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a b s t r a c t

Modular neural network is a popular neural network model which has many successful applications. In
this paper, a sequential Bayesian learning (SBL) is proposed for modular neural networks aiming at
efficiently aggregating the outputs of members of the ensemble. The experimental results on eight
benchmark problems have demonstrated that the proposed method can perform information aggregation
efficiently in data modeling.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A modular neural network (MNN) is a neural network model
that is characterized by a group of independent sub-neural net-
works moderated by some intermediaries in the entire architecture
to perform complex functions (Jordan & Jacobs, 1991a, 1991b).
Each independent sub-network serves as a module and operates
on separate inputs to accomplish some subtasks of the task that
the network is to perform. An additional layer acting as an inter-
mediary takes the outputs of each module and processes them to
produce the output of the network as a whole. In contrast to the
‘‘global” neural network models such as back-propagation neural
networks (Haykin, 1999) and recurrent neural networks (Zhou &
Xu, 1999, 2001), an MNN offers some significant advantages (Feng
& Wang, 2007; Wang, Feng, & Fan, 2008). First it has strong biolog-
ical backgrounds. Cognitive, neuropsychological and neurobiologi-
cal sciences have indicated that biological brain function exhibits
the property of modularity. Some neuropsychological experiments
show that a circumscribed brain lesion could cause a specific disor-
der of language while other brain cognitive functions remain intact
(Eccles, 1984; Edelman, 1979). The brain also performs the func-
tion of dividing the complex task of visual perception into many
subtasks (Happel & Murre, 1994). Interestingly, the neuropsychol-
ll rights reserved.
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ogy indicates that the thalamus of the brain is divided into differ-
ent layers that separately process color and contrast (Hubel &
Livingstone, 1990). Hence, according to the cognitive, neuropsy-
chological and neurobiological sciences, the regions of animal
and human brains are organized into specially and functionally
segregated modules, while the MNN offers a computational intelli-
gence technique for emulating these functions of segmentation
and modularization found in the brain. The second advantage of
MNN is that as a computing scheme, it provides the capability of
dividing a large, unwieldy neural network into smaller, more man-
ageable components. This is very useful in neural network applica-
tions since many real-world problems appear intractable for
practical purposes by a single neural network as its size increases.
If a complex task is further separated into distinct parts, the possi-
ble connections each node can make in building up a network are
limited, so the sub-tasks will perform more efficiently than trying
to tackle the whole task at once by a single network. As a matter of
fact, even though a large neural network modelled by a large num-
ber of parameters can be constructed to tackle a complex problem,
the network training process could suffer from interference when
new data turns up, as these new data can dramatically alter exist-
ing connections or just serve to confuse. On the hand, if a task is
divided into subtasks to be solved by independent sub-neural net-
works, each sub-neural network can be tailored for its task with its
unique training data. In this way, more effective computing perfor-
mance can be achieved. Currently, MNN has many applications in
the domains such as pattern recognition and classification (Drake
& Packianalher, 1998; Perez & Galdames, 1998; Zhou, Wu, & Tang,
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Fig. 1. Modular neural network architecture.
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2002), image processing (Van Hulle & Tollenacre, 1993; Wang, Der,
& Nasrabadi, 1998), system identification (Srinivas, Jeffrey, Huang,
Phillips, & Wechsler, 2000), language/speech processing (Chen &
Chi, 1999; Sibte & Abidi, 1996), control (Deepak, 1999), predic-
tion/modelling (Pan & Sensen, 2005; Wang, Fan, & Li, 2006), target
detection/recognition (Wang et al., 1998), fault diagnosis (Kim &
Park, 1993), etc.

In MNN applications, after the ensemble of neural networks are
trained, an important issue is how to effectively aggregate the indi-
vidual neural network outputs. In fact, knowledge and information
aggregation has become a subject of intensive research due to its
practical and academic significance in many domains such as deci-
sion making (Carvalho & Costa, 2007; Li, 1999a, 1999b; Li & Li,
1999; Xu, 1988; Xu, Xu, Liu, & Jones, 2008; Zhao & Li, 2009; Zhou,
Chiclana, John, & Garibaldi, 2008), information fusion (Tahani &
Keller, 1990), knowledge engineering (Qi, Liu, & Bell, 2007; Xu,
Wang, Luo, & Shi, 2006) and system modelling (Zhou & Gan,
2007). In MNN, the objective of aggregation is to combine the
component network outputs in an appropriate way so that the final
result can take all the individual contributions into account. The
primary concerns in choosing an ensemble aggregation method
for a MNN are bias and variance in the functional mapping esti-
mates. Currently, many methods have been investigated for MNN
to tackle this important issue (Cho & Kim, 1995; Hansen &
Salamon, 1990; Hashem, 1997; Perrone & Cooper, 1994; Xu,
Krzyzak, & Suen, 1992). Among them the simple averaging
(Perrone & Cooper, 1994) and weighted averaging schemes
(Hashem, 1997) for aggregating the outputs of the members of
the ensemble are commonly used. However, few efforts have been
made to address this issue from the perspective of Bayesian rea-
soning, although some researchers have proposed Bayesian
schemes for designing ‘‘global” neural networks (Buntine & Weig-
end, 1991; Lampinen & Vehtari, 2001). The objective of this paper
is to create a novel Bayesian approach to combining the outputs of
the ensemble members in a MNN.

The paper is organised as follows. Section 2 presents the
proposed sequential Bayesian learning algorithm for MNN,
experimental results are described in Section 3, and Section 4
provides a conclusion.
2. Sequential Bayesian learning method

Formally, a neural network is considered to be modular (Jordan
& Jacobs, 1991a, 1991b) if the computation performed by the net-
work can be decomposed into two or more modules (subsystems)
that operate on distinct inputs without communicating with each
other. The outputs of the modules are mediated by an integrating
unit that is not permitted to feed information back to the modules.
In particular, the integrating unit determines (1) how the modules
are combined to form the final output of the system, and (2) which
modules should learn which training patterns. The corresponding
network architecture is illustrated in Fig. 1, in which X 2 D # Rn

is the input vector; y is the output, fNetigK
i¼1 represent the individ-

ual sub-nets, and fwigK
i¼1 are the corresponding combination

weights for aggregating the outputs of individual sub-nets to ob-
tain the overall outputs.
y ¼
PK

i¼1wiyiPK
i¼1wi

ð1Þ

where wi P 0. These weights could be viewed as the measure of
‘‘goodness” of the sub network’s behavior in the entire system. A
larger combination weight indicates the associated ensemble mem-
ber playing a more important role in the decision making process.
In the following, based on sequential Bayesian decision analysis
a Bayesian learning approach to MNN is proposed to combine the
output(s) of the members of the ensemble of a modular neural
network.

First, if the unknown vector has prior density, the posterior den-
sity p(hjx) determined by a certain observed vector x is:

pðhjxÞ ¼ pðhÞ � pðxjhÞ
pðxÞ ð2Þ

If h is continuous, the marginal density (or predicted function)
of the observed vector x is calculated as

pðxÞ ¼
Z
#2H

pðxjhÞpðhÞdh ð3Þ

In case of discrete h,

pðxÞ ¼
X
#2H

pðxjhÞpðhÞ ð4Þ

where p(xjh) is the likelihood function (LF). After the ensemble of
sub-networks are trained, the issue of finding effective ways to
combine the individual network outputs needs to be resolved.

In this paper, we propose to consider the combination of mem-
bers of the ensemble as a statistical decision problem, in which
each individual network is a decision-maker, the corresponding
combination weight acts as the corresponding reliability measure.
One of the advantages of Bayesian decision analysis is that it can
model uncertain information via Bayesian reasoning process
(Lampinen & Vehtari, 2001), which can help the analyst gain more
insights into the system to be modeled. The proposed method con-
sists of two steps: the first step is to train the networks of the
ensemble; the second step is to learn the inter-connecting combi-
nation weights for the individual networks in a sequential fashion.
At each stage, the available data samples plus the newly acquired
data set are split into training data sets, test data sets, and valida-
tion data set. The training data sets are used to train the members
of the ensemble, and the validation samples are used to identify
the optimal combination weights in the second step. Then the gen-
eralization errors of each component network and the likelihood
function (LF) value of each component network are calculated on
the test samples. Finally the combination weights are adjusted
according to Bayesian reasoning, in which the current weights
are posterior and the previous weights are prior. Initial prior
weights are set to be equal if we know nothing about the initial



Table 3
Architecture of component networks.

Problem The architecture of each component network

MH2 1-10-1, 1-10-1, 1-12-1, 1-12-1
MH3 2-8-8-1, 2-8-8-1, 2-8-10-1, 2-8-10-1, 2-10-10-1
F1 5-18-1, 5-18-1, 5-20-1, 5-20-1, 5-22-1, 5-22-1, 5-24-1, 5-24-1
F2 4-25-1, 4-25-1, 4-30-1, 4-30-1, 4-35-1, 4-35-1
GB 2-12-1, 2-12-1, 2-14-1, 2-6-8-1, 2-8-8-1, 2-8-8-1
MI 5-10-1, 5-10-1, 5-12-1, 5-12-1, 5-14-1, 5-14-1, 5-16-1, 5-16-1
PL 2-8-1, 2-8-1, 2-10-1, 2-5-5-1, 2-5-5-1
PO 1-10-1, 1-10-1, 1-12-1, 1-12-1
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weights. This sequential Bayesian learning scheme is summarized
as follows.

Given the training set, validation set, the learning rate, the error
limit, and the maximal number of iterations, we have the following
steps for MNN learning:

Step 1. Train all the component networks until the error limit or
the maximal number of iteration is achieved;

Step 2. Split the validation set into S parts, each one denoted as
fESigS

i¼1;
Step 3. For i = l to S:

(Step 3a). Compute the LF value xi
jðj ¼ 1;2; . . . ;KÞ as
Table 1
Eight regre

Name

2-D Mexic

3-D Mexic

Friedman (
Friedman (

Gabor (GB)

Multi-inter
Plane (PL)
Polynomia

Table 2
Generation

Problem

MH2
MH3
Fl
F2
GB
MI
PL
PO
xj ¼
1=ssejPK

k¼11=ssek

ð5Þ
in {ES1 [ ES2� � � [ ESi}, where the ssej represents the train-
ing error of the jth sub-network.

(Step 3b). Update the combination weights by using

Bayesian reasoning:
wi
j ¼

wi
j ¼ wi�1

j if
PK
j¼1

wi�1
j xi

j ¼ 0

wi�1
j

xi
jPK

j¼1
wi�1

j
xi

j

otherwise

8>>><
>>>:
From the (Step 3a), it can be seen that the validation data sets
are constructed in a sequential way so that each validation set pos-
sesses certain property of inheritance. In the process of learning
the combination weights, the (intra-network) connection weights
of each component network do not change. Hence, in this sequen-
tial Bayesian learning algorithm, the global model performance is
gradually improved.
ssion examples.

Function

an Hat (MH2) y ¼ sin jxj
x

an Hat (MH3) y ¼ sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
F1) y = 10sin(px1x2) + 20(x3�0.5)2 + 10x4 + 5x5

F2)
y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2x3 � 1
x2 x4

� �� �2
r

y ¼ p
2 exp �2 x2

1 þ x2
2

� �� �
cos½2pðx1 þ x2Þ�

action (MI) y = 0.79 + 1.27x1x2 + 1.56x1x4 + 3.42x2x3 + 2.06
y = 0.6x1 + 0.3x2

l (PO) y = 1 + 2x + 3x2 + 4x3 + 5x4

of data sets

Size of dataset Partition of dataset Numbe

3000 1200–1000–800 4
4000 2000–1000–1000 5
5000 3200–1000–800 8
21,000 9000–10,000–2000 6
3000 1200–1000–800 6
3000 1200–1000–800 8
3000 1200–1000–800 5
3000 1200–1000–800 4
3. Experimental results

In this section, eight benchmark regression examples (Zhou
et al., 2002) are used to evaluate the proposed Bayesian learning
algorithm for constructing MNNs, and compare with the learning
scheme used in (Perrone & Cooper, 1994).

The eight benchmark regression examples are described in
Table 1. For each problem, the proposed algorithm is run five times
to reduce the potential randomness. The model performance is
evaluated by averaging the five run results. First, we need to gen-
erate a data set and get the training set, validation set and test set.
The training set is used to learn the connection weights of each
component network, evaluation set to learn the combination
weights, and test set to check the generalization performance of
the whole system. The size of each data set and variables’ distribu-
tion interval are shown in Table 2, where x � y � z represents the
size of these sets. Then the architecture of each individual network
is constructed. Table 3 shows the architecture of each modular
neural network, where x � y � z (or x � y1 � y2 � z) means the
number of units in input, hidden and output layer are x, y (or y1

and y2) and z. The activation function of the neurons in the hidden
layer(s) is sigmoid function and the one in output layer is linear.

The next step is to train all the ensemble members of each MNN.
Firstly, we split the training set into K (the number of the component
networks) subsets. Then on each subset a component network is
trained. The training parameters are indicated in Table 2 for each
Variable (s)

x � U[�2p,2p]

xi � U[�4p,4p]

xi � U[0,1]
x1 � U[0,100], x2 � U[40p,560p], x3 � U[0,1], x4 � U[1,11].

xi � U[0,1]

x3x4x5 xi � U[0,1]
xi � U[0,1]
x � U[0,1]

r of component networks Training error limit Parameters

1e�6 5000
1e�5 3000
1e�6 5000
1 3000
1e�6 5000
1e�4 5000
1e�6 5000
1e�6 5000



Table 4
Generalization performance comparison.

MH2 MH3 F1 F2 GB MI PL PO

The proposed 3.282e�7 1.717e�5 3.322e�5 3.99178 5.992e�6 0.000474 3.383e�7 5.987e�7
Scheme in (Perrone & Cooper, 1994) 6.734e�6 0.001193 0.357947 1225.76 1.695e�5 0.00053 6.112e�7 5.559e�7
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regression problem. Then the proposed sequential Bayesian learning
algorithm is used to perform information aggregation. Table 4 shows
the generalization performance of the proposed method in compar-
ison with the scheme used in (Perrone & Cooper, 1994). It can be seen
that the proposed algorithm outperforms the scheme used in (Perro-
ne & Cooper, 1994) for aggregating the outputs of ensemble mem-
bers of MNNs on the eight benchmark problems.

4. Conclusion

In this paper, a sequential Bayesian learning method is pro-
posed for modular neural network to combine the outputs of inde-
pendent component networks. At each stage the likelihood
function (LF) value of each component network is computed first,
then the combination weights are adjusted according to Bayesian
reasoning, in which the current weights are posterior and the pre-
vious weights are prior. The results of experiments on the eight
benchmark problems show that the proposed method outperforms
the widely used scheme for MNN.
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