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Abstract—Decomposition based multiobjective evolutionary
algorithms (MOEAs) decompose a multiobjective optimization
problem into a set of scalar objective subproblems and solve
them in a collaborative way. Commonly used decomposition
approaches originate from mathematical programming and the
direct use of them may not suit MOEAs due to their population-
based property. For instance, these decomposition approaches
used in MOEAs may cause the loss of diversity and/or be very
sensitive to the shapes of Pareto fronts (PFs). This paper proposes
a constrained decomposition with grids (CDG) that can better
address these two issues thus more suitable for MOEAs. In ad-
dition, different subproblems in CDG defined by the constrained
decomposition constitute a grid system. The grids have an
inherent property of reflecting the information of neighborhood
structures among the solutions, which is a desirable property
for restricted mating selection in MOEAs. Based on CDG,
a constrained decomposition MOEA with grid (CDG-MOEA)
is further proposed. Extensive experiments are conducted to
compare CDG-MOEA with the domination-based, indicator-
based and state-of-the-art decomposition-based MOEAs. The
experimental results show that CDG-MOEA outperforms the
compared algorithms in terms of both the convergence and
diversity. More importantly, it is robust to the shapes of PFs
and can still be very effective on MOPs with complex PFs (e.g.,
extremely convex, or with disparately scaled objectives).

Index Terms—Evolutionary multiobjective optimization, con-
strained decomposition, grids, robust to Pareto front

I. INTRODUCTION

Along with domination-based (e.g., [48], [12], [23], [24],
[40], [7], [28]) and indicator-based (e.g., [47], [3], [20],
[4], [2]) multiobjective evolutionary algorithms (MOEAs),
decomposition-based MOEAs (e.g., [31], [42], [32], [13], [34],
[18], [19]) have been recognized as a major type of approaches
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to tackle multiobjective optimization problems (MOPs). As
a representative of such approaches, the multiobjective evo-
lutionary algorithm based on decomposition (MOEA/D) [42]
has drawn a large amount of attention over the recent years.
One critical difficulty for MOEA/D is on how to approximate
a set of uniformly-distributed Pareto optimal solutions without
knowing the shape of the Pareto front (PF) [30], [9] a priori.
Commonly-used decomposition approaches in MOEA/D in-
cluding Weighted Sum (WS), Tchebycheff (TCH) and Penalty-
based Boundary Intersection (PBI) [30] may fail to achieve
such a goal due to the following two reasons [29], [37].

First, WS, TCH and PBI tend to be very sensitive to the
shapes of PFs [42]. An example of the Pareto optimal solutions
obtained by TCH on MOPs with an extremely convex or
concave PF is given in Fig. 1a. Although the Pareto optimal
solutions obtained by TCH are well-distributed on the concave
PF, the distribution of the solutions on the extremely convex
PF is not satisfactory. In Fig. 1b, another example shows the
Pareto optimal solutions obtained by TCH on MOPs with
disparately scaled objectives. It can be clearly seen that these
Pareto optimal solutions are very unevenly-distributed on PF,
where almost half of the PF is not covered by any Pareto
optimal solution.

It is worth noting that there has already been some research
in the literature to address either one of the above scenarios.
As far as we know, an inverted PBI has been proposed to tackle
MOPs with extremely convex PFs in [33]. However, the use of
inverted PBI to achieve well-distributed solution set still needs
to assume the convexity of PFs. A combination of normal
boundary intersection and the Tchebycheff approach has been
proposed for MOPs with disparately scaled objectives in [43],
where a satisfactory distribution of solutions can be achieved
in bi-objective optimization problems but fails to extend to
tri-objective optimization problems.

Second, in those commonly-used decomposition methods,
the same solution is very likely to be assigned to many differ-
ent subproblems, which may lead to the loss of diversity [37],
[29]. The reason of such phenomenon can be explained as
follows. Let xi be the current solution for the i-th subproblem,
then the improvement region of a solution xi can be defined
as the set {F (x)| x is better than xi for the i-th subproblem
} [37], as shown in Fig. 2a-2c. Any new solution in the
improvement region for xi can improve and replace it for
the i-th subproblem. As it can be observed in Fig. 2a-2c, the
improvement regions for three commonly used decomposition
approaches (WS, TCH and PBI), may be too large for causing
the loss of diversity.

Over the recent years, some attempts have already been
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Fig. 2: An illustration of improvement regions for three commonly used decomposition approaches (Fig. 2a-2c). In each sub-
figure, the square point is solution xi of i-th subproblem with direction vector λi, the solid circle point is its optimal solution
and the dash line represents its contour. Therefore, the entire shaded region is the improvement region for xi.
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(d) The Pareto optimal solutions ob-
tained by CDG on MOPs with dis-
parately scaled objectives, where the
scale of f2 is five times as much as
that of f1

Fig. 1: An illustration of Pareto optimal solutions obtained by
TCH or CDG on MOPs with different shapes of PFs

made to maintain better diversity in MOEA/D. Among them,
Li et al. limit the number of subproblems allowed to be updat-
ed by a single offspring in [26]. The offspring is only allowed
to update the most suitable subproblem in [38]. Decomposition
approaches have been hybridized with the R2 indicator in [36].
An external archive is adopted to maintain the representative
solutions and guide the search in the MOEA/D population
in [5]. In [27], a global stable matching model (STM) is
integrated into MOEA/D to find suitable matches between
subproblems and solutions. In [1], an adaptive epsilon compar-

ison approach has been proposed to balance the convergence
and diversity. An online geometrical metric has been proposed
to enhance the diversity of MOEA/D in [14], [6]. Designing
more suitable decomposition approaches for MOEAs is also
a possible way for maintaining better diversity in MOEA/D.
For instance, the use of different decomposition approaches
for different search phases has been studied in [21]. In a very
recent work [37], an angle θ is imposed on each subproblem
as a constraint to improve the diversity in MOEA/D [37].
However, the appropriate setting of parameter θ for each
subproblem is a very tedious task and different subproblems
on different evolutionary stages may have different θ values.

In this paper, a constrained decomposition with grids
(CDG) is proposed to address the above two aspects for
decomposition-based MOEAs. In CDG, one objective function
is selected to be optimized while all the other objective
functions are converted into constraints by setting up both
upper and lower bounds. In a sense, CDG can be considered
as an extension of ε-constraint approach [17], [30]. If CDG
is applied to all the objectives, the volumes of the improve-
ment regions for a solution are appropriately reduced to the
narrowed regions, where the same solution can be assigned to
at most m subproblems (m is the number of objectives), as
shown in Fig. 2d. This interesting characteristic gives CDG a
natural ability for maintaining better diversity for MOEAs. In
addition, as each objective is equally divided by constraints,
unlike the commonly-used decomposition methods (WS, TCH,
PBI), CDG is very robust to the shapes of PFs. These can
be observed in Fig. 1c and Fig. 1d, where the Pareto optimal
solutions obtained by CDG are well-distributed on MOPs with
concave or convex PFs, and/or disparately scaled objectives.

Also, another interesting observation in Fig. 1c and Fig. 1d
is that the contour lines of different constrained subproblems
constitute a grid-coordinate-system. A grid has an inherent
property of reflecting the information of neighborhood struc-
tures among the solutions [39]: each solution in the grid can
be located by grid coordinates and the grid coordinates can
help the solutions to locate its neighboring solutions, which is
essential for the restricted mating selection in an MOEA. More
details of constrained decomposition with grids are specified
in Section III.

The rest of this paper is organized as follows. Section II
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introduces some preliminaries on MOPs and three popular
decomposition approaches are also introduced in this section.
Section III details the proposed constrained decomposition
with grids. Section IV describes the whole framework of CDG-
MOEA. Section V introduces the benchmark test functions and
the performance indicators used in the experimental studies.
Experiments and discussions are presented in Section VI,
where CDG-MOEA is compared with five decomposition-
based, one domination-based and one indicator-based MOEAs
on a set of well-known benchmark functions and a set of
benchmark MOPs with complex PFs. In addition, the sensi-
tivity analysis of parameters in CDG-MOEA is conducted in
Section VII. Finally, Section IX concludes this paper.

II. PRELIMINARIES

A. Basic Definitions

A multiobjective optimization problem (MOP) can be de-
fined as follows:

minimize F (x) = (f1(x), . . . , fm(x))T ,

subject to x ∈ Ω .
(1)

where Ω is the decision space and F : Ω → Rm consists
of m real-valued objective functions. {F (x)|x ∈ Ω} is the
attainable objective set.

Let u, v ∈ Rm, u is said to dominate v, denoted by
u ≺ v, if and only if uj ≤ vj for every j ∈ {1, . . . ,m}
and uk < vk for at least one index k ∈ {1, . . . ,m}1. Given
a set S in Rm, a solution x ∈ S is called nondominated
if no other solution in S dominates it. A solution x∗ ∈ Ω
is Pareto-optimal if F (x∗) is nondominated in the attainable
objective set. F (x∗) is then called a Pareto-optimal (objective)
vector. In other words, any improvement in one objective
of a Pareto optimal solution is bound to deteriorate at least
another objective. The set of all the Pareto-optimal solutions is
called the Pareto set (PS) and the set of all the Pareto-optimal
objective vectors is the Pareto front (PF) [30]. The ideal and
nadir objective vectors are another two important concepts
containing the information on the ranges of PFs as follows.
The ideal objective vector z∗ is a vector z∗ = {z∗1 , . . . , z∗m}T ,
where z∗j = min

x∈Ω
fj(x), j ∈ {1, . . . ,m}. The nadir objective

vector znad is a vector znad = (znad1 , . . . , znadm )T , where
znadj = max

x∈PS
fj(x), j ∈ {1, . . . ,m}.

B. Decomposition Approaches

Popular decomposition methods [30] used in MOEAs in-
clude Weighted Sum, Tchebycheff and Penalty-based Bound-
ary Intersection, either one of which decomposes an MOP
into a number of scalar optimization subproblems [42]. These
widely used approaches can be defined as follows.

Let λi = (λ1, . . . , λm)T be a direction vector for the i-th
subproblem, where λj ≥ 0, j ∈ 1, . . . ,m and

∑m
j=1 λj = 1.

1) Weighted Sum (WS) Approach: The i-th subproblem
is defined as

1In the case of maximization, the inequality signs should be reversed.

minimize gws(x|λi) =
m∑
j=1

λijfj(x) ,

subject to x ∈ Ω .

(2)

Its search direction vector is defined as λi, as shown in
Fig. 2a.

2) Tchebycheff (TCH) Approach: The i-th subproblem is
defined as

minimize gte(x|λi, z∗) = max
1≤j≤m

{|fj(x)− z∗j |/λij} ,

subject to x ∈ Ω .
(3)

where Ω is the feasible region, but λj = 0 is replaced
by λj = 10−6 because λj = 0 is not allowed as a
denominator in (3). Its search direction vector is defined
as λi, as shown in Fig. 2b.

3) Penalty-based Boundary Intersection (PBI) Ap-
proach: This approach is a variant of Normal-Boundary
Intersection approach [8]. The i-th subproblem is defined
as

minimize gpbi(x|λi, z∗) = di1 + βdi2 ,

di1 = (F (x)− z∗)Tλi/||λi|| ,
di2 = ||F (x)− z∗ − (di1/||λi||)λi|| ,

subject to x ∈ Ω .

(4)

where ||.|| denotes the L2-norm and β is the penalty
parameter. Its search direction vector is defined as λi,
as shown in Fig. 2c.

III. THE CONSTRAINED DECOMPOSITION WITH GRIDS

In this section, the setup of a grid system and the constrained
decomposition based on the grid system are introduced as
follows.

A. The Setup of a Grid System

The constrained decomposition is based on a grid-system
and the setup of it is introduced in Algorithm 1, as follows.
Each objective is divided into K equal intervals within the
approximations of the ideal and nadir points, where K is a
preset parameter. The width of each interval is

dj = (znadj − z∗j + 2× σ)/K . (5)

Fig. 3a shows a grid division for a bi-objective problem
where K = 4.

The grid location of x along the j-th objective gj(x) can
be calculated as

gj(x) = d(fj(x)− z∗j + σ)/dje , (6)

where d.e denotes the ceil function, gj(x) is the grid-
coordinate of solution x and fj(x) is the value of j-th objective
function. A small positive number σ is introduced to ensure
that the value of gj is more than 0 but not more than
K. An example of the grid location along one objective is
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demonstrated in Fig. 3b, where K = 4. In the example, the
grid-coordinates of the solutions (denoted by “•”) along f1

are assigned as follows: a = 1, b = 1, c = 2, d = 2, e = 3,
f = 3, g = 4 and h = 4.

Algorithm 1: Grid-system Setup (GS)
Input : P : the current population;

z∗: the approximation of the ideal point;
znad: the approximation of the nadir point;
m: the number of objectives;
K: the number of the intervals on each

objective.
Output: the grid locations of P .

1 for j = 1 to m do
2 dj = (znadj − z∗j + 2× σ)/K;
3 end
4 foreach x ∈ P do
5 for j = 1 to m do
6 gj(x) = d(fj(x)− z∗j + σ)/dje;
7 end
8 G(x) = (g1(x), . . . , gm(x));
9 end

To use the grid locations for the restricted mating selection
in MOEAs, the Grid Distance and Grid Neighbor are defined
for convenience as follows.

Definition 1 (Grid Distance): Let u, v ∈ Rm be two solu-
tions, the grid distance GD(u, v) between u and v is defined
as

GD(u, v) = max
j=1,...,m

(|gj(u)− gj(v)|) . (7)

Definition 2 (Grid Neighbors): The grid neighbors of a so-
lution x within distance T is defined as

GN(x, T ) = {x∗|GD(x, x∗) ≤ T x, x∗ ∈ Rm} . (8)

B. Constrained Decomposition with Grids (CDG)

A constrained decomposition can be defined by adopting
the grid system specified in the last section. CDG can be
considered as an extension of ε-constraint approach [30]. The
constrained decomposition approach for the k-th subproblem
of the l-th objective can be defined as follows.

minimize fl(x) ,

subject to gj(x) = kj for all j = 1, . . . ,m, j 6= l ,

kj ∈ {1, . . . ,K} ,
x ∈ Ω .

(9)
where K is a division parameter which determines the number
of grids.

With K intervals on each objective, the grids decompose
an MOP into m × Km−1 subproblems. In general, the k-th
subproblem of l-th objective contains a solution set Sl(k) (k

(a) A grid system (K = 4) in a bi-objective
optimization problem

(b) Grid location along one objective (K = 4)

Fig. 3: An illustration of the grid system produced by con-
strained decomposition

is a (m− 1)-dimensional vector), which can be defined as:

Sl(k) = {x|g1(x) = k1, . . . , gl−1(x) = kl−1,

gl+1(x) = kl+1, . . . , gm(x) = km} ,
subject to l ∈ {1, . . . ,m} k ∈ {1, . . . ,K}m−1 .

(10)

An example of such subproblems in a bi-objective opti-
mization is given in Fig. 3a, where the feasible regions of
two subproblems S1(3) and S2(2) are denoted in the shaded
regions.

IV. CDG-MOEA
A. The Main Framework of CDG-MOEA

In this section, the main framework of constrained de-
composition based multiobjective evolutionary algorithm with
grids (CDG-MOEA) is presented in Algorithm 2, which
includes 6 steps: initialization, reproduction, update of the
ideal and nadir points, update of the grid system, rank-based
selection and termination. In the following sections, each step
is specified in details.
Algorithm 2:
Input:

1) an MOP;
2) a stopping criterion;
3) N : the population size of P ;
4) T : the maximum grid distance for neighborhood;
5) K: the number of the intervals in each objective.

Output: A solution set P ;
Step 1: Initialization:

Step 1.1 Generate an initial population P =
{x1, . . . , xN} randomly;
Step 1.2 Approximate the ideal and nadir points: z∗ =
UPDATE1(P ), znad = UPDATE2(P );
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Step 1.3 Initialize the grid system: GS(P );
Step 1.4 Set gen = 0.

Step 2: Reproduction:
Step 2.1 Generate an empty set Q = ∅;
For each solution x ∈ P do
Step 2.2 Obtain the neighboring solutions as the mating
pool of x:

NS =

 GN(x, T ), rand < δ and
|GN(x, T )| > 2 ,

{x1, . . . , xN}, otherwise .
(11)

Step 2.3 Select two solutions xk and xl from NS
randomly; and generate an offspring solution y from
solution x, xk and xl by DE operators; then y is added
to Q.
End for

Step 3: Update of the ideal and nadir points:
Step 3.1 gen = gen+ 1;
Step 3.2 P = P ∪Q;
Step 3.3 Update the ideal point: z∗ = UPDATE1(P );
Step 3.4 If gen is a multiplication of 50, update the
nadir point: znad = UPDATE2(P ).

Step 4: Update of the grid system:
Step 4.1 P̄ = {x|x ∈ P ∧ ∃j ∈ {1, . . . ,m}, fj(x) >
znadj };
Step 4.2 P = P\P̄ ;
Step 4.3 Update the grid system: GS(P ).

Step 5: Rank-based selection:
Step 5.1 If |P | < N , randomly select N −|P | solutions
from P̄ and add them to P . Otherwise, P = RBS(P ).

Step 6: Termination:
Step 6.1 If the stopping criterion is satisfied, terminate
the algorithm and output P . Otherwise, go to Step 2.

B. Initialization

In Step 1.1, a population P is initialized randomly. In Step
1.2, the ideal and nadir points are approximated based on P .
The update of the ideal point is presented in Algorithm 3 and
the update of the nadir point is presented in Algorithm 4.

Algorithm 3: Update the Ideal Point (UPDATE1)
Input : P : the current population.
Output: Updated ideal point z∗.

1 for j = 1 to m do
2 z∗j = min

x∈P
{fj(x)};

3 end

C. Reproduction

In the Step 2, N offspring solutions are generated from P .
An empty set Q is generated for storing the offspring solutions.
For each solution x ∈ P , its mating solutions are obtained by

NS =

 GN(x, T ), rand < δ and
|GN(x, T )| > 2 ,

{x1, . . . , xN}, otherwise .
(12)

Algorithm 4: Update the Nadir Point (UPDATE2)
Input : P : the combined population;

z∗: the current ideal point;
znad: the current nadir point.

Output: Updated nadir point znad.
/* To reduce computational cost, find a

subset of P: SP */
1 SP = ∅;
2 foreach x ∈ P do
3 for j = 1 to m do
4 if fj(x) < z∗j +

znad
j

5 then
5 SP = SP ∪ x;
6 end
7 end
8 end
/* find all the nondominated solutions

in SP. */
9 SP = NONDOMINATED-SELECTION(SP );

10 for j = 1 to m do
11 znadj = max

x∈SP
{fj(x)};

12 end

where δ is the probability that the mating solutions are selected
from the grid neighbors.

In Step 2.3, two solutions xk and xl are selected from NS
randomly. An offspring solution y is generated from solution
x, xk and xl by DE operators [26]; and then y is added to Q.

D. Update of the Ideal and Nadir Points

In Step 3, the approximations of the ideal and nadir points
are updated by using the combined population P = P ∪ Q.
In Algorithm 3, the ideal point z∗ is approximated by the
minimum value of each objective in P .

In Algorithm 4, the nadir point is approximated by the
maximum value of each objective in the nondominated so-
lutions of P . To further lower the computational cost of
nondominated selection for approximating nadir point, only
a subset of solutions SP in P that are close to the corner
solutions is selected (line 1-8 of Algorithm 4), as follows:

SP = {x|x ∈ P ∧ ∃j ∈ {1, . . . ,m}, fj(x) < z∗j +
znadj

5
} .
(13)

After that, the nondominated solutions are selected from
SP and the nadir point is updated with the maximum value
of each objective in these nondominated solutions (line 9-12
of Algorithm 4).

E. Update of the Grid System

In Step 4.1-4.2, the solutions P̄ = {x|x ∈ P ∧ ∃j ∈
{1, . . . ,m}, fj(x) > znadj } ( the ones located outside the nadir
point approximation) are eliminated from P first. Then, in Step
4.3, the grid system is updated using P by calling Algorithm
1, which was already specified in Section III.B.
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F. Rank-Based Selection

In Step 5, if the size of P is less than N , then N − |P |
solutions are selected randomly from P̄ to fill in P ; otherwise,
the rank-based selection (RBS), presented in Algorithm 5, is
called.

In Algorithm 5, N solutions are selected from Q (|Q| > N )
by rank-based selection, which include decomposition-based
ranking and lexicographic sorting. The details of them are
explained as follows.

In the decomposition-based ranking, each solution set Sl(k)
for the k-th subproblem of the l-th objective is ranked based
on constrained decomposition with grids defined in Eq. (9).
After ranking all the m objectives, each solution x has m
ranks, stored in a rank vector R(x) = (r1(x), . . . , rm(x)). It
is worth noting that, with mKm−1 subproblems, at most mM
times rankings are needed as some subproblems may contain
no solutions, where M = |Q|.

In the lexicographic sorting, R(x) is sorted in an ascending
order and stored in R′(x). Then, each solution x ∈ Q is ranked
in lexicographic order based on R′(x) and the first N solutions
are selected from Q and assigned to P .

Algorithm 5: Rank-based Selection (RBS)
Input : Q: the combined population.
Output: A population P .
/* Decomposition-based Ranking */

1 foreach x ∈ Q do
2 initialize R(x) = {r1(x), . . . , rm(x)} = {0, . . . , 0} ;
3 end
4 for l = 1 to m do
5 forall subproblems Sl(k) do
6 if Sl(k) 6= ∅ then
7 [S′, I] = sortl(Sl(k)); // sort Sl(k) by

fl based on Eq. (9) and I stores
the ranks

8 foreach x ∈ Sl(k) do rl(x) = I(x);
9 end

10 end
11 end
/* Lexicographic Sorting */

12 foreach x ∈ Q do
13 R′(x) = sort(R(x));
14 end
/* sort all x ∈ Q based on R′(x) in

lexicographic order */
15 Q = LEXICOGRAPHIC-SORT(Q);
16 P = Q(1 : N); // select first N solutions

Fig. 4 and Table I show an example of rank-based selection
in a grid system (K = 4) for a bi-objective optimization
problem, where |P | = 7 solutions are selected out of |Q| = 14
solutions in Algorithm 5, as follows. All the solutions are
ranked as R(x) based on Eq. (9), as shown in Fig. 4 and
the first column of Table I . The ranks are sorted and stored
in R′(x) (second column of Table I). After the lexicographic
sorting, the first 7 solutions are selected (the last column of
Table I).

Fig. 4: The ranks of all the solutions in a grid system (K =
4) for a bi-objective optimization problem, where the final
selected solutions are denoted in �.

TABLE I: The procedures of decomposition-based ranking and
lexicographic sorting for Fig. 4

R(x) R′(x)
Lexicographic

Sorting

1. (1,2) 1. (1,2) 1. (1,2) X
2. (2,1) 2. (1,2) 2. (1,2) X
3. (1,3) 3. (1,3) 8. (1,2) X
4. (2,2) 4. (2,2) 3. (1,3) X
5. (3,1) 5. (1,3) 5. (1,3) X
6. (4,5) 6. (4,5) 12. (1,3) X
7. (1,4) 7. (1,4) 14. (1,3) X
8. (2,1) 8. (1,2) 7. (1,4) ×
9. (3,3) 9. (3,3) 4. (2,2) ×

10. (4,2) 10. (2,4) 13. (2,2) ×
11. (5,4) 11. (4,5) 10. (2,4) ×
12. (1,3) 12. (1,3) 9. (3,3) ×
13. (2,2) 13. (2,2) 6. (4,5) ×
14. (3,1) 14. (1,3) 11. (4,5) ×

G. Computational Complexity

In Algorithm 1, the setup of a grid system requires O(mN)
computations, where m is the number of objectives and N
is the population size. In Algorithm 3, the update of the
ideal point needs O(mN) computations. In Algorithm 4, the
computational complexity for the update of the nadir point is
O(mL2), where L is the size of nondominated solutions in
SP .

In Algorithm 5, the rank-based selection is divided into two
parts: the decomposition-based ranking and the lexicographic
sorting. Among them, the decomposition-based ranking needs
to be done at most mM times, where M ≤ 2N is the size of
solutions that are located inside the nadir point approximation.
In the lexicographic sorting, the sorting in line 12-14 requires
O(mMlogm) computations and the second sorting in line
15 requires O(mMlogM) computations. In summary, the
computational cost of rank-based selection is O(mMlogM),
where M ≤ 2N .

In the framework of CDG-MOEA (Algorithm 2), the com-
putational cost of both Step 1 and Step 2 is O(mN). The com-
putational cost of Step 2-5 is O(mMlogM). In summary, the
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computational complexity of CDG-MOEA is O(mMlogM).

V. EXPERIMENTAL SETTINGS

A. Test Instances

UF suite [45] is considered as the benchmark functions
in our experimental studies. Among all the 10 benchmark
problems, UF1-7 are bi-objective and UF8-10 are tri-objective
optimization problems. The number of decision variables for
all the test instances is set to 30.

GLT suite [15], [41] is another set of the benchmark
problems used in our experimental studies to verify the ro-
bustness of CDG-MOEA on MOPs with complicated PFs (e.g.,
extremely convex or with disparately scaled objectives). The
number of decision variables for all the test instances is set to
10.

B. Parameter Settings

To make a fair comparison, the following parameters of all
the compared algorithms are set in a similar manner as in
MOEA/D-DE [26]:
• δ = 0.9;
• In DE: CR = 1.0, F = 0.5, η = 20 and pm = 1/n;
• Function evaluations: 300,000 for each test instance;
The population size of all the compared algorithms is

set to 300 for UF1-7 and GLT1-6; and 600 for UF8-10.
For MOEA/D-DE (WS, TCH and PBI), the parameter of
neighborhood size is set to 20, the same as the one in [26].
For CDG-MOEA, the grid division parameter K is set to 180
for bi-objective and 30 for tri-objective problems; and the grid
neighborhood distance is set to 5 for bi-objective and 1 for tri-
objective problems. The settings of the grid division parameter
and population size are based on the sensitivity analysis in
Section VII. Each of all the compared algorithms is run 30
times independently for all the benchmark problems.

C. Performance Metrics

1) Inverted Generational Distance (IGD) [46], [44]: It
measures the average distance from a set of reference
points P ∗ in the PF to the approximation set P . It can
be formulated as follows.

IGD(P, P ∗) =
1

|P ∗|
∑
v∈P∗

dist(v, P ) (14)

where dist(v, P ) is the Euclidean distance between the
solution v and its nearest point in P , and |P ∗| is the car-
dinality of P ∗. If |P ∗| is large enough to represent the PF
very well, IGD(P, P ∗) could measure both the diversity
and convergence of P in a sense. In our experiments,
626 reference points are used on GLT1, 1000 reference
points on GLT2-4, 2600 reference points on GLT5, and
1377 reference points on GLT6, for calculating IGD.

2) Hypervolume Indicator (IH ) [49]: Let zr =
(zr1 , . . . , z

r
m)T be a reference point in the objective space

that is dominated by all Pareto-optimal objective vectors.
Let P be the obtained approximation to the PF in the
objective space. Then, the IH value of P (with regard

to zr) is the volume of the region dominated by P and
bounded by zr, and it can be defined as

IH(P ) = volume(
⋃
f∈P

[f1, z
r
1 ]× . . . [fm, zrm]). (15)

Obviously, the higher the hypervolume, the better the
approximation is. In our experiments, zr is set to (2, 2)T

for UF1-7, (2, 2, 2)T for UF8-10, (1.2, 1.2)T for GLT1
and GLT3, (1.2, 12)T for GLT2, (1.2, 2.2)T for GLT4
and (1.2, 1.2, 1.2)T for GLT5-6 when computing hyper-
volume for the nondominated sets obtained by all the
algorithms.

VI. EXPERIMENTAL STUDIES AND DISCUSSIONS

In this section, the following experiments are conducted to
test the performance of CDG-MOEA:

• comparisons on UF test suite, to verify the general
performance of CDG-MOEA on balancing between con-
vergence and diversity.

• comparisons on GLT test suite with complicated PFs (ex-
tremely convex and/or with disparately scaled objectives),
to verify the robustness of CDG-MOEA on the shapes of
PFs.

A. Comparisons on UF test suite

In this section, CDG-MOEA is compared with four
classical decomposition-based MOEAs (MOEA/D-DE (WS,
TCH or PBI) [26] and MSOPS-II [19]), one state-of-the-
art decomposition-based MOEA (MOEA/D-ACD [37]), one
domination-based MOEA (NSGA-II [12]), one indicator-based
MOEA (IBEA [47]) and three grid-based MOEAs (Epsilon
MOEA [11], Borg MOEA [16] and OMOPSO [35]) on UF
test problems.

The performance of eleven compared algorithms in terms of
IGD or IH is presented in Table II, where the performance
of the algorithm with the best mean IGD or IH value is
highlighted in boldface. It can be observed that, in terms of
IGD, CDG-MOEA significantly outperforms other compared
algorithms on all the test problems, except for UF3, UF4, UF8
and UF10. MOEA/D-ACD achieves the best performance on
UF3, Borg has the best performance on UF4, MOEA/D-DE
(PBI) has the best performance on UF8, and MSOPS-II has
the best performance on UF10.

Similar performance can be observed on the comparisons
of eight algorithms in terms of IH , where CDG-MOEA is
significantly better than other compared algorithms on six out
of ten test problems.

The comparisons of CDG-MOEA with other ten algorithms
on UF test suite verify that CDG in CDG-MOEA is able to
achieve better diversity while maintaining good convergence
in most test problems, compared with other commonly-used
decomposition methods thus more suitable for MOEA frame-
work.
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TABLE II: Performance comparisons of CDG-MOEA with ten MOEAs on UF problems in terms of the mean and standard
deviation values of IGD and IH .

instance CDG-MOEA MOEA/D-DE MOEA/D-ACD MSOPS-II NSGA-II IBEA ε-MOEA Borg OMOPSO
WS TCH PBI

IGD

UF1 mean 2.072E-03 6.113E-02 † 2.439E-03 † 2.394E-03 † 2.096E-03 7.023E-02 † 8.390E-02 † 1.084E-01 † 1.206E-01† 8.217E-02† 6.790E-02†

std 5.063E-05 1.399E-02 5.026E-04 7.929E-04 9.026E-05 5.731E-03 1.187E-02 1.715E-02 3.709E-02 2.426E-02 1.325E-02

UF2 mean 5.191E-03 5.442E-02 † 1.118E-02 † 3.532E-02 † 7.970E-03 † 5.707E-02 † 3.272E-02 † 4.877E-02 † 4.930E-02† 1.871E-02† 2.047E-02†

std 1.276E-03 1.102E-02 3.263E-03 3.582E-02 1.918E-03 2.137E-02 2.355E-03 2.148E-02 2.007E-02 4.799E-03 1.888E-03

UF3 mean 1.832E-02 1.252E-01 † 2.539E-02 4.670E-02 † 6.120E-03 ‡ 3.141E-01 † 7.031E-02 † 3.136E-01 † 2.916E-01† 9.785E-02† 6.579E-02†

std 1.367E-02 3.208E-02 2.157E-02 3.615E-02 3.894E-03 1.784E-02 1.163E-02 1.145E-02 4.240E-02 4.687E-02 2.771E-02

UF4 mean 4.077E-02 3.431E-01 † 6.767E-02 † 6.177E-02 † 6.241E-02 † 5.393E-02 † 7.606E-02 † 4.389E-02 † 4.205E-02† 3.230E-02‡ 4.787E-02†

std 7.424E-04 4.382E-03 2.849E-03 3.588E-03 4.784E-03 2.545E-03 1.370E-02 2.477E-03 1.776E-03 7.427E-04 1.943E-03

UF5 mean 1.446E-01 3.026E-01 † 2.901E-01 † 3.674E-01 † 3.236E-01 † 3.429E-01 † 6.793E-01 † 2.851E-01 † 3.161E-01† 1.842E-01† 6.398E-01†

std 2.713E-02 3.446E-02 4.636E-02 1.476E-01 9.074E-02 1.004E-01 1.006E-01 9.974E-02 1.060E-01 3.768E-02 3.972E-01

UF6 mean 6.140E-02 2.731E-01 † 1.868E-01 † 3.792E-01 † 1.108E-01 † 2.960E-01 † 3.207E-01 † 2.993E-01 † 4.145E-01† 2.851E-01† 3.204E-01†

std 3.085E-02 1.451E-01 1.361E-01 2.329E-01 7.349E-02 2.346E-01 7.719E-02 1.567E-01 1.796E-01 1.018E-01 1.926E-01

UF7 mean 2.634E-03 3.514E-01 † 4.067E-03 † 6.088E-03 † 2.722E-03 † 3.858E-02 † 3.504E-01 † 2.279E-01 † 2.678E-01† 7.735E-02† 4.009E-02†

std 1.441E-04 4.038E-03 9.467E-04 4.618E-03 4.302E-04 6.747E-03 8.797E-03 1.549E-01 1.724E-01 1.276E-01 4.461E-02

UF8 mean 5.846E-02 5.359E-01 ‡ 6.213E-02 † 2.401E-02 ‡ 6.593E-02 † 1.902E-01 † 2.671E-01 † 4.420E-01 † 3.143E-01† 3.706E-01† 1.693E-01†

std 1.259E-02 5.586E-02 7.577E-03 7.142E-04 6.511E-03 4.524E-03 5.537E-02 2.371E-04 5.935E-02 1.186E-01 2.531E-02

UF9 mean 4.530E-02 3.653E-01 † 6.111E-02 † 9.091E-02 † 1.068E-01 † 2.344E-01 † 1.840E-01 † 2.000E-01 † 1.608E-01† 2.200E-01† 3.567E-01†

std 3.002E-02 3.942E-02 3.914E-02 5.620E-02 5.281E-02 3.507E-02 7.033E-02 6.355E-02 5.736E-02 6.541E-02 4.588E-02

UF10 mean 9.121E-01 4.066E-01 ‡ 4.971E-01 ‡ 5.632E-01 ‡ 7.763E-01 ‡ 2.438E-01 ‡ 6.630E-01 ‡ 5.189E-01 ‡ 3.310E-01‡ 4.080E-01‡ 1.518E+00†

std 1.542E-01 6.183E-02 4.517E-02 1.081E-01 1.240E-01 1.205E-01 6.928E-02 6.460E-02 1.512E-01 1.087E-01 3.549E-01

IH

UF1 mean 3.663E+00 3.594E+00 † 3.650E+00 † 3.643E+00 † 3.656E+00 † 3.442E+00 † 3.386E+00 † 3.311E+00 † 3.317E+00† 3.440E+00† 3.493E+00†

std 1.000E-04 1.711E-02 7.779E-03 1.090E-02 2.100E-03 9.338E-02 1.784E-02 1.024E-01 1.089E-01 1.389E-01 9.189E-02

UF2 mean 3.650E+00 3.583E+00 † 3.607E+00 † 3.553E+00 † 3.639E+00 † 3.462E+00 † 3.609E+00 † 3.510E+00 † 3.500E+00† 3.601E+00† 3.622E+00†

std 1.500E-02 2.500E-02 4.059E-02 1.046E-01 1.512E-02 8.993E-02 7.740E-03 6.899E-02 6.053E-02 3.516E-02 1.397E-02

UF3 mean 3.630E+00 3.450E+00 † 3.549E+00 3.357E+00 † 3.654E+00 2.571E+00 † 3.519E+00 † 2.559E+00 † 2.590E+00† 3.137E+00† 3.559E+00†

std 3.900E-02 6.599E-02 1.111E-01 1.929E-01 7.162E-03 4.653E-02 4.087E-02 3.747E-02 1.052E-01 1.815E-01 4.195E-02

UF4 mean 3.231E+00 2.877E+00 † 3.135E+00 † 3.124E+00 † 3.152E+00 † 3.188E+00 † 3.079E+00 † 3.217E+00 † 3.213E+00† 3.241E+00 3.201E+00†

std 4.870E-03 1.433E-02 1.674E-02 2.155E-02 1.978E-02 6.537E-03 1.368E-01 6.390E-03 3.752E-03 3.564E-03 5.123E-03

UF5 mean 3.165E+00 2.834E+00 † 2.581E+00 † 2.362E+00 † 2.566E+00 † 2.587E+00 † 1.590E+00 † 2.514E+00 † 2.397E+00† 2.827E+00† 1.935E+00†

std 1.000E-01 1.197E-01 1.649E-01 2.461E-01 3.017E-01 3.366E-01 2.378E-01 2.156E-01 2.895E-01 2.009E-01 8.799E-01

UF6 mean 3.231E+00 2.761E+00 † 2.906E+00 † 2.526E+00 † 3.067E+00 † 2.665E+00 † 2.623E+00 † 2.702E+00 † 2.390E+00† 2.617E+00† 2.534E+00†

std 7.290E-02 2.919E-01 2.469E-01 4.142E-01 2.546E-01 4.582E-01 1.522E-01 3.278E-01 3.686E-01 3.202E-01 5.677E-01

UF7 mean 3.494E+00 3.001E+00 † 3.480E+00 † 3.455E+00 † 3.484E+00 † 3.403E+00 † 2.545E+00 † 2.854E+00 † 2.784E+00 3.305E+00 3.403E+00
std 2.580E-03 2.074E-03 8.107E-03 5.177E-02 8.424E-03 6.379E-02 9.270E-03 4.184E-01 4.475E-01 3.632E-01 1.626E-01

UF8 mean 7.323E+00 6.338E+00 † 7.273E+00 † 7.363E+00 ‡ 7.297E+00 † 6.399E+00 † 6.373E+00 † 6.424E+00 † 6.476E+00 6.527E+00 6.657E+00
std 3.373E-02 4.857E-01 2.209E-02 8.799E-03 1.372E-02 1.597E-02 2.263E-01 3.303E-04 1.456E-01 2.338E-01 2.619E-01

UF9 mean 7.653E+00 7.061E+00 † 7.419E+00 † 7.309E+00 † 7.312E+00 † 5.819E+00 † 7.085E+00 † 6.494E+00 † 6.761E+00† 6.989E+00† 5.797E+00†

std 1.417E-01 2.444E-01 1.513E-01 2.459E-01 2.389E-01 2.444E-01 2.235E-01 3.205E-01 2.346E-01 3.053E-01 3.945E-01

UF10 mean 2.185E+00 4.144E+00 ‡ 3.347E+00 ‡ 3.406E+00 ‡ 2.425E+00 ‡ 5.874E+00 ‡ 2.510E+00 ‡ 5.904E+00 ‡ 5.216E+00‡ 4.099E+00‡ 6.961E-01†

std 6.270E-01 4.462E-01 2.021E-01 3.266E-01 4.125E-01 9.841E-01 3.098E-01 7.103E-01 1.223E+00 1.013E+00 7.549E-01

Wilcoxon’s rank sum test at a 0.05 significance level is performed between CDG-MOEA and each of the other competing algorithms. † and ‡ denotes that the performance of the
corresponding algorithm is significantly worse than or better than that of CDG-MOEA, respectively. The best mean is highlighted in boldface.

B. Comparisons on GLT test suite

To verify the robustness of CDG-MOEA on MOPs with
different shapes of PFs, CDG-MOEA is compared with ten
algorithms on GLT test suite in this section.

To visualize the performance of all the compared algorithms
on MOPs with different characteristics, the final nondominated
sets obtained by all the compared algorithms in the run
with the median IGD value on GLT1, GLT2 and GLT6 are
presented in Fig. 5-7. For GLT1 whose PF is two segments
of disconnected straight lines, the performance of all the algo-

rithms is very similar, except for MOEA/D-DE (WS), NSGA-
II and IBEA. The nondominated set obtained by MOEA/D-DE
(WS) is degenerated to two small regions on the corners of
PF. This is because the weighted sum approach is unable to
approximate the nonconvex parts of PF. For GLT2 whose PF
has disparately scaled objectives and/or GLT6 whose PFs are
extremely convex, only CDG-MOEA is able to approximate
the widely and uniformly distributed nondominated solution
set. These results verify that, unlike other algorithms, CDG-
MOEA is able to remain effective on MOPs with complex PFs
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TABLE III: Performance comparisons of CDG-MOEA with ten MOEAs on GLT problems in terms of the mean and standard
deviation values of IGD and IH .

instance CDG-MOEA MOEA/D-DE MOEA/D-ACD MSOPS-II NSGA-II IBEA ε-MOEA Borg OMOPSO
WS TCH PBI

IGD

GLT1 mean 1.748E-03 1.771E-01 † 1.253E-03 ‡ 1.430E-03 ‡ 1.216E-03 ‡ 1.780E-02 † 1.121E-01 † 1.012E-01 † 1.570E-01† 9.084E-02† 4.831E-02†

std 1.629E-04 9.065E-14 2.941E-06 3.824E-06 9.914E-06 6.084E-03 3.738E-02 2.479E-02 2.494E-02 5.252E-02 3.463E-02

GLT2 mean 1.158E-02 4.522E-02 † 1.205E-01 † 2.429E+00 † 1.354E-01 † 6.773E-02 † 1.087E-01 † 3.040E-01 † 4.712E-01† 1.926E-01† 8.558E-02†

std 1.492E-03 1.350E-03 1.947E-02 4.209E-04 1.980E-02 1.886E-02 1.359E-01 8.396E-02 3.242E-01 1.600E-01 2.885E-03

GLT3 mean 1.834E-03 2.374E-01 † 6.537E-03 † 4.535E-01 † 6.536E-03 † 4.743E-02 † 6.639E-02 † 1.506E-01 † 8.166E-02† 1.047E-01† 5.554E-02†

std 4.287E-05 1.383E-06 1.535E-04 1.932E-04 4.719E-04 1.598E-02 2.846E-02 6.907E-02 2.382E-02 2.081E-02 1.833E-03

GLT4 mean 2.923E-03 2.724E-01 † 3.383E-03 † 9.696E-02 † 3.246E-03 † 1.276E-02 † 1.444E-01 † 2.316E-01 † 3.251E-01† 2.515E-01† 1.229E-01†

std 6.339E-05 6.933E-02 8.270E-06 2.594E-02 6.589E-05 6.010E-03 4.927E-02 4.598E-03 1.371E-01 1.121E-01 6.068E-02

GLT5 mean 2.016E-02 2.904E-02 † 6.839E-02 † 1.246E-01 † 3.887E-02 † 1.306E-01 † 3.115E-02 † 6.964E-02 † 5.025E-02† 3.112E-02† 2.677E-02†

std 1.524E-03 5.505E-04 9.744E-04 4.637E-03 4.485E-03 7.923E-02 3.193E-03 7.197E-03 2.588E-02 7.382E-03 2.548E-03

GLT6 mean 1.882E-02 6.799E-02 † 4.115E-02 † 1.785E-01 † 2.398E-02 † 1.148E-01 † 3.207E-02 † 6.005E-02 † 3.927E-02† 3.724E-02† 3.059E-02†

std 5.105E-03 6.283E-02 8.534E-04 2.456E-02 2.688E-03 5.480E-02 4.172E-03 7.718E-03 7.995E-03 4.213E-03 4.620E-03

IH

GLT1 mean 8.128E-01 4.400E-01 † 8.141E-01 ‡ 8.140E-01 ‡ 8.133E-01 ‡ 6.599E-01 † 5.663E-01 † 5.542E-01 † 4.777E-01† 5.895E-01† 6.834E-01†

std 3.679E-03 4.168E-15 1.142E-05 7.386E-06 7.031E-04 4.850E-02 5.928E-02 4.832E-02 5.546E-02 7.306E-02 4.206E-02

GLT2 mean 1.223E+01 1.218E+01 † 1.214E+01 † 8.635E+00 † 1.213E+01 † 1.201E+01 † 1.197E+01 † 1.162E+01 † 1.105E+01† 1.199E+01† 1.212E+01†

std 2.245E-04 1.510E-03 1.779E-02 1.061E-03 1.458E-02 7.229E-02 4.109E-01 2.146E-01 8.633E-01 3.071E-01 4.250E-03

GLT3 mean 1.389E+00 1.342E+00 † 1.388E+00 † 1.325E+00 † 1.388E+00 † 1.374E+00 † 1.376E+00 † 1.359E+00 † 1.373E+00† 1.367E+00† 1.376E+00†

std 6.441E-04 2.772E-07 1.242E-04 2.342E-05 2.815E-04 3.875E-03 5.631E-03 7.815E-03 4.673E-03 4.209E-03 4.490E-04

GLT4 mean 1.635E+00 1.370E+00 † 1.635E+00 1.551E+00 ‡ 1.413E+00 † 1.490E+00 † 1.532E+00 † 1.475E+00 † 1.137E+00† 1.297E+00† 1.517E+00†

std 9.133E-05 2.235E-01 2.908E-05 2.803E-02 6.374E-02 6.773E-02 3.496E-02 /; 5.266E-03 3.643E-01 3.153E-01 1.129E-01

GLT5 mean 1.690E+00 1.691E+00 1.686E+00 † 1.590E+00 † 1.692E+00 1.667E+00 † 1.688E+00 † 1.648E+00 † 1.685E+00 1.680E+00† 1.688E+00†

std 2.481E-03 1.445E-04 2.140E-04 2.471E-03 2.442E-04 3.610E-02 2.065E-03 6.947E-03 1.080E-02 2.248E-03 1.372E-03

GLT6 mean 1.686E+00 1.672E+00 † 1.680E+00 † 1.579E+00 † 1.684E+00 1.671E+00 † 1.675E+00 † 1.621E+00 † 1.678E+00† 1.664E+00† 1.673E+00†

std 1.281E-03 3.448E-02 1.167E-03 6.630E-02 1.166E-03 2.059E-02 1.064E-03 1.140E-02 3.506E-03 1.585E-03 1.826E-03

Wilcoxon’s rank sum test at a 0.05 significance level is performed between CDG-MOEA and the other competing algorithms. † and ‡ denotes that the performance of the
corresponding algorithm is significantly worse than or better than that of CDG-MOEA, respectively. The best mean is highlighted in boldface.

(extremely convex PFs or with disparately scaled objectives).
Table III shows the performance of the eleven compared

algorithms in terms of IGD and IH on GLT1-6. It can
be observed that CDG-MOEA performs significantly better
than other compared algorithms on all test problems except
for GLT1 in terms of IGD. MOEA/D-ACD achieves the
best performance on GLT1, although the final nondominated
solutions obtained by MOEA/D-ACD and CDG-MOEA are
both uniformly distributed on the PF of GLT1, as shown in
Fig. 5.

In terms of IH , CDG-MOEA has the best performance on
GLT2-3 and MOEA/D-DE (TCH) has the best performance on
GLT1 with statistical significance. The performance of CDG-
MOEA is very similar to that of MOEA/D-DE (TCH) on
GLT4; and the performance of CDG-MOEA is very similar to
that of MOEA/D-ACD on GLT5-6, although it can be observed
in Fig. 7 that the solution set obtained by CDG-MOEA is
more uniformly distributed than that obtained by MOEA/D-
DE (TCH) or MOEA/D-ACD on GLT6. This can be explained
by the fact that the solutions on the extremely convex regions
of PFs have very little contribution on the value of IH .

C. Convergence Plots

The performance of eleven compared algorithms (CDG-
MOEA, MOEA/D-DE (WS, TCH, PBI), MOEA/D-ACD,

MSOPS-II, NSGA-II, IBEA, ε-MOEA, Borg and OMOPSO)
during the evolutionary process, in terms of the average IGD
values over 30 runs, is illustrated in Fig. 8 on UF and GLT
problems. It can be observed that CDG-MOEA has the best
performance in terms of both the convergence speed and the
quality of the final nondominated sets on UF2, GLT2-3 and
GLT5. On UF6, CDG-MOEA converges more slowly at the
early stage, but it performs increasingly better and outperforms
all the compared algorithms at the final stage. It is worth
noting that the performance of MOEA/D-DE (PBI), in terms
of IGD values, becomes even increasingly worse during the
optimization process on GLT2-3. This phenomenon can be
verified by the final nondominated sets obtain by MOEA/D-
DE (PBI) on GLT2 (Fig. 6 (d)), where only half of the PF can
be approximated by MOEA/D-DE (PBI) on GLT2.

VII. SENSITIVITY ANALYSIS

In this section, we investigate the sensitivity of the control
parameters in CDG-MOEA, including the population size N ,
the division parameter K, the grid neighborhood distance T
and the probability δ for the mating restriction, and the control
parameters F and CR in the DE reproduction operator, on
both bi- and tri-objective UF and GLT test problems.
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Fig. 5: The final nondominated solution set obtained by eleven algorithms in the run with the median IGD value on GLT1.

A. Sensitivity to Population Size N and Division Parameter
K

For CDG, as described in Section III, there are a total
number of mKm−1 subproblems and each solution can be
at most the optimal solution for m subproblems, where m is
the number of objectives. Although there is a complex inter-
dependence between the population size N and the division
parameter K, their relation for a MOP with a non-degenerate
PF, can be analyzed as follows.

N =
αmKm−1

β
= θKm−1 (16)

where α is the optimal average number of solutions for a
subproblem; β is a coefficient depending on the shape of
PF (e.g. the convexity or disconnection) and θ is the final
coefficient after the simplification.

As the population size N and the division parameter K play
an interdependent role on the performance of CDG-MOEA,
we set combinations of different values of N (200-500 for bi-
objective UF1 and GLT3; 300-1000 for tri-objective UF9 and
GLT5) and K (100-260 for bi-objective UF1 and GLT3; 10-
50 for tri-objective UF9 and GLT5) in the experiments. The
other parameters are the same as those in Section V-B. Fig. 9
shows the mean IGD values of the populations obtained by
CDG-MOEA with different population sizes N and division
parameters K on UF1, UF9, GLT3 and GLT5.

Eq. 16 can be verified from Fig. 9 that N and K are

positively correlated for achieving the best performance for
CDG-MOEA on both bi- and tri-objective problems. When N
= θKm−1, CDG-MOEA can achieve the best performance.

B. Sensitivity to Division Parameter K and Grid Neighbor-
hood Distance T

As the division parameter K and the grid neighborhood dis-
tance T for the mating restriction also play an interdependent
role on the performance of CDG-MOEA, we set combinations
of different values of K (100-260 for bi-objective UF1 and
GLT3; 10-50 for tri-objective UF9 and GLT5) and T (1-10
for bi-objective UF1 and GLT3; 1-5 for tri-objective UF9 and
GLT5) in the experiments. The population size is set to 600
for UF1, 9 and 300 for GLT3, 5. The other parameters are
the same as those in Section V-B. Fig. 10 shows the mean
IGD values of the populations obtained by CDG-MOEA
with different division parameters K and grid neighborhood
distance T on UF1, UF9, GLT3 and GLT5.

Fig. 10 shows that CDG-MOEA with different K and T
values may have the different performance. For UF problems,
it can be observed that when the value of K increases, the
value of T also needs to increase for achieving better perfor-
mance. For GLT problems, CDG-MOEA is very sensitive to K
and a suitable K value is needed for optimal performance, as
discussed in the last section. However, given a fixed K value,
CDG-MOEA is robust with regard to T on GLT problems.
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Fig. 6: The final nondominated solution set obtained by eleven algorithms in the run with the median IGD value on GLT2.
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Fig. 7: The final nondominated solution set obtained by eleven algorithms in the run with the median IGD value on GLT6.
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Fig. 8: The mean IGD values vs. the number of function
evaluations obtained by eleven algorithms over 30 runs.
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GLT5 over 30 runs.
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Fig. 11: The mean IGD values vs. the numbers of function
evaluations obtained by CDG-MOEA with different δ over 30
runs on UF1, UF9, GLT3 and GLT5.

C. Sensitivity to Probability of Mating Restriction

To investigate the sensitivity of the probability for the
mating restriction δ, CDG-MOEA with δ = 0.5, 0.6, 0.7, 0.8
and 0.9 is separately tested. The remaining parameters are the
same as those in Section V-B. Fig. 11 shows the evolution of
the mean IGD values of the populations obtained by CDG-
MOEA with different δ values on bi-objective UF1, GLT3 and
tri-objective UF9, GLT5. It can be observed that CDG-MOEA
with different δ achieves very similar performance, in terms
of the final IGD values, which indicates that CDG-MOEA is
not sensitive to δ. However, on UF1 and UF9, CDG-MOEA
converges faster with larger δ values (δ = 0.8, 0.9).
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Fig. 12: The mean IGD values obtained by CDG-MOEA with
different combinations of F and CR on UF1, UF9, GLT3 and
GLT5 over 30 runs.

D. Sensitivity to F and CR

The sensitivity of the control parameters F and CR in the
DE reproduction operator are tested in this section. We set a
total of 25 combinations of five F values (0.1, 0.3, 0.5, 0.7
and 0.9) and five CR values (0.2, 0.4, 0.6, 0.8 and 1) on
UF1, UF9, GLT3 and GLT5. All the other parameters remain
the same as those in Section V-B. The mean IGD values
of final populations obtained by CDG-MOEA with different
combinations of F and CR on UF1, UF9 and GLT5 are shown
in Fig. 12. It can be observed that when both F and CR have
relatively large values (e.g., F = 0.5, 0.7 and CR = 0.8, 1),
CDG-MOEA has better performance.

VIII. MORE DISCUSSIONS OF CDG-MOEA ON
MANY-OBJECTIVE OPTIMIZATION

CDG-MOEA can be further extended to many-objective
optimization problems if the following two issues can be well-
addressed.

First, the setup of the grid-system in CDG is based on the
approximation of both ideal and nadir point. In the current
CDG-MOEA, Pareto-domination is used to approximate the
nadir point. However, it is well-known that the selection pres-
sure of Pareto-domination becomes weaker with the increasing
number of objectives [22], [10], [25]. Therefore, to maintain
the convergence for CDG-MOEA/D, other methods are needed
for the better approximation of the nadir point.

Second, as discussed in Section VII-A, when N = θKm−1,
where θ is a coefficient, N is the population size, K is the grid
division parameter and m is the number of objectives, CDG-
MOEA can achieve the best performance. This indicates that
the value of K (at least 2) would be far away from its optimal
value (less than 1) when N is a small number with a large
m value. In other words, a large K value and a very large
N value are needed for CDG-MOEA on a many-objective
optimization problem, to achieve good performance.

IX. CONCLUSION

This paper proposed a novel constrained decomposition
approach with grids (CDG) to better fit the decomposition-
based MOEA framework. The proposed CDG-MOEA is com-
pared with seven classical or state-of-the-art MOEAs on two
sets of test suites. The experimental results show that CDG-
MOEA outperforms the compared algorithms in most test
problems. More importantly, CDG-MOEA is very robust with
the shapes of PFs and can remain effective on MOPs with
complex PFs (e.g., extremely convex or with disparately scaled
objectives). The sensitivity analysis of the parameters are also
conducted in this paper. Further studies include the extension
of CDG-MOEA for combinatorial multiobjective optimization
problems and many-objective optimization problems.
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