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A Constrained Decomposition Approach With Grids
for Evolutionary Multiobjective Optimization
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Abstract—Decomposition-based multiobjective evolutionary
algorithms (MOEAs) decompose a multiobjective optimization
problem (MOP) into a set of scalar objective subproblems and
solve them in a collaborative way. Commonly used decompo-
sition approaches originate from mathematical programming
and the direct use of them may not suit MOEAs due to their
population-based property. For instance, these decomposition
approaches used in MOEAs may cause the loss of diversity
and/or be very sensitive to the shapes of Pareto fronts (PFs).
This paper proposes a constrained decomposition with grids
(CDG) that can better address these two issues thus more suitable
for MOEAs. In addition, different subproblems in CDG defined
by the constrained decomposition constitute a grid system. The
grids have an inherent property of reflecting the information
of neighborhood structures among the solutions, which is a
desirable property for restricted mating selection in MOEAs.
Based on CDG, a constrained decomposition MOEA with
grid (CDG-MOEA) is further proposed. Extensive experiments
are conducted to compare CDG-MOEA with the domination-
based, indicator-based, and state-of-the-art decomposition-based
MOEAs. The experimental results show that CDG-MOEA out-
performs the compared algorithms in terms of both the con-
vergence and diversity. More importantly, it is robust to the
shapes of PFs and can still be very effective on MOPs with
complex PFs (e.g., extremely convex, or with disparately scaled
objectives).

Index Terms—Constrained decomposition, evolutionary
multiobjective optimization, grids, robust to Pareto front (PF).

Manuscript received September 26, 2016; revised February 25, 2017, May
31, 2017, and July 26, 2017; accepted August 15, 2017. Date of publication
August 25, 2017; date of current version July 27, 2018. This work was sup-
ported in part by the National Natural Science Foundation of China under
Grant 61300159, Grant 61732006, Grant 61473241, and Grant 61332002, in
part by the Natural Science Foundation of Jiangsu Province of China under
Grant BK20130808, in part by the China Post-Doctoral Science Foundation
under Grant 2015M571751, and in part by the Grant from ANR/RCC Joint
Research Scheme sponsored by the Research Grants Council of the Hong
Kong Special Administrative Region, China and France National Research
Agency under Project A-CityU101/16. (Corresponding author: Xinye Cai.)

X. Cai and Z. Mei are with the College of Computer Science
and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China, and also with the Collaborative Innovation Center
of Novel Software Technology and Industrialization, Nanjing 210023, China
(e-mail: xinye@nuaa.edu.cn; zwmei@nuaa.edu.cn).

Z. Fan is with the Guangdong Provincial Key Laboratory of Digital
Signal and Image Processing and the Department of Electronic Engineering,
School of Engineering, Shantou University, Shantou 515063, China (e-mail:
zfan@stu.edu.cn).

Q. Zhang is with the Department of Computer Science, City University of
Hong Kong, Hong Kong (e-mail: qingfu.zhang@cityu.edu.hk).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org provided by the author. This consists of a PDF file
containing additional material not included in the paper itself. This material
is 13.4 MB in size.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2017.2744674

I. INTRODUCTION

ALONG with domination-based (e.g., [7], [12], [23],
[24], [28], [40], and [48]) and indicator-based

(e.g., [2]–[4], [20], and [47]) multiobjective evolution-
ary algorithms (MOEAs), decomposition-based MOEAs
(e.g., [13], [18], [19], [31], [32], [34], and [42]) have been
recognized as a major type of approaches to tackle multiob-
jective optimization problems (MOPs). As a representative
of such approaches, the MOEA based on decomposition
(MOEA/D) [42] has drawn a large amount of attention over
the recent years. One critical difficulty for MOEA/D is on
how to approximate a set of uniformly distributed Pareto
optimal solutions without knowing the shape of the Pareto
front (PF) [9], [30] a priori. Commonly used decomposition
approaches in MOEA/D including weighted sum (WS),
Tchebycheff (TCH), and penalty-based boundary intersection
(PBI) [30] may fail to achieve such a goal due to the
following two reasons [29], [37].

First, WS, TCH, and PBI tend to be very sensitive to the
shapes of PFs [42]. An example of the Pareto optimal solu-
tions obtained by TCH on MOPs with an extremely convex or
concave PF is given in Fig. 1(a). Although the Pareto optimal
solutions obtained by TCH are well-distributed on the concave
PF, the distribution of the solutions on the extremely convex
PF is not satisfactory. In Fig. 1(b), another example shows
the Pareto optimal solutions obtained by TCH on MOPs with
disparately scaled objectives. It can be clearly seen that these
Pareto optimal solutions are very unevenly distributed on PF,
where almost half of the PF is not covered by any Pareto
optimal solution.

It is worth noting that there has already been some research
in the literature to address either one of the above scenarios.
As far as we know, an inverted PBI has been proposed to
tackle MOPs with extremely convex PFs in [33]. However,
the use of inverted PBI to achieve well-distributed solution set
still needs to assume the convexity of PFs. A combination of
normal boundary intersection and the TCH approach has been
proposed for MOPs with disparately scaled objectives in [43],
where a satisfactory distribution of solutions can be achieved
in bi-objective optimization problems but fails to extend to
tri-objective optimization problems.

Second, in those commonly used decomposition methods,
the same solution is very likely to be assigned to many
different subproblems, which may lead to the loss of diver-
sity [29], [37]. The reason of such phenomenon can be
explained as follows. Let xi be the current solution for the
ith subproblem, then the improvement region of a solution xi
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Fig. 1. Illustration of Pareto optimal solutions obtained by TCH or CDG on
MOPs with different shapes of PFs. (a) Pareto optimal solutions obtained by
TCH on MOPs with concave and extremely convex PFs. (b) Pareto optimal
solutions obtained by TCH on MOPs with disparately scaled objectives, where
the scale of f2 is five times as much as that of f1. (c) Pareto optimal solu-
tions obtained by CDG on MOPs with concave and extremely convex PFs.
(d) Pareto optimal solutions obtained by CDG on MOPs with disparately
scaled objectives, where the scale of f2 is five times as much as that of f1.

can be defined as the set {F(x)| x is better than xi for the ith
subproblem} [37], as shown in Fig. 2(a)–(c). Any new solution
in the improvement region for xi can improve and replace it
for the ith subproblem. As it can be observed in Fig. 2(a)–(c),
the improvement regions for three commonly used decompo-
sition approaches (WS, TCH, and PBI), may be too large for
causing the loss of diversity.

Over the recent years, some attempts have already been
made to maintain better diversity in MOEA/D. Among them,
Li and Zhang [26] limited the number of subproblems allowed
to be updated by a single offspring. The offspring is only
allowed to update the most suitable subproblem in [38].
Decomposition approaches have been hybridized with the R2
indicator in [36]. An external archive is adopted to main-
tain the representative solutions and guide the search in
the MOEA/D population in [5]. In [27], a global stable
matching model is integrated into MOEA/D to find suit-
able matches between subproblems and solutions. In [1], an
adaptive epsilon comparison approach has been proposed to
balance the convergence and diversity. An online geometri-
cal metric has been proposed to enhance the diversity of
MOEA/D in [6] and [14]. Designing more suitable decom-
position approaches for MOEAs is also a possible way for
maintaining better diversity in MOEA/D. For instance, the
use of different decomposition approaches for different search
phases has been studied in [21]. In a very recent work [37],
an angle θ is imposed on each subproblem as a constraint
to improve the diversity in MOEA/D [37]. However, the

appropriate setting of parameter θ for each subproblem is
a very tedious task and different subproblems on different
evolutionary stages may have different θ values.

In this paper, a constrained decomposition with grids
(CDG) is proposed to address the above two aspects for
decomposition-based MOEAs. In CDG, one objective func-
tion is selected to be optimized while all the other objective
functions are converted into constraints by setting up both
upper and lower bounds. In a sense, CDG can be considered
as an extension of ε-constraint approach [17], [30]. If CDG
is applied to all the objectives, the volumes of the improve-
ment regions for a solution are appropriately reduced to the
narrowed regions, where the same solution can be assigned
to at most m subproblems (m is the number of objectives), as
shown in Fig. 2(d). This interesting characteristic gives CDG
a natural ability for maintaining better diversity for MOEAs.
In addition, as each objective is equally divided by constraints,
unlike the commonly used decomposition methods (WS, TCH,
and PBI), CDG is very robust to the shapes of PFs. These can
be observed in Fig. 1(c) and (d), where the Pareto optimal
solutions obtained by CDG are well-distributed on MOPs with
concave or convex PFs, and/or disparately scaled objectives.

Also, another interesting observation in Fig. 1(c) and (d)
is that the contour lines of different constrained subproblems
constitute a grid-coordinate-system. A grid has an inherent
property of reflecting the information of neighborhood struc-
tures among the solutions [39]: each solution in the grid can
be located by grid coordinates and the grid coordinates can
help the solutions to locate its neighboring solutions, which
is essential for the restricted mating selection in an MOEA.
More details of CDG are specified in Section III.

The rest of this paper is organized as follows. Section II
introduces some preliminaries on MOPs and three popu-
lar decomposition approaches are also introduced in this
section. Section III details the proposed CDG. Section IV
describes the whole framework of CDG-MOEA. Section V
introduces the benchmark test functions and the performance
indicators used in the experimental studies. Experiments and
discussions are presented in Section VI, where constrained
decomposition MOEA with grid (CDG-MOEA) is compared
with five decomposition-based, one domination-based, and one
indicator-based MOEAs on a set of well-known benchmark
functions and a set of benchmark MOPs with complex PFs. In
addition, the sensitivity analysis of parameters in CDG-MOEA
is conducted in Section VII. Finally, Section IX concludes this
paper.

II. PRELIMINARIES

A. Basic Definitions

An MOP can be defined as follows:

minimize F(x) = (f1(x), . . . , fm(x))T

subject to x ∈ � (1)

where � is the decision space and F : � → Rm consists of m
real-valued objective functions. {F(x)|x ∈ �} is the attainable
objective set.
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Fig. 2. Illustration of improvement regions for three commonly used decomposition approaches [Fig. 2(a)–(c)]. In each subfigure, the square point is solution
xi of ith subproblem with direction vector λi, the solid circle point is its optimal solution, and the dashed line represents its contour. Therefore, the entire
shaded region is the improvement region for xi. (a) WS. (b) TCH. (c) PBI. (d) CDG.

Let u and v ∈ Rm, u is said to dominate v, denoted by u ≺ v,
if and only if uj ≤ vj for every j ∈ {1, . . . , m} and uk < vk

for at least one index k ∈ {1, . . . , m}.1 Given a set S in Rm, a
solution x ∈ S is called nondominated if no other solution in
S dominates it. A solution x∗ ∈ � is Pareto-optimal if F(x∗)
is nondominated in the attainable objective set. F(x∗) is then
called a Pareto-optimal (objective) vector. In other words, any
improvement in one objective of a Pareto optimal solution
is bound to deteriorate at least another objective. The set of
all the Pareto-optimal solutions is called the Pareto set (PS)
and the set of all the Pareto-optimal objective vectors is the
PF [30]. The ideal and nadir objective vectors are another two
important concepts containing the information on the ranges of
PFs as follows. The ideal objective vector z∗ is a vector z∗ =
{z∗

1, . . . , z∗
m}T , where z∗

j = minx∈� fj(x), j ∈ {1, . . . , m}. The
nadir objective vector znad is a vector znad = (znad

1 , . . . , znad
m )T ,

where znad
j = maxx∈PS fj(x), j ∈ {1, . . . , m}.

B. Decomposition Approaches

Popular decomposition methods [30] used in MOEAs
include WS, TCH, and PBI, either one of which decomposes
an MOP into a number of scalar optimization subprob-
lems [42]. These widely used approaches can be defined as
follows.

Let λi = (λ1, . . . , λm)T be a direction vector for the ith
subproblem, where λj ≥ 0, j ∈ 1, . . . , m and

∑m
j=1 λj = 1.

1) WS Approach: The ith subproblem is defined as

minimize gws(x|λi) =
m∑

j=1

λi
j fj(x)

subject to x ∈ �. (2)

Its search direction vector is defined as λi, as shown in
Fig. 2(a).

2) TCH Approach: The ith subproblem is defined as

minimize gte(x|λi, z∗) = max
1≤j≤m

{| fj(x) − z∗
j |/λi

j}
subject to x ∈ � (3)

where � is the feasible region, but λj = 0 is replaced
by λj = 10−6 because λj = 0 is not allowed as a

1In the case of maximization, the inequality signs should be reversed.

denominator in (3). Its search direction vector is defined
as λi, as shown in Fig. 2(b).

3) PBI Approach: This approach is a variant of normal-
boundary intersection approach [8]. The ith subproblem
is defined as

minimize gpbi(x|λi, z∗) = di
1 + βdi

2

di
1 = (

F(x) − z∗)T
λi/||λi||

di
2 = ||F(x) − z∗ − (

di
1/||λi||)λi||

subject to x ∈ � (4)

where ||.|| denotes the L2-norm and β is the penalty
parameter. Its search direction vector is defined as λi, as
shown in Fig. 2(c).

III. CONSTRAINED DECOMPOSITION WITH GRIDS

In this section, the setup of a grid system and the constrained
decomposition based on the grid system are introduced as
follows.

A. Setup of Grid System

The constrained decomposition is based on a grid-system
and the setup of it is introduced in Algorithm 1, as follows.
Each objective is divided into K equal intervals within the
approximations of the ideal and nadir points, where K is a
preset parameter. The width of each interval is

dj =
(

znad
j − z∗

j + 2 × σ
)
/K. (5)

Fig. 3(a) shows a grid division for a bi-objective problem,
where K = 4.

The grid location of x along the jth objective gj(x) can be
calculated as

gj(x) =
⌈(

fj(x) − z∗
j + σ

)
/dj

⌉
(6)

where 	.
 denotes the ceil function, gj(x) is the grid-coordinate
of solution x and fj(x) is the value of jth objective function. A
small positive number σ is introduced to ensure that the value
of gj is more than 0 but not more than K. An example of the
grid location along one objective is demonstrated in Fig. 3(b),
where K = 4. In the example, the grid-coordinates of the
solutions (denoted by “•”) along f1 are assigned as follows:
a = 1, b = 1, c = 2, d = 2, e = 3, f = 3, g = 4, and h = 4.
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Algorithm 1: Grid-System Setup (GS)
Input : P: the current population;

z∗: the approximation of the ideal point;
znad: the approximation of the nadir point;
m: the number of objectives;
K: the number of the intervals on each objective.

Output: the grid locations of P.
1 for j = 1 to m do
2 dj = (znad

j − z∗
j + 2 × σ)/K;

3 end
4 foreach x ∈ P do
5 for j = 1 to m do
6 gj(x) = 	(fj(x) − z∗

j + σ)/dj
;
7 end
8 G(x) = (g1(x), . . . , gm(x));
9 end

To use the grid locations for the restricted mating selection
in MOEAs, the grid distance and grid neighbor are defined for
convenience as follows.

Definition 1 (Grid Distance): Let u and v ∈ Rm be two
solutions, the grid distance GD(u, v) between u and v is
defined as

GD(u, v) = max
j=1,...,m

(|gj(u) − gj(v)|
)
. (7)

Definition 2 (Grid Neighbors): The grid neighbors of a
solution x within distance T is defined as

GN(x, T) = {
x∗|GD

(
x, x∗) ≤ T x, x∗ ∈ Rm}

. (8)

B. Constrained Decomposition With Grids

A constrained decomposition can be defined by adopting
the grid system specified in the last section. CDG can be con-
sidered as an extension of ε-constraint approach [30]. The
constrained decomposition approach for the kth subproblem
of the lth objective can be defined as follows:

minimize fl(x)

subject to gj(x) = kj for all j = 1, . . . , m, j �= l

kj ∈ {1, . . . , K}
x ∈ � (9)

where K is a division parameter which determines the number
of grids.

With K intervals on each objective, the grids decompose an
MOP into m × Km−1 subproblems. In general, the kth sub-
problem of lth objective contains a solution set Sl(k) [k is a
(m − 1)-dimensional vector], which can be defined as

Sl(k) = {x|g1(x) = k1, . . . , gl−1(x) = kl−1

gl+1(x) = kl+1, . . . , gm(x) = km}
subject to l ∈ {1, . . . , m} k ∈ {1, . . . , K}m−1. (10)

An example of such subproblems in a bi-objective opti-
mization is given in Fig. 3(a), where the feasible regions of
two subproblems S1(3) and S2(2) are denoted in the shaded
regions.

(a)

(b)

Fig. 3. Illustration of the grid system produced by constrained decomposition.
(a) Grid system (K = 4) in a bi-objective optimization problem. (b) Grid
location along one objective (K = 4).

IV. CDG-MOEA

A. Main Framework of CDG-MOEA

In this section, the main framework of CDG-MOEA is
presented in Algorithm 2, which includes six steps: 1) ini-
tialization; 2) reproduction; 3) update of the ideal and nadir
points; 4) update of the grid system; 5) rank-based selection
(RBS); and 6) termination. In the following sections, each step
is specified in details.

B. Initialization

In step 1.1, a population P is initialized randomly. In
step 1.2, the ideal and nadir points are approximated based on
P. The update of the ideal point is presented in Algorithm 3
and the update of the nadir point is presented in Algorithm 4.

C. Reproduction

In the step 2, N offspring solutions are generated from P. An
empty set Q is generated for storing the offspring solutions.
For each solution x ∈ P, its mating solutions are obtained by

NS =
⎧
⎨

⎩

GN(x, T), rand < δ and
|GN(x, T)| > 2

{x1, . . . , xN}, otherwise
(12)

where δ is the probability that the mating solutions are selected
from the grid neighbors.

In step 2.3, two solutions xk and xl are selected from NS
randomly. An offspring solution y is generated from solution
x, xk, and xl by DE operators [26]; and then y is added to Q.
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Algorithm 2: Main Framework of CDG-MOEA
Input:

1) an MOP;
2) a stopping criterion;
3) N: the population size of P;
4) T: the maximum grid distance for neighborhood;
5) K: the number of the intervals in each objective.

Output: A solution set P;
Step 1: Initialization:

Step 1.1 Generate an initial population P = {x1, . . . , xN}
randomly;
Step 1.2 Approximate the ideal and nadir points:
z∗ = UPDATE1(P), znad = UPDATE2(P);
Step 1.3 Initialize the grid system: GS(P);
Step 1.4 Set gen = 0.

Step 2: Reproduction:
Step 2.1 Generate an empty set Q = ∅;
For each solution x ∈ P do
Step 2.2 Obtain the neighboring solutions as the mating
pool of x:

NS =
⎧
⎨

⎩

GN(x, T), rand < δ and
|GN(x, T)| > 2 (11)

{x1, . . . , xN}, otherwise.

Step 2.3 Select two solutions xk and xl from NS randomly;
and generate an offspring solution y from solution x, xk and
xl by DE operators; then y is added to Q.
End for

Step 3: Update of the ideal and nadir points:
Step 3.1 gen = gen + 1;
Step 3.2 P = P ∪ Q;
Step 3.3 Update the ideal point: z∗ = UPDATE1(P);
Step 3.4 If gen is a multiplication of 50, update the nadir
point: znad = UPDATE2(P).

Step 4: Update of the grid system:
Step 4.1 P̄ = {x|x ∈ P ∧ ∃j ∈ {1, . . . , m}, fj(x) > znad

j };
Step 4.2 P = P\P̄;
Step 4.3 Update the grid system: GS(P).

Step 5: Rank-based selection:
Step 5.1 If |P| < N, randomly select N − |P| solutions from
P̄ and add them to P. Otherwise, P = RBS(P).

Step 6: Termination:
Step 6.1 If the stopping criterion is satisfied, terminate the
algorithm and output P. Otherwise, go to Step 2.

Algorithm 3: Update the Ideal Point (UPDATE1)
Input : P: the current population.
Output: Updated ideal point z∗.

1 for j = 1 to m do
2 z∗

j = min
x∈P

{fj(x)};
3 end

D. Update of the Ideal and Nadir Points

In step 3, the approximations of the ideal and nadir points
are updated by using the combined population P = P ∪ Q.
In Algorithm 3, the ideal point z∗ is approximated by the
minimum value of each objective in P.

In Algorithm 4, the nadir point is approximated by the max-
imum value of each objective in the nondominated solutions
of P. To further lower the computational cost of nondominated

Algorithm 4: Update the Nadir Point (UPDATE2)
Input : P: the combined population;

z∗: the current ideal point;
znad: the current nadir point.

Output: Updated nadir point znad.
/* To reduce computational cost, find a

subset of P: SP */
1 SP = ∅;
2 foreach x ∈ P do
3 for j = 1 to m do

4 if fj(x) < z∗
j + znad

j
5 then

5 SP = SP ∪ x;
6 end
7 end
8 end
/* find all the nondominated solutions

in SP. */
9 SP = NONDOMINATED-SELECTION(SP);

10 for j = 1 to m do
11 znad

j = max
x∈SP

{fj(x)};
12 end

selection for approximating nadir point, only a subset of solu-
tions SP in P that are close to the corner solutions is selected
(lines 1–8 of Algorithm 4), as follows:

SP =
{

x|x ∈ P ∧ ∃j ∈ {1, . . . , m}, fj(x) < z∗
j + znad

j

5

}

.

(13)

After that, the nondominated solutions are selected from
SP and the nadir point is updated with the maximum value of
each objective in these nondominated solutions (lines 9–12 of
Algorithm 4).

E. Update of the Grid System

In steps 4.1 and 4.2, the solutions P̄ = {x|x ∈ P ∧ ∃j ∈
{1, . . . , m}, fj(x) > znad

j } (the ones located outside the nadir
point approximation) are eliminated from P first. Then, in
step 4.3, the grid system is updated using P by calling
Algorithm 1, which was already specified in Section III-B.

F. Rank-Based Selection

In step 5, if the size of P is less than N, then N − |P|
solutions are selected randomly from P̄ to fill in P; otherwise,
the RBS, presented in Algorithm 5, is called.

In Algorithm 5, N solutions are selected from Q (|Q| >

N) by RBS, which include decomposition-based ranking and
lexicographic sorting. The details of them are explained as
follows.

In the decomposition-based ranking, each solution set Sl(k)
for the kth subproblem of the lth objective is ranked based
on CDG defined in (9). After ranking all the m objec-
tives, each solution x has m ranks, stored in a rank vector
R(x) = (r1(x), . . . , rm(x)). It is worth noting that, with mKm−1
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Algorithm 5: RBS
Input : Q: the combined population.
Output: A population P.
/* Decomposition-based Ranking */

1 foreach x ∈ Q do
2 initialize R(x) = {r1(x), . . . , rm(x)} = {0, . . . , 0} ;
3 end
4 for l = 1 to m do
5 forall subproblems Sl(k) do
6 if Sl(k) �= ∅ then
7 [S′, I] = sortl(Sl(k)); // sort Sl(k) by fl

based on Eq. (9) and I stores the
ranks

8 foreach x ∈ Sl(k) do rl(x) = I(x);
9 end

10 end
11 end
/* Lexicographic Sorting */

12 foreach x ∈ Q do
13 R′(x) = sort(R(x));
14 end
/* sort all x ∈ Q based on R′(x) in

lexicographic order */
15 Q = LEXICOGRAPHIC-SORT(Q);
16 P = Q(1 : N); // select first N solutions

subproblems, at most mM times rankings are needed as some
subproblems may contain no solutions, where M = |Q|.

In the lexicographic sorting, R(x) is sorted in an ascending
order and stored in R′(x). Then, each solution x ∈ Q is ranked
in lexicographic order based on R′(x) and the first N solutions
are selected from Q and assigned to P.

Fig. 4 and Table I show an example of RBS in a grid sys-
tem (K = 4) for a bi-objective optimization problem, where
|P| = 7 solutions are selected out of |Q| = 14 solutions
in Algorithm 5, as follows. All the solutions are ranked as
R(x) based on (9), as shown in Fig. 4 and the first column
of Table I. The ranks are sorted and stored in R′(x) (second
column of Table I). After the lexicographic sorting, the first
seven solutions are selected (the last column of Table I).

G. Computational Complexity

In Algorithm 1, the setup of a grid system requires O(mN)

computations, where m is the number of objectives and N is the
population size. In Algorithm 3, the update of the ideal point
needs O(mN) computations. In Algorithm 4, the computational
complexity for the update of the nadir point is O(mL2), where
L is the size of nondominated solutions in SP.

In Algorithm 5, the RBS is divided into two parts: 1) the
decomposition-based ranking and 2) the lexicographic sort-
ing. Among them, the decomposition-based ranking needs to
be done at most mM times, where M ≤ 2N is the size of
solutions that are located inside the nadir point approxima-
tion. In the lexicographic sorting, the sorting in lines 12–14
requires O(mMlogm) computations and the second sorting in

Fig. 4. Ranks of all the solutions in a grid system (K = 4) for a bi-objective
optimization problem, where the final selected solutions are denoted in �.

TABLE I
PROCEDURES OF DECOMPOSITION-BASED RANKING AND

LEXICOGRAPHIC SORTING FOR FIG. 4

line 15 requires O(mMlogM) computations. In summary, the
computational cost of RBS is O(mMlogM), where M ≤ 2N.

In the framework of CDG-MOEA (Algorithm 2), the com-
putational cost of both steps 1 and 2 is O(mN). The com-
putational cost of steps 2–5 is O(mMlogM). In summary, the
computational complexity of CDG-MOEA is O(mMlogM).

V. EXPERIMENTAL SETTINGS

A. Test Instances

Unconstrained functions (UFs) suite [45] is considered as
the benchmark functions in our experimental studies. Among
all the ten benchmark problems, UF1-7 are bi-objective and
UF8-10 are tri-objective optimization problems. The number
of decision variables for all the test instances is set to 30.

Complicated test instances (GLT) suite [15], [41] is another
set of the benchmark problems used in our experimental stud-
ies to verify the robustness of CDG-MOEA on MOPs with
complicated PFs (e.g., extremely convex or with disparately
scaled objectives). The number of decision variables for all
the test instances is set to 10.
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TABLE II
PERFORMANCE COMPARISONS OF CDG-MOEA WITH TEN MOEAS ON UF PROBLEMS IN TERMS OF THE

MEAN AND STANDARD DEVIATION VALUES OF IGD AND IH

B. Parameter Settings

To make a fair comparison, the following parameters of all
the compared algorithms are set in a similar manner as in
MOEA/D-DE [26].

1) δ = 0.9.
2) In DE: CR = 1.0, F = 0.5, η = 20, and pm = 1/n.
3) Function evaluations: 300 000 for each test instance.
The population size of all the compared algorithms is set

to 300 for UF1-7 and GLT1-6; and 600 for UF8-10. For
MOEA/D-DE (WS, TCH, and PBI), the parameter of neigh-
borhood size is set to 20, the same as the one in [26]. For
CDG-MOEA, the grid division parameter K is set to 180 for
bi-objective and 30 for tri-objective problems; and the grid
neighborhood distance is set to 5 for bi-objective and 1 for

tri-objective problems. The settings of the grid division param-
eter and population size are based on the sensitivity analysis
in Section VII. Each of all the compared algorithms is run 30
times independently for all the benchmark problems.2

C. Performance Metrics

1) Inverted Generational Distance [44], [46]: It measures
the average distance from a set of reference points P∗ in
the PF to the approximation set P. It can be formulated
as follows:

IGD(P, P∗) = 1

|P∗|
∑

v∈P∗
dist(v, P) (14)

2The MATLAB source code of CDG-MOEA can be downloaded from:
http://xinyecai.github.io/.

http://xinyecai.github.io/
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TABLE III
PERFORMANCE COMPARISONS OF CDG-MOEA WITH TEN MOEAS ON GLT PROBLEMS IN TERMS OF THE MEAN

AND STANDARD DEVIATION VALUES OF IGD AND IH

where dist(v, P) is the Euclidean distance between the
solution v and its nearest point in P, and |P∗| is the car-
dinality of P∗. If |P∗| is large enough to represent the PF
very well, IGD(P, P∗) could measure both the diversity
and convergence of P in a sense. In our experiments,
626 reference points are used on GLT1, 1000 reference
points on GLT2-4, 2600 reference points on GLT5, and
1377 reference points on GLT6, for calculating inverted
generational distance (IGD).

2) Hypervolume Indicator (IH) [49]: Let zr =
(zr

1, . . . , zr
m)T be a reference point in the objective

space that is dominated by all Pareto-optimal objective
vectors. Let P be the obtained approximation to the PF
in the objective space. Then, the IH value of P (with
regard to zr) is the volume of the region dominated by
P and bounded by zr, and it can be defined as

IH(P) = volume

⎛

⎝
⋃

f ∈P

[
f1, zr

1

] × . . .
[
fm, zr

m

]
⎞

⎠. (15)

Obviously, the higher the hypervolume, the better the
approximation is. In our experiments, zr is set to (2, 2)T

for UF1-7, (2, 2, 2)T for UF8-10, (1.2, 1.2)T for GLT1,
and GLT3, (1.2, 12)T for GLT2, (1.2, 2.2)T for GLT4,
and (1.2, 1.2, 1.2)T for GLT5-6 when computing hyper-
volume for the nondominated sets obtained by all the
algorithms.

VI. EXPERIMENTAL STUDIES AND DISCUSSIONS

In this section, the following experiments are conducted to
test the performance of CDG-MOEA.

1) Comparisons on UF test suite, to verify the general
performance of CDG-MOEA on balancing between
convergence and diversity.

2) Comparisons on GLT test suite with complicated PFs
(extremely convex and/or with disparately scaled objec-
tives), to verify the robustness of CDG-MOEA on the
shapes of PFs.

A. Comparisons on UF Test Suite

In this section, CDG-MOEA is compared with four classi-
cal decomposition-based MOEAs [MOEA/D-DE (WS, TCH,
or PBI) [26] and multiple single objective pareto sampling
II (MSOPS-II) [19]], one state-of-the-art decomposition-based
MOEA (MOEA/D- adaptive constrained decomposition
approach (ACD) [37]), one domination-based MOEA
(NSGA-II [12]), one indicator-based MOEA (IBEA [47]),
and three grid-based MOEAs (epsilon MOEA [11], Borg
MOEA [16], and OMOPSO [35]) on UF test problems.

The performance of eleven compared algorithms in terms
of IGD or IH is presented in Table II, where the performance
of the algorithm with the best mean IGD or IH value is high-
lighted in boldface. It can be observed that, in terms of IGD
and CDG-MOEA significantly outperforms other compared
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(a) (b) (c) (d)

(e) (f) (g)

(i) (j) (k)

(h)

Fig. 5. Final nondominated solution set obtained by eleven algorithms in the run with the median IGD value on GLT1. (a) CDG-MOEA. (b) MOEA/D-
DE (WS). (c) MOEA/D-DE (TCH). (d) MOEA/D-DE (PBI). (e) MOEA/D-ACD. (f) MSOPS-II. (g) NSGA-II. (h) IBEA. (i) ε-MOEA. (j) Borg MOEA.
(k) OMOPSO.

algorithms on all the test problems, except for UF3, UF4, UF8,
and UF10. MOEA/D-ACD achieves the best performance on
UF3, Borg has the best performance on UF4, MOEA/D-DE
(PBI) has the best performance on UF8, and MSOPS-II has
the best performance on UF10.

Similar performance can be observed on the comparisons
of eight algorithms in terms of IH , where CDG-MOEA is sig-
nificantly better than other compared algorithms on six out of
ten test problems.

The comparisons of CDG-MOEA with other ten algorithms
on UF test suite verify that CDG in CDG-MOEA is able
to achieve better diversity while maintaining good conver-
gence in most test problems, compared with other commonly
used decomposition methods thus more suitable for MOEA
framework.

B. Comparisons on GLT Test Suite

To verify the robustness of CDG-MOEA on MOPs with
different shapes of PFs, CDG-MOEA is compared with ten
algorithms on GLT test suite in this section.

To visualize the performance of all the compared algorithms
on MOPs with different characteristics, the final nondominated
sets obtained by all the compared algorithms in the run with
the median IGD value on GLT1, GLT2, and GLT6 are pre-
sented in Figs. 5–7. For GLT1 whose PF is two segments
of disconnected straight lines, the performance of all the

algorithms is very similar, except for MOEA/D-DE (WS),
nondominated sorting genetic algorithm II (NSGA-II), and
IBEA. The nondominated set obtained by MOEA/D-DE (WS)
is degenerated to two small regions on the corners of PF. This
is because the WS approach is unable to approximate the non-
convex parts of PF. For GLT2 whose PF has disparately scaled
objectives and/or GLT6 whose PFs are extremely convex, only
CDG-MOEA is able to approximate the widely and uniformly
distributed nondominated solution set. These results verify
that, unlike other algorithms, CDG-MOEA is able to remain
effective on MOPs with complex PFs (extremely convex PFs
or with disparately scaled objectives).

Table III shows the performance of the eleven compared
algorithms in terms of IGD and IH on GLT1-6. It can
be observed that CDG-MOEA performs significantly better
than other compared algorithms on all test problems except
for GLT1 in terms of IGD. MOEA/D-ACD achieves the
best performance on GLT1, although the final nondominated
solutions obtained by MOEA/D-ACD and CDG-MOEA are
both uniformly distributed on the PF of GLT1, as shown
in Fig. 5.

In terms of IH , CDG-MOEA has the best performance on
GLT2-3 and MOEA/D-DE (TCH) has the best performance on
GLT1 with statistical significance. The performance of CDG-
MOEA is very similar to that of MOEA/D-DE (TCH) on
GLT4; and the performance of CDG-MOEA is very similar to
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(a) (b) (c) (d)

(e) (f) (g)

(i) (j) (k)

(h)

Fig. 6. Final nondominated solution set obtained by eleven algorithms in the run with the median IGD value on GLT2. (a) CDG-MOEA. (b) MOEA/D-
DE (WS). (c) MOEA/D-DE (TCH). (d) MOEA/D-DE (PBI). (e) MOEA/D-ACD. (f) MSOPS-II. (g) NSGA-II. (h) IBEA. (i) ε-MOEA. (j) Borg MOEA.
(k) OMOPSO.

that of MOEA/D-ACD on GLT5-6, although it can be observed
in Fig. 7 that the solution set obtained by CDG-MOEA is
more uniformly distributed than that obtained by MOEA/D-
DE (TCH) or MOEA/D-ACD on GLT6. This can be explained
by the fact that the solutions on the extremely convex regions
of PFs have very little contribution on the value of IH .

C. Convergence Plots

The performance of eleven compared algorithms [CDG-
MOEA, MOEA/D-DE (WS, TCH, PBI), MOEA/D-ACD,
MSOPS-II, NSGA-II, IBEA, ε-MOEA, Borg, and OMOPSO]
during the evolutionary process, in terms of the average IGD
values over 30 runs, is illustrated in Fig. 8 on UF and GLT
problems. It can be observed that CDG-MOEA has the best
performance in terms of both the convergence speed and the
quality of the final nondominated sets on UF2, GLT2-3, and
GLT5. On UF6, CDG-MOEA converges more slowly at the
early stage, but it performs increasingly better and outper-
forms all the compared algorithms at the final stage. It is worth
noting that the performance of MOEA/D-DE (PBI), in terms
of IGD values, becomes even increasingly worse during the
optimization process on GLT2-3. This phenomenon can be
verified by the final nondominated sets obtain by MOEA/D-
DE (PBI) on GLT2 [Fig. 6(d)], where only half of the PF can
be approximated by MOEA/D-DE (PBI) on GLT2.

VII. SENSITIVITY ANALYSIS

In this section, we investigate the sensitivity of the control
parameters in CDG-MOEA, including the population size N,
the division parameter K, the grid neighborhood distance T ,
and the probability δ for the mating restriction, and the control
parameters F and CR in the DE reproduction operator, on both
bi- and tri-objective UF and GLT test problems.

A. Sensitivity to Population Size N and
Division Parameter K

For CDG, as described in Section III, there are a total num-
ber of mKm−1 subproblems and each solution can be at most
the optimal solution for m subproblems, where m is the num-
ber of objectives. Although there is a complex interdependence
between the population size N and the division parameter K,
their relation for an MOP with a nondegenerate PF, can be
analyzed as follows:

N = αmKm−1

β
= θKm−1 (16)

where α is the optimal average number of solutions for a sub-
problem; β is a coefficient depending on the shape of PF (e.g.,
the convexity or disconnection), and θ is the final coefficient
after the simplification.
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(a) (b) (c) (d)

(e) (f) (g)

(i) (j) (k)

(h)

Fig. 7. Final nondominated solution set obtained by eleven algorithms in the run with the median IGD value on GLT6. (a) CDG-MOEA. (b) MOEA/D-
DE (WS). (c) MOEA/D-DE (TCH). (d) MOEA/D-DE (PBI). (e) MOEA/D-ACD. (f) MSOPS-II. (g) NSGA-II. (h) IBEA. (i) ε-MOEA. (j) Borg MOEA.
(k) OMOPSO.

As the population size N and the division parameter K play
an interdependent role on the performance of CDG-MOEA,
we set combinations of different values of N (200–500 for bi-
objective UF1 and GLT3; 300–1000 for tri-objective UF9 and
GLT5) and K (100–260 for bi-objective UF1 and GLT3; and
10–50 for tri-objective UF9 and GLT5) in the experiments.
The other parameters are the same as those in Section V-B.
Fig. 9 shows the mean IGD values of the populations obtained
by CDG-MOEA with different population sizes N and division
parameters K on UF1, UF9, GLT3, and GLT5.

Equation (16) can be verified from Fig. 9 that N and K are
positively correlated for achieving the best performance for
CDG-MOEA on both bi- and tri-objective problems. When
N = θKm−1, CDG-MOEA can achieve the best performance.

B. Sensitivity to Division Parameter K and Grid
Neighborhood Distance T

As the division parameter K and the grid neighborhood dis-
tance T for the mating restriction also play an interdependent
role on the performance of CDG-MOEA, we set combinations
of different values of K (100–260 for bi-objective UF1 and
GLT3; 10–50 for tri-objective UF9 and GLT5) and T (1–10
for bi-objective UF1 and GLT3; 1–5 for tri-objective UF9 and
GLT5) in the experiments. The population size is set to 600
for UF1, 9 and 300 for GLT3, 5. The other parameters are the

same as those in Section V-B. Fig. 10 shows the mean IGD
values of the populations obtained by CDG-MOEA with dif-
ferent division parameters K and grid neighborhood distance
T on UF1, UF9, GLT3, and GLT5.

Fig. 10 shows that CDG-MOEA with different K and T val-
ues may have the different performance. For UF problems, it
can be observed that when the value of K increases, the value
of T also needs to increase for achieving better performance.
For GLT problems, CDG-MOEA is very sensitive to K and
a suitable K value is needed for optimal performance, as dis-
cussed in the last section. However, given a fixed K value,
CDG-MOEA is robust with regard to T on GLT problems.

C. Sensitivity to Probability of Mating Restriction

To investigate the sensitivity of the probability for the mat-
ing restriction δ, CDG-MOEA with δ = 0.5, 0.6, 0.7, 0.8, and
0.9 is separately tested. The remaining parameters are the same
as those in Section V-B. Fig. 11 shows the evolution of the
mean IGD values of the populations obtained by CDG-MOEA
with different δ values on bi-objective UF1, GLT3, and tri-
objective UF9, GLT5. It can be observed that CDG-MOEA
with different δ achieves very similar performance, in terms
of the final IGD values, which indicates that CDG-MOEA is
not sensitive to δ. However, on UF1 and UF9, CDG-MOEA
converges faster with larger δ values (δ = 0.8, 0.9).
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Mean IGD values versus the number of function evaluations obtained
by eleven algorithms over 30 runs. (a) UF2. (b) UF6. (c) GLT2. (d) GLT3.
(e) GLT5. (f) Legends of eleven compared algorithms.

(a) (b)

(c) (d)

Fig. 9. Mean IGD values obtained by CDG-MOEA with different combi-
nations of N and K on (a) UF1, (b) UF9, (c) GLT3, and (d) GLT5 over 30
runs.

D. Sensitivity to F and CR

The sensitivity of the control parameters F and CR in the
DE reproduction operator are tested in this section. We set a
total of 25 combinations of five F values (0.1, 0.3, 0.5, 0.7,
and 0.9) and five CR values (0.2, 0.4, 0.6, 0.8, and 1) on UF1,
UF9, GLT3, and GLT5. All the other parameters remain the

(a) (b)

(c) (d)

Fig. 10. Mean IGD values obtained by CDG-MOEA with different combi-
nations of K and T on (a) UF1, (b) UF9, (c) GLT3, and (d) GLT5 over 30
runs.

(a) (b)

(c) (d)

Fig. 11. Mean IGD values versus the numbers of function evaluations
obtained by CDG-MOEA with different δ over 30 runs on (a) UF1, (b) UF9,
(c) GLT3, and (d) GLT5.

same as those in Section V-B. The mean IGD values of final
populations obtained by CDG-MOEA with different combi-
nations of F and CR on UF1, UF9, and GLT5 are shown in
Fig. 12. It can be observed that when both F and CR have
relatively large values (e.g., F = 0.5, 0.7 and CR = 0.8, 1),
CDG-MOEA has better performance.

VIII. MORE DISCUSSIONS OF CDG-MOEA ON

MANY-OBJECTIVE OPTIMIZATION

CDG-MOEA can be further extended to many-objective
optimization problems if the following two issues can be
well-addressed.

First, the setup of the grid-system in CDG is based on the
approximation of both ideal and nadir point. In the current
CDG-MOEA, Pareto-domination is used to approximate the
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(a) (b)

(c) (d)

Fig. 12. Mean IGD values obtained by CDG-MOEA with different combi-
nations of F and CR on (a) UF1, (b) UF9, (c) GLT3, and (d) GLT5 over 30
runs.

nadir point. However, it is well-known that the selection pres-
sure of Pareto-domination becomes weaker with the increasing
number of objectives [10], [22], [25]. Therefore, to maintain
the convergence for CDG-MOEA/D, other methods are needed
for the better approximation of the nadir point.

Second, as discussed in Section VII-A, when N = θKm−1,
where θ is a coefficient, N is the population size, K is the grid
division parameter, and m is the number of objectives, CDG-
MOEA can achieve the best performance. This indicates that
the value of K (at least 2) would be far away from its optimal
value (less than 1) when N is a small number with a large m
value. In other words, a large K value and a very large N value
are needed for CDG-MOEA on a many-objective optimization
problem, to achieve good performance.

IX. CONCLUSION

This paper proposed a novel CDG to better fit the
decomposition-based MOEA framework. The proposed CDG-
MOEA is compared with seven classical or state-of-the-art
MOEAs on two sets of test suites. The experimental results
show that CDG-MOEA outperforms the compared algorithms
in most test problems. More importantly, CDG-MOEA is very
robust with the shapes of PFs and can remain effective on
MOPs with complex PFs (e.g., extremely convex or with
disparately scaled objectives). The sensitivity analysis of the
parameters are also conducted in this paper. Further studies
include the extension of CDG-MOEA for combinatorial MOPs
and many-objective optimization problems.
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