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Abstract—Tobacco plant detection plays an important role
in the management of tobacco planting. In this paper, a new
algorithm based on deep neural networks is proposed to detect
tobacco plants in images captured by unmanned aerial vehicles
(UAVs) (called UAV images). These UAV images are characterized
by a very high spatial resolution (35mm), and consequently
contain an extremely high level of detail for the development of
automatic detection algorithms. The proposed algorithm consists
of three stages. In the first stage, a number of candidate
tobacco plant regions are extracted from UAV images with
the morphological operations and watershed segmentation. Each
candidate region contains a tobacco plant or a non-tobacco plant.
In the second stage, a deep convolutional neural network is built
and trained with the purpose of classifying the candidate regions
as tobacco plant regions or non-tobacco plant regions. In the
third stage, postprocessing is performed to further remove the
non-tobacco plant regions. The proposed algorithm is evaluated
on a UAV image dataset. The experimental results show that the
proposed algorithm performs well on the detection of tobacco
plants in UAV images.

Index Terms—Detection, tobacco plants, unmanned aerial
vehicles (UAVs), convolutional neural network.

I. INTRODUCTION

VERY high resolution (VHR) satellites, such as GeoEye-1
and Worldview-2, are important platforms for the acqui-

sition of VHR images with less than 1m spatial resolutions.
The acquired VHR images contribute to the development of
many new applications such as quantifying bird migration
[1], object tracking [2], counting roofless buildings [3] and
automated detection of arbitrarily shaped buildings [4].

Besides VHR satellites, in recent years, unmanned aerial
vehicles (UAVs) are increasingly becoming a new effective
acquisition platform in the remote sensing community [5].
UAVs are small aircraft controlled either by attached mi-
croprocessors or by an operator on the ground. They have
several important features: low cost, high mobility, flexibility,
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safety and customizability. The observation and monitoring
of the earth have become much easier and faster because
UAVs can reach an area of interest in a short time. UAVs
were initially developed for military applications. However,
due to the great potential and the rapid developments in
technology, UAVs have become a practical solution for many
civilian applications, such as car counting [6], [7], vegetation
monitoring [8], [9], precision farming [10], [11], anomaly
detection in archaeology sites [12], [13] and the detection of
nonforested areas [14].

UAVs can obtain information at a low altitude, which allows
us to collect images with very high spatial resolution (on the
order of few centimeters). The detection and recognition of
specific objects or a particular class of objects in an image
play an important role in various applications. In [15], Fergus
et al. proposed an algorithm to learn and recognize objects
from unlabeled and unsegmented cluttered scenes. In [16],
Agarwal et al. presented a technique to automatically learn
to detect instances of the object class in new images. One
of the classes of objects which needs particular attention is
the tobacco plant. The interest in performing tobacco plant
detection arises for several reasons: (1) The tobacco plant is
an important economic crop in China, India, Brazil and the
United States. (2) The detection of tobacco plants contributes
to the management of tobacco planting. (3) Information about
the number of tobacco plants is essential for yield estimation
[17], [18]. (4) Current methods of counting tobacco plants are
based on site inspection. Skilled inspectors go to the site and
calculate the number of tobacco plants, which is a tedious and
time-consuming task.

In order to complete the detection of tobacco plants in
UAV images, deep neural networks [19] are employed in
our work. Deep neural networks have been developed rapidly
and have become a popular machine learning method due
to the introduction in 2006 of an effective new algorithm
to learn deep neural networks [20]. Deep neural networks
have an impressive record of applications in image analysis
and interpretation due to their powerful capacity [21]–[23].
Convolutional neural networks (CNNs) are the early proposed
architectures of deep neural networks, which were built in the
1970’s [24]. CNNs are inspired by the organization of the
animal visual cortex [25], and initially applied to solve the
challenging tasks like the recognition of handwritten charac-
ters [26]. With the rapid development of deep neural networks,
both the frameworks and training algorithms of CNNs have
been developed and improved rapidly [27], [28]. The powerful
capabilities of CNNs allow them to be successfully applied
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Fig. 1. The framework of the proposed algorithm

Fig. 2. A UAV image containing tobacco plants

for a large spectrum of vision tasks, including remote sensing
images. In [29], Maggiori et al. proposed an end-to-end
framework for the dense, pixelwise classification of satellite
imagery with convolutional neural networks. In [30], Zhang
et al. achieved aircraft detection with convolutional neural
networks.

In this paper, a new algorithm based on deep neural net-
works is proposed to perform the detection of tobacco plants
in UAV images. To the best of our knowledge, this is the
first research on detecting tobacco plants in UAV images.
The proposed algorithm is evaluated on a UAV image dataset.
The experimental results demonstrate the effectiveness of the
proposed algorithm.

The rest of this paper is organized as follows: Section II
details the proposed methodology. Section III introduces the
UAV image dataset and the evaluation metrics. Section IV
presents the experimental results. In Section V, the conclusions
of this paper are provided.

II. THE PROPOSED METHODOLOGY

Let us consider a high-resolution image I(x, y) (where
(x, y) represents pixel coordinates in image I) captured by
a UAV over an agricultural region of tobacco planting (Fig.2).
UAVs can obtain images with high spatial resolutions when
they fly at relatively low altitudes (several hundred meters).
The high level of detail in UAV images provides much
useful information, and contributes to the development of new
analysis approaches. The objective of this study is to develop
an automatic algorithm for the analysis of tobacco planting
in UAV images. More specifically, our work focuses on the
detection and counting of tobacco plants in UAV images.

Fig. 3. The framework of candidate tobacco plant region extraction

The proposed algorithm is composed of three stages. In the
first stage, a number of candidate tobacco plant regions are
extracted from UAV images. Each candidate region contains
a tobacco plant or a non-tobacco plant. In the second stage,
a convolutional neural network is built and trained with
the purpose of classifying the candidate regions as tobacco
plant regions or non-tobacco plant regions. In the third stage,
postprocessing is performed to further remove the non-tobacco
plant regions. The framework of the proposed algorithm is
shown in Fig.1. The image notations and their definitions used
in the proposed algorithm are shown in Table I.

TABLE I
DEFINITIONS OF IMAGE NOTATIONS

Notations Meanings

Id The denoised UAV image
Bpr The binary image containing the plant regions
IB The B channel image
Ire The morphologically reconstructed image
Is The region segmented image
Ie The image used for plant region extraction
Irc The region-classified image

Iplant The tobacco-plant-detected image
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A. Candidate Tobacco Plant Region Extraction

Candidate tobacco plant region extraction aims at extracting
candidate tobacco plant regions from UAV images. Each
region contains a tobacco plant or a non-tobacco plant. The
extraction of candidate tobacco plant regions consists of four
steps: 1) noise filtering, 2) soil region detection, 3) plant region
segmentation and 4) plant region extraction. Fig.3 shows the
framework of candidate tobacco plant region extraction.

1) Noise Filtering: In order to smooth the noise in UAV
images, each UAV image I(x, y) is convolved with a Gaussian
kernel w(x, y)

Id(x, y) = I(x, y) ? w(x, y) (1)

where Id is the denoised UAV image. w(x, y) is of dimensions
m × m = 3 × 3, mean µ = 0, and variance σ2 = 0.25. ?
represents the convolution operation.

2) Soil Region Detection: UAV images generally contain
soil regions. In order to reduce the influence of soil regions, the
extra-green method [31] is applied to remove the soil regions
and preserve the plant regions in UAV images, which is defined
as follows:

Bpr(x, y) = Bgr(x, y) ∩Bgb(x, y) (2)

Bgr(x, y) =

{
1 Igr(x, y) > ω1

0 else
(3)

Bgb(x, y) =

{
1 Igb(x, y) > ω2

0 else
(4)

Igr(x, y) = Ig(x, y)− Ir(x, y) (5)

Igb(x, y) = Ig(x, y)− Ib(x, y) (6)

where Bpr is the resultant binary image containing the plant
regions. Ig , Ir and Ib are the green channel, red channel
and blue channel of image Id. Igr is the difference image
between Ig and Ir, and Igb is the difference image between
Ig and Ib. Bgr is the binary image obtained by thresholding
the difference image Igr, and Bgb is the binary image obtained
by thresholding the difference image Igb. ω1 and ω2 are depth
control parameters. In our experiment, ω1 and ω2 are set as
0.05 and 0, which were selected according to the RGB values
of lawn green (R = 0.486, G = 0.988, B = 0) and spring
green (R = 0.235, G = 0.702, B = 0.443).

3) Plant Region Segmentation: The central regions of to-
bacco plants are generally brighter than the leaf regions [32].
In order to make use of this available property to divide the
UAV images into a number of candidate tobacco plant regions,
the denoised UAV image Id is first transformed from RGB
color space to LAB color space since LAB color space can
describe all the colors visible to human eyes and was created
to serve as a device-independent model [33], [34]. Second,
the B channel image IB is extracted because IB provides
the best contrast between central regions and leaf regions,
while the lightness channel is the brightest color channel, and
the A channel offers poor dynamic range. In order to reduce
the influence of background regions in IB , the morphological
reconstruction by erosion of IB from a marker image F
is performed, resulting in the morphologically reconstructed

(a) (b)

(c) (d)

Fig. 4. The process of plant region segmentation: (a) A fragment of the
denoised UAV image Id. (b) A fragment of the B channel image IB . (c) A
fragment of the morphologically reconstructed image Ire. (d) A fragment of
the region segmented image Is.

(a) (b)

(c) (d)

Fig. 5. The process of obtaining Ie: (a) A fragment of the original UAV
image I . (b) A fragment of the binary image Bpr . (c) A fragment of the
region segmented image Is. (d) A fragment of image Ie.

image Ire. F is obtained by eroding IB with a disk structuring
element of size 5 × 5. Finally the watershed segmentation
algorithm [35] is applied to divide the morphologically re-
constructed image Ire into a number of candidate tobacco
plant regions, resulting in the region segmented image Is. The
process of plant region segmentation is shown in Fig.4.

4) Plant Region Extraction: The image used for plant
region extraction (Ie) is obtained by carrying out a multiply
arithmetic operation on image Is and Bpr:

Ie(x, y) = Is(x, y)×Bpr(x, y) (7)

The process of obtaining Ie is given in Fig.5. A number of
candidate plant regions are extracted from Ie. Each candidate
plant region is resized into 28× 28× 3, and fed into a convo-
lutional neural network. Each candidate region is associated
with a class label 1 or 0. Label 1 means that the candidate
region contains a tobacco plant, while label 0 means that the
candidate region does not contain a tobacco plant. Fig.7 shows
some exemplary instances of candidate regions with labels 1
and 0.



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. XX, XX 2018 4

Fig. 6. A typical architecture of a convolutional neural network composed of three convolutional layers, one pooling layer and two fully connected layers.
The network utilizes 3× 3 convolutional kernels with stride 1 and 2× 2 pooling kernels with stride 2. ( The figure is modified from [23].)

(a)

(b)

Fig. 7. Some exemplary instances of candidate regions: (a) Examples of
candidate regions with label 1. Each candidate region contains a tobacco plant.
(b) Examples of candidate regions with label 0. Each candidate region does
not contain a tobacco plant.

B. Deep Neural Network Establishment

Training a deep convolutional neural network (CNN) is the
core component of the proposed algorithm. The CNN is com-
posed of multiple elementary neurons (units), each performing
convolution of the neurons’ weights with the input volume and
transforming a few weighted inputs into an output volume with
some nonlinear functions. The neurons are spatially arranged
in rectangular layers (grids) (Fig.6). The spatial arrangement
of neurons controls the primary characteristics of the CNN
and makes it suitable for a large variety of computer vision
tasks. Some other important characteristics of CNNs are given
as follows.

1) Sparse Interactions: Sparse Interactions mean that each
neuron is connected to only a small region of the input volume
or its receptive field (RF). This is accomplished by making the
kernel smaller than the input. For example, when processing
an image, although the input image may have a number of
pixels, only small and meaningful features such as edges are
detected with kernels. In other words, fewer parameters need to
be stored, which greatly improves the statistical efficiency and
memory requirement of the network compared with traditional
fully-connected neural networks. More specifically, if a layer
has 3× 3 kernels and 1 stride, it only needs 9 neurons when
applied to a 5 × 5 single-channel image. Sparse Interactions
comply with certain aspects of natural visual systems [24] and
greatly improve the performance of the neural network.

2) Parameter Sharing: Parameter Sharing refers to shar-
ing the same parameters across neurons in the same layer.
Compared with traditional neural networks, each member of
the kernel is used at every position of the input in a CNN.
Parameter sharing also means that only one set of parameters
is learned for each new location, rather than learning a separate
set of parameters. It further reduces the number of parameters
and contributes to the equivariance of the extracted features.
For example, when connected to a single channel image, a
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layer of neurons with 3 × 3 kernels only has 10 parameters
(nine for pixels in the RF and one for the neuron threshold).

3) Pooling (subsampling): Pooling means performing ag-
gregations of the neurons’ outputs by other means rather
than convolution. Max-pooling, the most common pooling
function, reports the maximum output within a rectangular
neighborhood. Pooling contributes to the invariance to local
translation and reduces the number of parameters.

A typical CNN consists of several convolutional and pooling
layers optionally followed by one or more fully connected
layers (Fig.6). The input to a convolutional layer is a h×w×c
image, where h and w are the height and width of the image,
and c is the number of image channels. The convolutional
layer will have k kernels of size m × n × r, where m and
n are smaller than the dimensions of the image, r is less
than or equal to c and may vary for each kernel. The kernels
are convolved with the image to produce k feature maps of
size [h-m+1,w-n+1]. Then each feature map is subsampled,
typically with max pooling over p × q contiguous regions. p
and q generally belong to [2, 5]. After the convolutional layers
there is at least one fully connected layer, which maps the
excitations into output neurons, each corresponding to one
decision class.

After building the network’s architecture, the parameters ω
of the CNN, initialized with small signed random values, are
learned by minimizing the cost function

J(ω) =
1

n

n∑
i=1

L(yi, f(xi, ω)) (8)

where xi is the feature vector of the ith training example, yi
is the label of the ith training example. n is the number of
training examples. f(·) is the activation function, L(·) is the
loss function expressing the penalty for predicting f(xi, ω)
instead of yi. Stochastic Gradient Descent (SGD) [36] is the
most common optimization method applied to minimize the
cost function. Instead of using all training examples, SGD
updates the parameters of J(ω) with only a single or few
training examples (xs, ys) (called batches)

ωt+1 = ωt − α ∂

∂ωt
J(ω; xs, ys) (9)

where t indicates the iteration index, α is the learning rate,
∂

∂ωt J(ω) is the partial derivative of the cost function J(ω).
The parameters tend to converge to the local optima after the
update of each iteration.

After training the network, the final CNN is established.
The candidate regions are fed into the CNN, and the network
outputs the class labels. For a more comprehensive description
of CNN, [19], [37], [38] are recommended.

C. Postprocessing

The region-classified images Irc (Fig.8.(a)) are obtained
after classifying the candidate tobacco plant regions in UAV
images with a CNN. However, some non-tobacco plant regions
are misclassified as tobacco plant regions because they have
similar features with tobacco plant regions. These non-tobacco
plant regions are often far away from the tobacco plant regions

(a)

(b)

Fig. 8. (a) is a fragment of the region-classified image Irc. (b) is a fragment
of the final tobacco-plant-detected image Iplant. Red regions represent the
central regions of the detected tobacco plants.

Fig. 9. The UAV used for the acquisition of the tobacco plant images.

and often appear spatially isolated. In order to remove the
non-tobacco plants in Irc, the local density pt [39] of each
classified tobacco plant t by the CNN is computed as:

pt =

v∑
j=1

χ(dtj − dc) (10)

where χ(x) = 1 if x < 0 and χ(x) = 0 otherwise. dtj is the
distance between plant t and plant j. dc is a cutoff distance.
v is the number of the closest tobacco plants of plant t. If
pt > ( v2 ), plant t is considered a tobacco plant; If pt 6 ( v2 ),
plant t is considered a non-tobacco plant. In our experiment,
dc and v are set as 120 and 7, which were selected based
on an empirical study. The final tobacco-plant-detected image
Iplant is shown in Fig.8.(b).

III. DATASET DESCRIPTION AND EVALUATION METRICS

In this section, a concrete description of the UAV image
dataset is provided, followed by introducing the evaluation
metrics used in our experiment.

A. Dataset Description

The UAV image dataset consists of 14 tobacco plant images.
The images were obtained by using a UAV equipped with
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TABLE II
THE ARCHITECTURE OF THE EVALUATED CNNS. LAYER NAMES ARE FOLLOWED BY NUMBERS OF FEATURE MAPS. SQUARE BRACKETS SPECIFY THE

RECEPTIVE FIELD (m× n FOR CONVOLUTIONAL LAYERS OR p× q FOR POOLING LAYERS), AND STRIDE.

The 1st network architecture Input → conv20 → maxpool→ conv20 → maxpool→ conv500→ fc512 → fc512 → fc2
[5,5,1] [2,2,2] [5,5,1] [2,2,2] [4,4,1]

The 2nd network architecture Input → conv20 → conv20 → conv500→ fc512 → fc512 → fc2
[5,5,1] [5,5,1] [4,4,1]

imaging sensors (Fig.9). The images were acquired over the
agricultural regions of tobacco planting with different altitudes
in Chongqing, China, on June 27, 2016. The images are char-
acterized by three channels (RGB) and by a spatial resolution
of 35mm. All the acquired images are digitized to 4000×3000
pixels with 8 bits per color channel, and have been JPEG
compressed. The set of 14 images were divided into a training
and a test set.

1) Training Set: is composed of 7 images. It is used for the
training of a CNN for the classification of candidate tobacco
plant regions. 36857 candidate regions are extracted from the
training set. 18302 candidate regions are labeled 0 while 18555
candidate regions are labeled 1.

2) Test set: is also composed of 7 images. It is used for
evaluating the performance of the proposed algorithm for
tobacco plant detection. 33539 candidate regions are extracted
from the test set. 16773 candidate regions are labeled 0 while
16766 candidate regions are labeled 1.

B. Evaluation Metrics
In order to assess the performance of the proposed algorith-

m, three commonly used metrics are applied:

Sensitivity =
TP

TP + FN
(11)

Specificity =
TN

TN + FP
(12)

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

where TP , TN , FP and FN indicate true positive (the
number of correctly identified tobacco plants), true negative
(the number of correctly identified non-tobacco plants), false
positive (the number of incorrectly identified tobacco plants)
and false negative (the number of incorrectly identified non-
tobacco plants), respectively. Sensitivity (Se) reflects the al-
gorithm’s capability to detect tobacco plants while Specificity
(Sp) is a measure of the algorithm’s effectiveness in identifying
non-tobacco plants. Accuracy (Acc) is a global measure of the
performance of the proposed method.

In order to further evaluate the capability of our method-
ology to correctly identify and count the number of tobacco
plants in UAV images, two useful evaluation metrics are also
employed in our experiment.

The first one is the producer’s accuracy (Pacc) [6], [40]:

Pacc =
TP

N
(14)

where N indicates the actual number of tobacco plants in the
UAV images. Pacc shows the percentage of correctly identified
tobacco plants.

The second one is the relative error (Error) [41], [42]:

Error =
|Np −N |

N
× 100% (15)

where Np = TP + FP is the number of detected tobacco
plants. Error measures the performance of the proposed
method on yield estimation.

IV. THE EXPERIMENTS AND RESULTS

A. The Network Architecture and Training Parameters

A range of network architectures are considered in our
experiments. Two representative network architectures are
used in this work. In the first architecture, the input image
is passed through a stack of convolutional layers and max-
pooling layers, followed by three fully connected (FC) layers:
the first and the second have 512 neurons, the third performs
binary classification and thus contains 2 neurons (one for each
class). Weights in each layer are sampled from a Gaussian
distribution with mean µ = 0 and variance σ2 = 1. The
second network architecture abandons max-pooling, which is
the only difference with the first one. The reason we chose
this architecture for comparison is because it has been shown
that networks without pooling layers may perform better when
applied to small images [43].

Training is carried out by SGD. In each iteration, the
training examples are passed through the network, which
propagates excitations through the network and calculates
errors committed by the neurons. Then the errors are back-
ward propagated through the network, and used to calculate
parameter corrections. The parameters are updated with 200
batches. The learning rate is set as 5×10−4. The training was
stopped after 11100 iterations. The implementation was based
on Matcovnet [44], an effective and flexible toolbox of CNN.

B. Experimental Results

In order to assess the performance of the proposed algorith-
m, the following three experiments are conducted. In the first
experiment, the performance of tobacco plant detection was
analyzed. In the second experiment, the comparison between
different classifiers was performed when CNNs were exploited
just for feature generation. In the third experiment, the analysis
of the sensitivity of the proposed algorithm to the number of
training examples was given.

1) The 1st experiment: The performance of the proposed
algorithm on the UAV test dataset is shown in Table III.
In the first CNNs’ network, the proposed algorithm achieves
high scores on Sensitivity and Specificity, with average values
of 0.9525 and 0.9159, respectively, which means that the
proposed algorithm performs well on identifying both tobacco
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TABLE III
THE PERFORMANCE OF THE PROPOSED ALGORITHM ON THE UAV IMAGE DATASET

The network architectures Images TP TN FP FN N Se Sp Pacc Acc Error(%)

The 1st network architecture

Image Test 1 2202 2015 293 131 2506 0.9438 0.8731 0.8787 0.9086 0.44%
Image Test 2 2681 1973 84 189 2924 0.9341 0.9592 0.9169 0.9446 5.44%
Image Test 3 1498 3877 79 96 1660 0.9398 0.9800 0.9024 0.9685 5.00%
Image Test 4 3238 2076 286 156 3551 0.9540 0.8789 0.9119 0.9232 0.76%
Image Test 5 2623 2540 271 144 3026 0.9480 0.9036 0.8668 0.9256 4.36%
Image Test 6 2591 1519 183 52 2658 0.9803 0.8925 0.9748 0.9459 4.36%
Image Test 7 1127 1457 120 38 1163 0.9674 0.9239 0.9690 0.9424 7.22%

Average 2280 2208 188 115 2498 0.9525 0.9159 0.9126 0.9370 3.94%

The 2nd network architecture

Image Test 1 2190 2004 304 143 2506 0.9387 0.8683 0.8739 0.9037 0.48%
Image Test 2 2663 1966 91 207 2924 0.9279 0.9558 0.9107 0.9395 5.81%
Image Test 3 1474 3810 146 120 1660 0.9247 0.9631 0.8880 0.9521 2.41%
Image Test 4 3206 2072 290 188 3551 0.9446 0.8772 0.9028 0.9170 1.55%
Image Test 5 2549 2549 262 218 3026 0.9212 0.9068 0.8424 0.9139 7.11%
Image Test 6 2559 1516 186 84 2658 0.9682 0.8907 0.9628 0.9379 3.27%
Image Test 7 1124 1445 132 41 1163 0.9648 0.9163 0.9665 0.9369 8.00%

Average 2252 2195 202 143 2498 0.9414 0.9112 0.9015 0.9287 4.09%

TABLE IV
THE PERFORMANCE COMPARISON AMONG THE NN, SVM AND RANDOM FORESTS CLASSIFIERS

Network Classifiers Se Sp P Acc Error

The first CNNs’ network
NN 0.9468 0.9196 0.9073 0.9361 4.50%

SVM 0.9462 0.9215 0.9065 0.9365 4.39%
Random Forests 0.9470 0.9199 0.9073 0.9363 4.49%

The second CNNs’ network
NN 0.9484 0.9079 0.9081 0.9304 3.60%

SVM 0.9454 0.9085 0.9054 0.9295 3.87%
Random Forests 0.9361 0.9148 0.8971 0.9282 4.18%

plants and non-tobacco plants. The proposed algorithm also
has good performance on Accuracy and Pacc, with average
values of 0.9370 and 0.9126, respectively, which means that
the proposed algorithm has good capability of correctly i-
dentifying and counting the number of tobacco plants in
UAV images. Moreover, the proposed algorithm has less than
4% Error on average, which indicates that the proposed
algorithm performs well on yield estimation. In the second
CNNs’ network, the proposed algorithm yields good results
for Sensitivity, Specificity, Accuracy, Pacc and Error, with
average values of 0.9414, 0.9112, 0.9287, 0.9015 and 4.09%,
respectively. The proposed algorithm achieves slightly better
results in the first CNNs’ network than in the second CNNs’
network. The final tobacco-plant-detected images achieved by
the first CNNs’ network are shown in Figures.11 and 12.

2) The 2nd experiment: when CNNs are used just for fea-
ture generation, a performance comparison among the nearest
neighbor (NN), SVM and Random Forests classifiers is shown
in Table IV. In this experiment, for the first CNNs’ network,
the values of neurons in the 8th layer are extracted as features;
for the second CNNs’ network, the values of neurons in the
6th layer are extracted as features. In both cases, the values of
neurons in the second to the last layer in the CNNs’ networks
are chosen as features. Libsvm toolbox [45] is used in the
experiment. From Table IV, it can be observed that the results
among the NN, SVM and Random Forests classifiers are close
in both CNNs’ networks. The fact that all the three classifiers

can obtain promising performance may indicate that CNNs
can extract useful features.

3) The 3rd experiment: The analysis of the sensitivity of
the proposed algorithm to the number of training examples
is given in Fig.10, from which it can be observed that with
the increase of the number of training examples, all the
evaluation metrics become better in both CNNs’ networks.
When the number of training examples is less than 20000, the
performance of the proposed algorithm improves significantly
with the increase of the number of training examples. When
the number of training examples is more than 20000, for both
CNNs’ networks, the performance of the proposed algorithm
differs very slightly with the variation of training examples.
The performance of the proposed algorithm becomes almost
stagnant, which indicates that we can choose the value of
training examples as close to 20000.

V. CONCLUSION

The tobacco plant is an important economic crop in China,
India, Brazil and the United States. Tobacco plant detection is
of great significance to the management of tobacco planting.
However, current methods of tobacco plant detection are based
on site inspection, which is tedious and time-consuming.
In order to achieve automated detection of tobacco plants,
tobacco plant images are collected by means of UAVs. These
images have high spatial resolution and contain a high level of
detail for the detection of tobacco plants. Then a new algorithm
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Fig. 10. Variations of different evaluation metrics with the increase of the number of training examples. (a) The variation of average Sensitivity. (b) The
variation of average Specificity. (c) The variation of average Accuracy. (d) The variation of average Pacc. (e) The variation of average Error.

based on deep neural networks is proposed for the automated
detection of tobacco plants in UAV images. To the best of our
knowledge, this is the first research aimed at detecting tobacco
plants in UAV images. The proposed algorithm has three
stages. In the first stage, a number of candidate tobacco plant
regions are extracted from UAV images using morphological
operations and watershed segmentation. Each candidate region
contains a tobacco plant or a non-tobacco plant. In the second
stage, a deep convolutional neural network is trained and
established in order to classify each candidate tobacco plant
region as a tobacco plant region or non-tobacco plant region.
In the final stage, postprocessing is performed with the purpose
of further removing non-tobacco plants.

In order to evaluate the performance of tobacco plant
detection, the proposed algorithm is tested on a UAV image
dataset. The proposed algorithm performs well on the detection
of tobacco plants and achieves an average Accuracy, Pacc

and Error of 0.9370, 0.9126 and 3.94%, respectively. The
experimental results demonstrate that the proposed algorithm
has a good capability to correctly identify and count the
number of tobacco plants in UAV images. Future research can
be performed by adapting the algorithm to detect other food
crops, such as corn, rice and rapeseed.
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[40] N. Lavrač, P. Flach, and B. Zupan, “Rule evaluation measures: A unify-
ing view,” in International Conference on Inductive Logic Programming.
Springer, 1999, pp. 174–185.

[41] J. S. Armstrong and F. Collopy, “Error measures for generalizing about
forecasting methods: Empirical comparisons,” International Journal of
Forecasting, vol. 8, no. 1, pp. 69–80, 1992.

[42] B. E. Stine, C. Hess, L. H. Weiland, D. J. Ciplickas, and J. Kibarian,
“System and method for product yield prediction using a logic charac-
terization vehicle,” Dec. 21 2004, uS Patent 6,834,375.

[43] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving
for simplicity: The all convolutional net,” Eprint Arxiv, 2014.

[44] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks
for matlab,” in Proceedings of the 23rd ACM International Conference
on Multimedia. ACM, 2015, pp. 689–692.

[45] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 27:1–27:27, 2011, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Zhun Fan received the B.S. and M.S. degrees in
control engineering from Huazhong University of
Science and Technology, Wuhan, China, in 1995 and
2000, respectively, and the Ph.D. degree in electri-
cal and computer engineering from the Michigan
State University, Lansing, MI, USA, in 2004. He is
currently a Full Professor with Shantou University
(STU), Shantou, China. He also serves as the Head
of the Department of Electrical Engineering and the
Director of the Guangdong Provincial Key Labora-
tory of Digital Signal and Image Processing. Before

joining STU, he was an Associate Professor with the Technical University of
Denmark (DTU) from 2007 to 2011, first with the Department of Mechanical
Engineering, then with the Department of Management Engineering, and as
an Assistant Professor with the Department of Mechanical Engineering in the
same university from 2004 to 2007. He has been a Principle Investigator of a
number of projects from Danish Research Agency of Science Technology and
Innovation and National Natural Science Foundation of China. His research
is also supported by the National Science Foundation. His major research
interests include intelligent control and robotic systems, robot vision and cog-
nition, MEMS, computational intelligence, design automation, optimization of
mechatronic systems, machine learning and image processing.

Jiewei Lu is with the key lab of digital signal and
image processing of Guangdong Province, Shantou
University, Shantou, China, where he is currently
pursuing the M.S. degree in information and com-
munication with the School of Engineering. His
current research interests include medical image
analysis, image processing and machine learning.



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. XX, XX 2018 12

Maoguo Gong received the B.S. degree in electronic
engineering and the Ph.D. degree in electronic sci-
ence and technology from Xidian University, Xian,
China, in 2003 and 2009, respectively. He has been a
Teacher with Xidian University, since 2006, where
he was promoted to Associate Professor and Full
Professor, both with exceptive admission, in 2008
and 2010. He has authored over 50 papers in jour-
nals and conferences, and holds 14 granted patents.
His current research interests include computational
intelligence with applications to optimization, learn-

ing, data mining, and image understanding.
Dr. Gong received the prestigious National Program for the support of

Top-Notch Young Professionals from the Central Organization Department of
China, the Excellent Young Scientist Foundation from the National Natural
Science Foundation of China, and the New Century Excellent Talent in
University from the Ministry of Education of China. He is the Vice Chair
of the IEEE Computational Intelligence Society Task Force on Memetic
Computing, an Executive Committee Member of the Chinese Association
for Artificial Intelligence, and a Senior Member of the Chinese Computer
Federation.

Honghui Xie received the B.S. degree from Hunan
City University, Hunan, China, in 2010, and the M.S.
degree from Shantou University, Guangdong, China,
in 2017. His current research interests include image
processing and machine learning.

Erik D. Goodman is PI and Director of the BEA-
CON Center for the Study of Evolution in Action, an
NSF Science and Technology Center headquartered
at Michigan State University and funded beginning
in 2010. His research centres on application of
evolutionary principles to solution of engineering
design problems. He received the PhD in computer
and communication sciences from the University of
Michigan, Ann Arbor, in 1971. He became Asst.
Prof. of Electrical Engineering and Systems Science
in 1972, Assoc. Prof. in 1978 and Prof. in 1984, all

at Michigan State University, where he also holds appointments in Mechanical
Engineering and in Computer Science and Engineering. He directed the Case
Center for Computer-Aided Engineering and Manufacturing from 1983 to
2002, and MSUs Manufacturing Research Consortium from 1993 to 2003. He
has co-directed MSUs Genetic Algorithms Research and Applications Group
(GARAGe) since its founding in 1993. He is co-founder and vice president of
Red Cedar Technology, Inc., a firm that develops design optimisation software
for use in industry. He was chosen Michigan Distinguished Professor of the
Year, 2009, by the Presidents Council, State Universities of Michigan.

Prof. Goodman was Chair of the Executive Board and a Senior Fellow of the
International Society for Genetic and Evolutionary Computation, 20032005.
He was founding chair of the ACMs Special Interest Group on Genetic and
Evolutionary Computation (SIGEVO), serving from 2005 to 2007.


