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Fig. 4. Parallel coordinate plots for true PFs and PF approximations obtained by MaOEA/D-2ADV, MOEA/DD, NSGA-III, MOEA/D-DE, MOEA/D-AWA,
and RVEA on MaOPs with irregular PFs (DTLZ5–DTLZ7).

To investigate the performance and understand the behavior
of MaOEA/D-2ADV, the experimental studies are conducted
on the following.

1) Comparisons of MaOEA/D-2ADV with many-
objective optimizers (MOEA/D-DE [51], GrEA [69],
NSGA-III [17], and MOEA/DD [52]).

2) Comparisons of MaOEA/D-2ADV with decomposition-
based many-objective optimizers with the adjust-
ments of direction vectors (MOEA/D-AWA [58] and
RVEA [10]).

3) Sensitivity analysis of generational interval parameters
φ1 and φ2.

4) The effects of fast convergence (see Section I in the
supplementary material).

5) The effects of adjustments for the positions of the
directions vectors (see Sections II and III in the sup-
plementary material).

A. Comparison With State-of-the-Art MaOEAs

In this section, MaOEA/D-2ADV is compared with
four many-objective optimizers: 1) MOEA/D-DE [51];

2) GrEA [69]; 3) NSGA-III [17]; and 4) MOEA/DD [52].
The performances of all the compared algorithms, in terms of
IGD, is presented in Table V. Wilcoxon’s rank sum test at a
0.05 significance level is performed between the MaOEA/D-
2ADV and each of the other competing algorithms. The best
mean IGD values are highlighted in boldface. A positive num-
ber in last column of Table V indicates the degree of IGD value
obtained by MaOEA/D-2ADV over that obtained by the sec-
ond best algorithm while a negative value indicates the degree
of IGD value obtained by the best algorithm over that obtained
by MaOEA/D-2ADV.

It can be observed that MaOEA/D-2ADV is significantly
better than MOEA/D-DE, on all the test problems.
Meanwhile, MaOEA/D-2ADV is significantly better than
all the four compared algorithms on DTLZ1, DTLZ5,
and DTLZ6, except for four-objective DTLZ1. MOEA/DD
achieves very good performance on DTLZ2–DTLZ4,
although its IGD values are actually very close to that
of MaOEA/D-2ADV on these problems. Furthermore,
MaOEA/D-2ADV is always significantly better than all the
compared algorithms on DTLZ5 and DTLZ6 which have
degenerate PFs.
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(a) (b)

(c) (d)

Fig. 5. Mean IGD values obtained by MaOEA/D-2ADV with different values
of interval parameter φ1 on (a) DTLZ2, (b) DTLZ3, and (c) DTLZ7 over 30
runs. (d) Legend.

B. Comparisons With State-of-the-Art Decomposition-Based
MOEAs With the Adjustment of Direction Vectors

In this section, MaOEA/D-2ADV is compared with
MOEA/D-AWA [58] and RVEA [10], two state-of-the-art
decomposition-based MOEAs that also use the adjustments of
the direction vectors to address MaOPs with irregular PFs.
The results of three compared algorithms are presented in
Table VI. It can be observed that MaOEA/D-2ADV has sig-
nificantly better performance than that of MOEA/D-AWA and
RVEA on most test problems. It is also worth to note that
MaOEA/D-2ADV achieves remarkable improvements over
MOEA/D-AWA and RVEA on the performance of DTLZ5
and DTLZ6, whose PFs are degenerate.

To visualize the performance of the six compared algo-
rithms on MaOPs with irregular PFs [degenerate ones
(DTLZ5 and DTLZ6) or disconnected one (DTLZ7)], the
parallel coordinate plots for true PFs and PF approxima-
tions obtained by MaOEA/D-2ADV, MOEA/DD, NSGA-III,
MOEA/D, MOEA/D-AWA, and RVEA on different test prob-
lems are shown in Fig. 4. It can be observed that the PF
approximations obtained by MaOEA/D-2ADV is the closest
to the true PFs, in terms of both convergence and diversity.
These observations indicate that MaOE/D-2ADV performs
the best among all the compared algorithms on MaOPs
with irregular PFs, which is consistent with our motivations
in Section II.

C. Sensitivity Analysis of φ1 and φ2

φ1 is a generational interval parameter for adjusting the
number of direction vectors and φ2 is a generational interval
parameter for adjusting the positions of the ineffective direc-
tion vectors. In this section, the sensitivity analysis of φ1 and
φ2 is conducted as follows.

Fig. 5 shows the performance, in terms of IGD, of
MaOEA/D-2ADV with different φ1 values (100–1000) on

(a) (b)

(c) (d)

Fig. 6. Mean IGD values obtained by MaOEA/D-2ADV with different val-
ues of interval parameter φ2 on DTLZ5–DTLZ7 over 30 runs. (a) DLTZ2.
(b) DLTZ3. (c) DLTZ7. (d) Legend.

DTLZ2, DTLZ3, and DTLZ7 over 30 independent runs. It
can be observed that, in general, MaOEA/D-2ADV is very
robust with regard to φ1. However, the optimal value of φ1 is
problem-dependent. φ1 = 400 or 500 may be the best choice
for most problems.

Fig. 6 shows the performance, in terms of IGD, of
MaOEA/D-2ADV with different φ2 values (10–200) on three
irregular benchmark problems (DTLZ5–DTLZ7). It is clear
to see that MaOEA/D-2ADV has better performance when
decreasing the value of φ2. This observation indicates that
better performance of MaOEA/D-2ADV can be achieved by
increasing the frequency of the adjustments for the posi-
tions of the ineffective direction vectors. However, there is
an obvious tradeoff between the number of adjustments and
the computational cost.

VI. CONCLUSION

In this paper, we propose a decomposition-based many-
objective evolutionary algorithm with two types of adjust-
ments for the direction vectors (MaOEA/D-2ADV). The first
type aims to expand the number of direction vectors after
the fast convergence along the boundary direction vectors,
for approximating more complete PFs and the second type
changes the positions of the ineffective direction vectors by
iteratively deleting ineffective ones and inserting new ones
between effective direction vectors for MaOPs with irregu-
lar PFs (e.g., disconnected and degenerate PFs). In addition,
a simple Pareto-dominance-based approach is proposed to
detect the effectiveness of each direction vector. MaOEA/D-
2ADV is compared with four state-of-the-art MaOEAs and two
MaOEAs with the adjustments of the direction vectors. The
experimental studies show that MaOEA/D-2ADV outperforms
other algorithms on most test problems and it is especially
effective on MaOPs with irregular PFs.
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