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Abstract—Automated optic disk (OD) detection plays an im-
portant role in developing a computer aided system for eye
diseases. In this paper, we propose an algorithm for OD detection
based on structured learning. A classifier model is trained based
on structured learning. Then we use the model to achieve the
edge map of OD. Thresholding is performed on the edge map
thus a binary image of the OD is obtained. Finally, circle Hough
transform is carried out to approximate the boundary of OD by a
circle. The proposed algorithm has been evaluated on three public
datasets and obtained promising results. The results (an area
overlap and Dices coefficients of 0.8605 and 0.9181, respectively,
an accuracy of 0.9777, and a true positive and false positive
fraction of 0.9183 and 0.0102) show that the proposed method
is very competitive with the state-of-the-art methods and is a
reliable tool for the segmentation of OD.

Index Terms—optic disk, structured learning, edge detection,
fundus image.

I. INTRODUCTION

Nowadays, some of the most common causes of visual
impairment and blindness are diabetic retinopathy, glaucoma,
hypertension and macular degeneration [1], [2]. These eye
diseases manifest themselves in the retina [3] and all of
these diseases can be detected through a direct and regular
ophthalmologic examination. However, many factors, such as
population growth, aging, are contributing to the increase of
the patients with these diseases, which makes the number of
ophthalmologists needed for evaluation by direct examination
becomes a limiting factor [4]. As a result, a computer aided
diagnosis system which can significantly reduce the burden
on the ophthalmologists and may alleviate the inter and intra
observer variability [5] is desired.

In the process, OD detection plays an important role,
which has attracted extensive attention from clinicians and
researchers. OD detection is often a key step for the detection
of other anatomical structures [6], [7]. For example, the OD
location helps to prevent false positive detection of exudates
incurred by diabetic retinopathy, since both OD and exudates
are formed by bright regions in the fundus image [4]. Be-
sides, the vessels, which are of direct importance in assessing
vascular condition, radiate from the OD, which is the starting
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point of some algorithms for tracking vessels [7]. Moreover,
the ratio of the size of the OD over the size of the optic cup has
been widely utilized for glaucoma diagnosis. A high cup-to-
disc ratio will indicate that a fundus is suspicious of glaucoma
[4].

However, detecting OD automatically is challenging due
to the variations of the OD’s shape, size, colour and so on.
Many OD detection algorithms have been introduced in the
literature. The review of the methods for OD segmentation
can be seen in [3] and [8]. Morales et al. [4] divided these
methods into three categories, namely template based methods
[9], [10], [11], deformable model based methods [12], [13],
[7] and morphology based methods [14], [4], [15].

In the category of the template based methods, the method
presented in [9] extracts the candidate regions of the OD
by thresholding. Then Hough transformation is performed to
outline the candidates as circles and the one which has the
highest average intensity is selected as the OD. In [10], Prewitt
edge detector is applied to obtain OD boundary candidates
and circle Hough transform is employed to finish the final
OD boundary segmentation. In [11], Lalonde et al. employed
the Canny edge detector to extract the edge of OD and then
Hausdorff-based template matching is applied to fit the OD
boundary by a circle.

For the deformable model based methods, in [12], colour
mathematical morphology is applied to remove the blood
vessels and provide a homogenous OD region for the snake to
lock onto. In [13], the principal component analysis (PCA) is
employed to locate OD, and the boundary of OD is detected by
a modified active shape model. In [7], Lowell et al. proposed
an OD segmentation method using a deformable contour
model. They exploited the specific characteristics of the OD
to address the problem including strong distractors along the
pallor and vessel edges, weakness of the rim and peripapillary
atrophy.

For the morphology based methods, Walter et al. [14]
extracted the OD using watershed transformation based on
the assumption that the OD represents a bright region. In [4],
the gray image obtained by PCA is chosen as the input. The
stochastic watershed is applied to extract the watershed regions
then region discrimination is performed to select the pixels
which belong to the OD based on the average intensity of
the region. In [15], Welfer et al. proposed an adaptive method
for the segmentation of the OD using adaptive morphological
approach.

All these methods introduced above belong to unsupervised
methods. They were designed based on some assumptions,
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such as, the OD appears as a bright region in the fundus image
[4], [14]. In this paper, we propose a method for OD detection
based on structured learning which belongs to a supervised
method to avoid making assumptions. The proposed method
utilizes the edge information of the fundus image to detect the
OD. It is different from the traditional method which applied
the traditional edge detector, such as Prewitt edge detector
[10], to capture the edge information. Since the vascular edges
on the fundus image are very strong, when the traditional edge
operator is applied to detect the OD edge, many vascular edges
are detected besides OD edge.

In addition, for the traditional edge operator, using different
channels as input may lead to different results, which makes
choosing which channels as input is a critical decision. In
[16], the green channel of the original fundus image is used.
In [15], the red channel is used. In [10], a combination of the
red channel and green channel is used. However, due to the
variability of the fundus image, any individual method does
not guarantee an optimal result [4].

A typical example to illustrate the disadvantages of the
traditional edge operator is given in Fig. 1. It can be observed
that when the Prewitt edge detector is performed on the green
channel, only vascular edges are detected, which is shown in
Fig. 1(e). Besides, Fig. 1(e) and Fig. 1(f) illustrate that using
different channels as input leads to different results.

To address these disadvantages, we employ the structured
learning to detect the OD in this paper. Because structured
learning belongs to a supervised method, we can train the
edge detector to capture the special edge information, such
as the OD edge information in this work. Moreover, we can
simply take the original fundus image as the input of the edge
detector to be trained, thus avoiding the need to consider which
channels of the original image should be chosen. The reason
for this is because Random Forest is employed as the edge
detector for structured learning in this work, which has the
capability to automatically select an optimal set of features
from the original fundus image including all three (green, red
and blue) channels, so that the resulting detector can capture
the edge most properly. Fig. 1(d) gives an example where OD
edge is obtained by the proposed method. Compared with the
Prewitt operator [10], when structured learning is applied to
detect the OD edge, there are hardly any blood vessel edges
but the obvious OD edge map in the detected result.

The rest of the paper is organized as follows: in the Section
II, the main steps of the proposed algorithm are described
and explained. Section III presents the empirical study of
parameter setting and experimental results obtained using
three public databases MESSIDOR, DRIONS and ONHSD.
Comparisons with other state-of-the-art methods, including
[4], [7] and [10] are also made. We have discussion and
conclusion in Section IV. A preliminary version of this work
has been reported in [17].

II. METHOD

To realize the segmentation of OD, we crop the sub images
which include the OD from the fundus images first, which can
be done by locating the OD. The review of the methods for OD

(a) (b) (c)

(d) (e) (f)

Fig. 1. A typical example to illustrate the different edge detection results.
(a). Fundus image. (b). The green channel of the fundus image. (c). The red
channel of the fundus image. (d). Edges obtained by structured learning. (e).
Edges obtained by applying the Prewitt operator on the green channel. (f).
Edges obtained by applying the Prewitt operator on the red channel.

Fig. 2. The process of cropping the sub image.

location can be seen in [8]. We employ the correlation filter
[7] which uses a Laplacian of Gaussian template to match the
key elements of OD structure to detect a point located in the
OD. A 300 × 300 sub image which include the OD is then
cropped based on the detected point. The process of cropping
a sub image from the fundus image can be illustrated by Fig.
2. It is noteworthy to point out that subsequent operations are
performed on the sub images.

The overall flowchart for OD segmentation is shown in
Fig. 3. In the training stage, structured learning is used to
train the model. In the test stage, given an unseen image, the
trained model is employed to achieve the edge map of the OD.
Thresholding is then performed on the edge map to obtain a
binary image. Finally, circle Hough transform is applied to
approximate the boundary of OD.

A. Obtaining Edge Map by Structured Learning

1) Problem Formulation: Structured learning or structured
prediction is a term for supervised machine learning tech-
niques that involve predicting structured objects, rather than
scalar discrete or real values. It addresses the problem of
learning a mapping where the input or output space may be
arbitrarily complex representations, such as strings, sequences,
graphs, object pose, bounding boxes etc. [18], [19], [20].
Similar to commonly used supervised learning techniques,
structured prediction function are typically trained by means
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Fig. 3. The flow chart of The proposed algorithm. In training stage, structured learning is used to obtain the model. Then we use the trained model to
achieve the edge map of OD. Thresholding is performed on the edge map thus a binary image of OD is obtained. Finally, circle Hough transform is carried
out to approximate the boundary of OD.

Fig. 4. The OD boundary is consisted of local structures, these structures are
usually characterized by arcs. Since the output space of the structured learning
can be arbitrarily complex representing, the problem of OD edge detection
can be formulated as predicting local segmentation masks given fundus image
patches.

of observed data in which the ground truth is used to adjust
model parameters. To learn more about structured learning,
we refer readers to [21] for a comprehensive reading.

Similar with general images, the OD edges in local patches
are highly interdependent [22]. They often contain well-known
patterns, such as arc. Fig. 4 gives some examples where P1, P2,
P3 are the patches with OD edges, P4 is the patch without OD
edge. L1, L2, L3 and L4 are corresponding local segmentation
masks. Since the output space of the structured learning can
be arbitrarily complex representations, the problem of OD
edge detection using structured learning can be formulated
as predicting local segmentation masks given input image
patches. Concretely, given a patch on the fundus image (such
as P1 in Fig. 4.) as input, the desired output of the trained
model is a local segmentation mask (such as L1 in Fig. 4.).

2) OD Edge Detection: In this work, we employ the
Structured Edge Detection Toolbox1 developed by Dollár [18]
to obtain the edge map of OD. Here, we give an explanation
of how to apply the structured forests for OD edge detection.
For more details of the structured forests, please refer to paper
[18].

1https://github.com/pdollar/edges

The pipeline of the method using structured forests to
detect the OD edge can be illustrated by Fig. 5. A patch
is cropped from the fundus image. A feature vector is then
extracted to represent the patch so that the trained random
forest can recognize the pattern in the patch. The random
forest consists of different trees and the output of each tree is
a local segmentation of the OD edge. The final output of the
random forest is averaged over the local segmentation on each
tree. A sliding window with default size 32× 32 slides across
the fundus image and the trained structured forest makes a
prediction for each window to achieve the OD edge map.

For the details of feature extraction for each patch, please
refer to the paper [18]. Here, we only give a brief explanation.
Fig. 6 demonstrates the process of feature extraction for each
patch. 13 channels, including 3 color, 2 magnitude and 8
orientation channels, are generated first. A patch (32 × 32)
is cropped from each channel and downsampled by a factor
of 2, resulting in 32 × 32 × 13/4 = 3328 candidate features.
In addition, the pair-wise features are extracted for the patch.
Concretely, the patch is downsampled to a resolution of 5×5.
Sampling all candidate pairs and computing their differences
yield an additional C2

5×5 = 300 candidate features for each
patch in each channel. Thus the total number of features for
each patch is 13 × 300 + 3328 = 7228.

It should be noted that the edge map (as shown in Fig. 1(d)
as an example) obtained by the structured random forest has
a phenomenon of diffusion. To address this phenomenon, we
first employ the thresholding to create a binary image, and
then apply circle Hough transform on the binary image to
approximate the OD boundary.

B. Thresholding

Given a grayscale image I , thresholding can be used to
create a binary image BW . The threshloding method replaces
each pixel in an image with a black pixel if the intensity
I(x, y) is less than some fixed value T , or a white pixel if
the image intensity is greater than that value. This can be
defined as:

BW (x, y) =

{
1 if I(x, y) > T
0 others (1)

The key step of thresholding is to select the threshold T .
In this work, we employ the Otsu’s method [23] to decide the
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Fig. 5. The process of detecting the edge map of OD by structured forest.

Fig. 6. The schematic of feature extraction for each patch.

(a) (b) (c)

Fig. 7. Different results when f is set to different values. (a). f is equal to
1, (b). f is equal to 0.618, (c). f is equal to 0.4.

threshold. To protect more information of the OD boundary,
we reduce T by multiply a factor f less than 1. Fig. 7 shows
the binary image when f is equal to 1, 0.618, 0.4, respectively.
We can see that when f is smaller, more OD edge information
is protected. But at the same time, more false edge may be
included. So a tradeoff has to be made. In our work, we set
f is to 0.618 by empirical experiments.

C. Circle Hough Transform
Circle Hough transform is a popular method which used to

find the circle patterns in the image [24]. The procedure of
circle Hough transform can be defined as [10] :

(cx, cy, r) = CHT (IBW , rmin, rmax) (2)

where IBW is a binary image and (rmin, rmax) is the search
range of the radius. (cx, cy) and r are respectively the center

(a) (b)

Fig. 8. An example of fitting the OD boundary by a circle. (a). A circular
approximation of the OD boundary. (b). The effect of superimposing the circle
on the fundus image.

position and radius obtained by circle Hough transform.
The rmin and rmax are key parameters which used to limit

the search range of the circle Hough transform. Assume that
the size of a fundus image is sx× sy , the following equations
are used for setting rmin and rmax automatically based on the
empirical study in this work:

rmin = 0.013 × smax − 0.01 × smin + 37 (3)
rmax = 0.013 × smax − 0.01 × smin + 77 (4)

where smax = max[sx, sy], smin = min[sx, sy]. For example,
if the size of the fundus image is 640×480 , then smax = 640,
smin = 480. Fig. 8 gives an example where the red circle is the
approximation of the OD boundary detected by circle Hough
transform.
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III. RESULTS

The proposed algorithm has been evaluated on three public
databases: MESSIDOR [25], DRIONS [26], [27] and ONHSD
[7].

MESSIDOR database contains 1200 eye fundus color im-
ages. The images were acquired by 3 ophthalmologic depart-
ments using a color video 3CCD (Charge Coupled Device)
camera on a Topcon TRC NW6 non-mydriatic retinpgraph
with 45 degree field of view. The images were captured using 8
bits per color plane at 1140×1960, 2240×1488 or 2304×1536
pixels. 800 images were acquired with pupil dilation and 400
without dilation[25]. The OD boundaries of these 1200 images
have been segmented and are currently available online [28].

DRIONS database consists of 110 colour digital fundus
images with their OD manually segmented by two different
specialists. The images were acquired with a colour analogical
fundus camera and digitized using a HP-PhotoSmart-S20 high-
resolution scanner. The resolution is 600 × 400 and 8 bits
per pixel. In this database, the mean age of the patients was
53.0 years (s.d. 13.05), with 46.2% male and 53.8% female
and all of them were Caucasian ethnicity. 23.1% patients had
chronic simple glaucoma and 76.9% eye hypertension. Some
of the 110 images contain visual characteristics related to
potential problems that may distort the detection process of
the OD contour. These visual characteristics are listed in table
I [26]. The OD boundaries of these 110 images have been
segmented by two specialists. To facilitate comparing with
other algorithms on this database, in this work, the images
segmented by the first specialist have been chosen as the
golden standard, the same choice has been made by [4].

TABLE I
VISUAL CHARACTERISTIC OF DRIONS DATABASE

Characteristics Number of Images

Light Artifact 3
Rim Blurred or Missing 5

Moderate Peripapillary Atrophy 16
Concentric Peripapillary Atrophy 20

Strong Pallor Distractor 6

ONHSD database contains 99 fundus images with a reso-
lution of 640× 480 taken from 50 patients randomly sampled
from a diabetic retinopathy screening programme. 96 images
have discernable optic nerve head (ONH) and 90 images
are nominated for evaluating segmentation of the algorithm.
These images were acquired using a Canon CR6 45MNf
fundus camera, with a field angle lens of 45 degrees. The
subjects are from various ethnic backgrounds (Asian 20%,
Afro-Caribbean 16%, Caucasian 50%, Unknown 14%). 19
have type 2 diabetes mellitus, while the diabetes status was
unavailable for the remaining 31. In this database, there is
considerable variation in the images, with many characteristics
that can affect the algorithm. They are summarized in Table II
[7]. In this database, the ONH center has been marked up by
a clinician, and four clinicians marked the ONH edge which
intersects with radial spokes (at 15 degree angles) radiating
from the nominated center. The average of the edges marked

Fig. 9. The sketch map used to demonstrate the basic metrics TP, FP, TN
and FN.

by the four experts has been used to generate the golden
standard.

TABLE II
VISUAL CHARACTERISTIC OF ONHSD DATABASE

Characteristic Number of images

No detectable optic nerve head 4
Severe Cataract 8

Moderate Cataract 2
Exudates or laser scars 7

Light artifacts 7
Easily visible choroidal vessels 20
Some of rim blurred or missing 27

Severe peripapillary atrophy 6
Moderate peripapillary atrophy 29

Concentric peripapillary atrophy 23
Strong pallor distractor 13

The performance of the methods has been evaluated accord-
ing to different metrics. We use Fig. 9 to illustrate the con-
cepts. Let TP represent True Positive, FP False Positive, TN
True Negative, and FN False Negative. Based on these basic
metrics, Area Overlap (AOL), Dices (S) coefficients, Accuracy
(Ac), True Positive Fraction (TPF) and False Positive Fraction
(FPF) are defined as follows:

AOL = TP/(TP + FN + FP ) (5)
S = 2TP/(2TP + FN + FP ) (6)
Ac = (TP + TN)/(TP + TN + FP + FN) (7)
TPF = TP/(TP + FN) (8)
FPF = FP/(FP + FN) (9)

Since the proposed algorithm belongs to supervised method,
we employ K-fold cross validation [29] to evaluate the algo-
rithm. ( K is equal to 12 for the MESSIDOR database since
the images have been divided into 12 groups (each group
contains 100 images) by the authors [25], K is equal to 10
for DRIONS and 9 for ONHSD to ensure the images in the
database can be averagely divided into K groups.

It is noteworthy to point out that the accuracy of locating
the OD employed the correlation filter [7] are 99%, 98%, 97%
on ONHSD, DRIONS and MESSIDOR datasets respectively.
For those images that the OD is located by correlation filter
successfully, we employ the method demonstrated in Fig. 2
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to crop the sub images automatically. For those images that
correlation filter fails to locate the OD, we crop the sub images
by hand. As a result, all the sub images used for evaluating
the performance of the proposed method include the OD for
segmentation.

A. Empirical Study of Parameter Setting

The proposed method for OD detection is based on struc-
tured forests, whose performance may be influenced by pa-
rameters, including the max depth of the tree, the number of
decision trees, the number of patches used to train the forest,
the number of features used to train the tree, the dimensionality
of the binary vector, the size of the patch, the size of the local
segmentation and the number of principle components [18].
We employ the MESSIDOR database to study the influence
of the parameters on the performance of the proposed method.
We set a default value for each parameter. Then we allow one
change when the others are equal to the default values. As a
result, we can explore how varying the parameter may affect
the performance of the proposed method. The default value
of each parameter is obtained by empirical study and listed in
Table III.

TABLE III
THE DEFAULT VALUE OF EACH PARAMETER

,

Parameters Default Values

The max depth of the tree 64
The number of the trees 8
The number of patches 106

The number of features 1932
The dimensionality of the binary vector 256

The size of the patch 32× 32
The size of the local segmentation 16× 16

The number of principle components 5

The experiments are performed on a PC equipped with an
Intel (R) Core (TM) i-5 4210 M CPU at 2.60 GHZ and 4 GB
of RAM capacity using MATLAB. Once we have obtained
the trained structured forest (It takes about 30 minutes to
train a tree when the number of the patches used to train the
tree is 106), the average computational time obtained for OD
segmentation is 1.7494s with a standard deviation of 0.2987s.

Fig. 10 shows how varying the parameters affects the AOL,
a metric which can reflect the overall performance of the
proposed method. Fig. 10 (a) gives the relationship between
the max depth of the tree and the AOL. It is noted that the
performance of the algorithm improves with the increase of
the max depth of the tree until it reaches 32. When the max
depth of the tree is greater than 32, the performance of the
algorithm tends to be stagnant. A similar trend can be observed
for other parameters as shown in Fig. 10(b)∼Fig. 10(f). In
addition, Fig. 10(g) and Fig. 10(h) show how varying the size
of local segmentation and the number of principle components
affect the AOL respectively. It is noted that the performance
of the algorithm improves with the increase of the size of
the local segmentation in the range of 0 to 16 . After that, the
performance decreases slightly and then becomes stable again.
A similar trend can be observed for the number of principle
components as shown in Fig. 10(h).

We set the parameters equal to the default values as shown
in Table III for the following experiments. Table IV shows
the average values and the standard deviations of the various
performance metrices achieved on the MESSIDOR database,
DRIONS database and ONHSD database.

TABLE IV
THE RESULTS OF THE PROPOSED METHOD ON THE

MESSIDOR, DRIONS AND ONHSD DATABASES (AVERAGE
VALUES AND STANDARD DEVIATIONS).

MESSIDOR DRIONS ONHSD

AOL 0.8636(0.1268) 0.8473(0.0964) 0.8346(0.1003)
S 0.9196(0.1019) 0.9137(0.0634) 0.9032(0.0740)

Ac 0.9770(0.0284) 0.9760(0.0166) 0.9895(0.0077)
TPF 0.9212(0.1213) 0.8957(0.0927) 0.9077(0.0991)
FPF 0.0106(0.0129) 0.0098(0.0092) 0.0055(0.0052)

AOL–Area Overlap; S–Dices coefficients; Ac–Accuracy; TPF–True Pos-
itive Fraction; FPF–False Positive Fraction.

Fig. 11 gives some examples where red circles are the OD
boundaries detected by the proposed algorithm, and green cir-
cles are the ground truth. It is noted that the proposed method
can detect the OD boundaries properly for most given cases.
In addition, the proposed method can exclude the affections
coming from bright lesions, which is demonstrated by Fig.
11(p) whose original figure is shown in Fig. 2. In this case,
the proposed method can detect the OD boundary properly
even though the original fundus image is affected by bright
lesions. However, the proposed method may fail for some
cases, such as the ones with severe peripapillary atrophy (Fig.
11(l)), with OD rim missing (Fig. 11(s)). The reason is that
the proposed method relies on the edge information to detect
the OD. However, severe peripapillary atrophy may cause
false edge, and OD rim missing may cause edge information
missing. Both of them may make the edge detector difficult
to detect the true edge.

From these cases, we can see that when the detected
boundary are included in the ground truth, such as Fig. 11(l),
an ideal value of FPF is achieved even though the detected
result is not perfect at all. When the ground truth are included
in the detected boundary, such as Fig. 11(m), an ideal value of
TPF is obtained even though the detected result is not perfect
either. So, the indicators of TPF and FPF can only evaluate
the performance of the algorithm one-sided.

In addition, we can draw the conclusion that AOL is more
sensitive to the deteriorating results than Ac according the
definition of AOL and Ac. This can also be illustrated by
comparing Fig. 11(g) and Fig. 11(t), where AOL=0.9815,
Ac=0.9938 in Fig. 11(g) and AOL=0.8540, Ac=0.9911 in Fig.
11(t), which shows that for a deteriorating result the AOL
has more obvious change. It can also be illustrated in case
of Fig. 11(s) when a bad result is obtained, AOL can reflect
this more obviously than Ac (AOL=0.2358 while Ac=0.9414
in Fig. 11(s)).

B. Comparisons with Other Algorithms

As was introduced in Section I, the methods for segmen-
tation of OD can be divided into three categories: template
based methods, morphology based methods and deformable
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(a) The max depth of the tree (b) The number of the trees (c) The number of patches (d) The number of features

(e) The dimensionality (f) The size of the patch (g) The size of the LS (h) The number of PC

Fig. 10. Empirical study of parameter setting. (a). The max depth of the tree. (b). The number of the trees. (c). The number of patches used to train the
forest. (d). The number of features used to train each tree. (e). The dimensionality of the binary vector. (f). The size of the patch. (g). The size of the local
segmentation (LS). (h). The number of principle components (PC).

TABLE VI
COMPARISONS WITH THE METHOD PROPOSED BY MORALES ON MESSIDOR AND ONHSD DATABASES.

MESSIOR ONHSD

Proposed Morales [4] Proposed Morales [4]

AOL 0.8636(0.1268) 0.8228(0.1384) 0.8346(0.1003) 0.8045(0.1175)
S 0.9196(0.1019) 0.8950(0.1056) 0.9032(0.0740) 0.8867(0.0776)

Ac 0.9770(0.0284) 0.9949(0.0050) 0.9895(0.0077) 0.9941(0.0042)
TPF 0.9212(0.1213) 0.9300(0.1239) 0.9077(0.0991) 0.9310(0.1046)
FPF 0.0106(0.0129) 0.0035(0.0041) 0.0055(0.0052) 0.0043(0.0042)

AOL–Area Overlap; S–Dices coefficients; Ac–Accuracy; TPF–True Positive Fraction; FPF–
False Positive Fraction.

TABLE V
COMPARISONS WITH THE MORPHOLOGY BASED METHODS

ON DRIONS DATABASE

Proposed Morales [4] Walter [14]

AOL 0.8473(0.0964) 0.8424(0.1174) 0.6227(0.3695)
S 0.9137(0.0634) 0.9084(0.0982) 0.6813(0.3854)

Ac 0.9760(0.0166) 0.9934(0.0051) 0.9689(0.0492)
TPF 0.8957(0.0927) 0.9281(0.1177) 0.6715(0.3980)
FPF 0.0098(0.0092) 0.0040(0.0041) 0.0210(0.0417)

AOL–Area Overlap; S–Dices coefficients; Ac–Accuracy; TPF–True Pos-
itive Fraction; FPF–False Positive Fraction.

model based methods. In this work, we select one or more
methods of each category for comparisons.

1) Comparisons with Morphology Based Methods: Two
morphology based methods are selected for comparisons. One
is proposed by Morales et al. [4] which is based on PCA and
mathematical morphology, another one is proposed by Walter
et al. [14] which is based on marker controlled watershed
transformation.

Table V gives the results on the DRIONS dataset. It should
be noted that the proposed method improves the performance
of the method proposed by Walter significantly and is very
competitive with the method proposed by Morales, which is
one of the best performing methods for OD segmentation up
to now.

To have a more comprehensive evaluation, Table VI shows
the comparisons with the method proposed by Morales on the
MESSIORD and ONHSD databases. It can be noted that the
AOL and S obtained by the proposed method are better than
those obtained by the method proposed by S. Morales in all
three databases. For the Ac, TPF, FPF, the results obtained
by the proposed method are not as good as those of the S.
Morales. But the difference is not significant. In addition, as
we illustrate before, the Ac is less sensitive to deteriorating
results, and the TPF, FPF can only evaluate the performance of
the algorithm one-sided. So from this perspective, the proposed
algorithm may be better.

2) Comparisons with Template Based Methods: Table VII
summarizes the comparisons with one circular template-based
method and four elliptical template-based methods [10] which
have been validated on MESSIDOR database. The average
area overlap AOL obtained by the proposed method is 0.8636
on MESSIDOR database, which is a very competitive result
to the circular template-based method proposed in [10]. In
addition, the proposed method outperform all the elliptical
template-based approaches proposed in [10].

3) Comparisons with Deformable Based Methods: In order
to compare with the method based on deformable models [7],
Our algorithm has also been tested on ONHSD database. With
the aim of obtaining a fair comparison, We use the same
indicator as the used in [7], which is discrepancy δj defined
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 11. Some examples where green circles are the ground truth and red circles are the circle detected by the proposed algorithm. (a). AOL=0.8983,
S=0.9464, Ac=0.9880, TPF=0.9200, FPF=0.0031. (b). AOL=0.6102, S=0.7579, Ac=0.9646, TPF=0.9340, FPF=0.0334. (c). AOL=0.9339, S=0.9658,
Ac=0.9854, TPF=0.9820, FPF=0.0137. (d) AOL=0.9173, S=0.9569, Ac=0.9743, TPF=0.9260, FPF=0.0042. (e). AOL=0.9513, S=0.9751, Ac=0.9894,
TPF=0.9976, FPF=0.0127. (f). AOL=0.7673, S=0.8683, Ac=0.9361, TPF=1, FPF=0.0810. (g). AOL=0.9815, S=0.9907, Ac=0.9938, TPF=0.9946, FPF=0.0066.
(h). AOL=0.7438, S=0.8531, Ac=0.9555, TPF=0.7438, FPF=0. (i). AOL=0.9636, S=0.9814, Ac=0.9934, TPF=0.9902, FPF=0.0059. (j). AOL=0.9185,
S=0.9575, Ac=0.9783, TPF=0.9185, FPF=0. (k). AOL=0.6059, S=0.7545, Ac=0.9175, TPF=0.7039, FPF=0.0355. (l). AOL=0.2478, S=0.3971, Ac=0.7154,
TPF=0.2478, FPF=0. (m). AOL=0.6678, S=0.8008, Ac=0.9399, TPF=1, FPF=0.0683. (n). AOL=0.9217, S=0.9593, Ac=0.9899, TPF=0.9217, FPF=0. (o).
AOL=0.9411, S=0.9697, Ac=0.9919, TPF=0.9479, FPF=0.0011. (p). AOL=0.9326, S=0.9651, Ac=0.9847, TPF=0.9523, FPF=0.0006. (q). AOL=0.7969,
S=0.8870, Ac=0.9761, TPF=0.8661, FPF=0.0105. (r). AOL=0.9370, S=0.9675, Ac=9963, TPF=0.9836, FPF=0.0030. (s). AOL=0.2358, S=0.3816, Ac=0.9414,
TPF=0.0362, FPF=0.0283. (t). AOL=0.8540, S=0.9213, Ac=0.9911, TPF=0.9723, FPF=0.0037.

TABLE VII
COMPARISONS WITH THE TEMPLATE-BASED METHODS. RESULTS IN TERMS OF PERCENTAGE OF IMAGES PER AREA OVERLAP

INTERVAL AND AVERAGE AREA OVERLAP OF THE WHOLE MESSIDOR DATABASE.

AOL ≥ 0.95 AOL ≥ 0.90 AOL ≥ 0.85 AOL ≥ 0.80 AOL ≥ 0.70 AOL

Elliptical Geometrical Min. [10] 2% 11% 20% 30% 51% 0.6700
Elliptical Algebraic Min1. [10] 2% 9% 17% 26% 48% 0.6600
Elliptical Algebraic Min2. [10] 2% 10% 19% 27% 47% 0.6500
Elliptical Algebraic Min3. [10] 2% 9% 18% 26% 48% 0.6600

Circular Hough. [10] 7% 46% 73% 84% 93% 0.8600
Proposed 7% 51% 78% 86% 93% 0.8636



2168-2194 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2017.2723678, IEEE Journal of
Biomedical and Health Informatics

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. X, NO. X, X 201X 9

TABLE VIII
THE AVERAGE VALUES AND STANDARD DEVIATIONS OF THE METRICS IN EACH RESULT GROUP.

AOL S Ac TPF FPF

Excellent 0.9027(0.0235) 0.9487(0.0129) 0.9936(0.0023) 0.9542(0.0315) 0.0036(0.0020)
Good 0.8307(0.0292) 0.9027(0.0175) 0.9896(0.0023) 0.9646(0.0445) 0.0087(0.0037)
Fair 0.7016(0.0748) 0.8223(0.0548) 0.9808(0.0085) 0.9448(0.0768) 0.0170(0.0100)
Poor 0.3385(0.1892) 0.4916(0.2061) 0.9493(0.0299) 0.6748(0.4600) 0.0345(0.0059)

AOL–Area Overlap; S–Dices coefficients; Ac–Accuracy; TPF–True Positive Fraction; FPF–False
Positive Fraction.

TABLE IX
SUBJECTIVE CLASSIFICATION OF PERFORMANCE ON ONHSD DATASET

Excellent Good Fair Poor Excellent-Good Excellent-Fair

Morales [4] 28% 36% 31% 6% 64% 94%
Circular Hough [10] 40% 39% 18% 3% 79% 97%
Temploral Lock [7] 42% 31% 10% 17% 73% 83%

Simple [7] 9% 8% 30% 53% 17% 47%
DV-Hough [7] 39% 22% 20% 19% 61% 81%

Proposed 33% 40% 25% 2% 73% 98%

as:

δj =
∑
i

mj
i − µj

i

σj
i + ε

(10)

where µj
i and σj

i summarize the clinician’s choice of rim
location on spoke i of image j. mj

i is segmentation location
on spoke i of image j. Spokes are points belonging to the OD
boundary. 24 spokes were considered each taking 15 degree
with its adjacent ones. ε = 0.5 is a small factor to prevent
division by zero when the clinicians are in exact agreement
with the OD boundary. Each image is classified as Excellent,
Good, Fair, or Poor depending on the discrepancy value (up
to one, two, five or more respectively).

Fig. 12 shows the examples of each category, where we can
see that the detected OD edge is almost coincident with the
ground truth for the excellent case. Small deviation is observed
for the good case and obvious deviation for the fair case.
For the poor case, the detected OD edge is deviated from the
ground truth completely. Table VIII summarizes the average
values and standard deviations of the metrics (AOL, S, Ac,
TPF and FPF) in each result group.

Table IX lists the performance on the subjective scale
for three compared algorithms [7] (the third to fifth row)
and the method proposed in this paper (the last row). As
it can be noted, with the best deformable model approach
(Temploral Lock [7]), 9% more of excellent segmentations
are obtained than those obtained with the proposed method.
However, the proposed method obtains a same result as the
Temploral Lock [7] in the Excellent-Good range. In addition,
the proposed method provides a significant enhancement in
the percentage of Excellent-Fair range. The best approach of
[7] has Excellent-Fair performance in 83% of all cases, while
our method obtains it in 98% of them.

Table IX also summarizes the performance on this subjec-
tive scale for morphology based method [4] (the first row)
and template based method [10] (the second row). It can be
observed that within the Excellent-Good range, the result (73%
images belong to the Excellent-Good range) obtained by the

(a) Excellent, δ = 0.33 (b) Good, δ = 1.72

(c) Fair, δ = 3.21 (d) Poor, δ = 39.1

Fig. 12. The examples of each category where green circles are the ground
truth and red circles are the results detected by the proposed algorithm. (a)
Excellent. (b) Good. (c) Fair. (d) Poor.

proposed method is the second best among the listed methods.
Within the Excellent-Fair range, the proposed method obtains
the best result among these methods.

IV. DISCUSSION & CONCLUSION

The proposed method in this paper employs structured
learning to capture the OD edge information. Because the
proposed algorithm belongs to supervised methods, the trained
edge detector plays an important role in the performance of the
proposed method. To illustrate the importance of the trained
edge detector, we do database cross validation. Concretely, we
train the model using the images on the MESSIDOR database,
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and test on the DRIONS database and ONHSD database. In
turn, the images on the DRIONS and ONHSD are used as
training set, and the images on the MESSIDOR are used test
set. Table X summarizes the results.

TABLE X
DATABASE CROSS VALIDATION.

MESSIDOR DRIONS ONHSD

AOL 0.7462(0.2479) 0.8627(0.0679) 0.8343(0.0892)
S 0.8205(0.2272) 0.9246(0.0421) 0.9031(0.0689)

Ac 0.9515(0.0568) 0.9781(0.0110) 0.9893(0.0078)
TPF 0.7975(0.2547) 0.9365(0.0675) 0.9172(0.0872)
FPF 0.0156(0.0281) 0.0148(0.0105) 0.0063(0.0063)

AOL–Area Overlap; S–Dices coefficients; Ac–Accuracy; TPF–True Pos-
itive Fraction; FPF–False Positive Fraction.

It should be noted that when we train the model using the
images on MESSIDOR database, and test on the DRIONS and
ONHSD, very promising results are obtained (The last two
columns in the Table X ). But not vice versa. The reason is
that the number of the images on MESSIDOR are larger than
the number of images on DRIONS and ONHSD, thus more
different local structures are contained on MESSIDOR. If we
use the images on DRIONS and ONHSD to train the model,
many local structures on MESSIDOR can not be captured
during training and the trained model is unable to synthesize
novel labels. That is why we obtain worse results when we
train the model using DRIONS and ONHSD databset, and test
on the MESSIDOR dataset.

However, it dose not mean that the more number of patches
used to train the structured forest, the better. It can be illus-
trated by Fig. 10(c) where the performance of the proposed
method tends to become stagnant when the number of patches
used to train the forest is larger than 106. Thus, the deep
learning, which has the potential to improve the performance
by increasing the number of the samples used to train the
learner [30], will be considered for training the edge detector
in our future work.

Recently, deep learning based methods have been success-
fully applied in different fields, such as edge detection [31],
[32], and retinal image analysis [33], [34]. Many researchers
have also employed deep learning for OD segmentation (eg.
[35], [36]) and obtained very promising results ( AOL of
0.888 obtained by [35] in Messidor dataset and AOL of 0.913
obtained by [36] in a local dataset). In both [35] and [36], the
authors labeled the patches based on the pixel level. In this
work, we employ structured labels to train the edge detector
which can take advantage of the neighborhood information of
a pixel because the adjacent pixels are highly interdependent.
In the future work, we will combine the advantages of deep
learning and the structured labels to train the edge detector.

In summary, in this paper we proposed an algorithm for the
automatic detection of OD based on structured learning, which
can train a model to detect the specified edge. The weighted
average of the results (according to the number of images of
each database: AOL = 0.8605, S = 0.9181, Ac = 0.9777, TPF
= 0.9183, FPF = 0.0102) show that the proposed algorithm is
reliable since it works properly on different databases.
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