA on different test prob-
lems are shown in Fig. 4. It can be observed that the PF
approximations obtained by MaOEA/D-2ADV is the closest
to the true PFs, in terms of both convergence and diversity.
These observations indicate that MaOE/D-2ADV performs
the best among all the compared algorithms on MaOPs
with irregular PFs, which is consistent with our motivations
in Section II.

C. Sensitivity Analysis of φ1 and φ2

φ1 is a generational interval parameter for adjusting the
number of direction vectors and φ2 is a generational interval
parameter for adjusting the positions of the ineffective direc-
tion vectors. In this section, the sensitivity analysis of φ1 and
φ2 is conducted as follows.

Fig. 5 shows the performance, in terms of IGD, of
MaOEA/D-2ADV with different φ1 values (100–1000) on

(a) (b)

(c) (d)

Fig. 6. Mean IGD values obtained by MaOEA/D-2ADV with different val-
ues of interval parameter φ2 on DTLZ5–DTLZ7 over 30 runs. (a) DLTZ2.
(b) DLTZ3. (c) DLTZ7. (d) Legend.

DTLZ2, DTLZ3, and DTLZ7 over 30 independent runs. It
can be observed that, in general, MaOEA/D-2ADV is very
robust with regard to φ1. However, the optimal value of φ1 is
problem-dependent. φ1 = 400 or 500 may be the best choice
for most problems.

Fig. 6 shows the performance, in terms of IGD, of
MaOEA/D-2ADV with different φ2 values (10–200) on three
irregular benchmark problems (DTLZ5–DTLZ7). It is clear
to see that MaOEA/D-2ADV has better performance when
decreasing the value of φ2. This observation indicates that
better performance of MaOEA/D-2ADV can be achieved by
increasing the frequency of the adjustments for the posi-
tions of the ineffective direction vectors. However, there is
an obvious tradeoff between the number of adjustments and
the computational cost.

VI. CONCLUSION

In this paper, we propose a decomposition-based many-
objective evolutionary algorithm with two types of adjust-
ments for the direction vectors (MaOEA/D-2ADV). The first
type aims to expand the number of direction vectors after
the fast convergence along the boundary direction vectors,
for approximating more complete PFs and the second type
changes the positions of the ineffective direction vectors by
iteratively deleting ineffective ones and inserting new ones
between effective direction vectors for MaOPs with irregu-
lar PFs (e.g., disconnected and degenerate PFs). In addition,
a simple Pareto-dominance-based approach is proposed to
detect the effectiveness of each direction vector. MaOEA/D-
2ADV is compared with four state-of-the-art MaOEAs and two
MaOEAs with the adjustments of the direction vectors. The
experimental studies show that MaOEA/D-2ADV outperforms
other algorithms on most test problems and it is especially
effective on MaOPs with irregular PFs.
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