
384 Int. J. Wireless and Mobile Computing, Vol. 8, No. 4, 2015  

Copyright © 2015 Inderscience Enterprises Ltd. 

Optimal trajectory searching based differential 
evolution 

Dazhi Jiang, Liyu Li and  
Jian Gong 
Department of Computer Science, 
Shantou University,  
GuangDong, China  
Email: jiangdazhi111007@sina.com 
Email: 12lyli2@stu.edu.cn 
Email: 13jgong2@stu.edu.cn 

Zhun Fan* 
Department of Electronic and Information Engineering, 
Shantou University,  
GuangDong, China  
Email: zfan@stu.edu.cn 
*Corresponding author 

Abstract: A well-designed best solution selection scheme is usually beneficial to enhance the 
effectiveness and efficiency of evolutionary algorithms. Optimal trajectory searching, a new best 
solution selection mechanism in the search behaviour of the traditional differential evolution 
(DE), is presented and analysed. Then an improved algorithm based on traditional DE and 
optimal trajectory searching mechanism is presented for enhancing the performance of DE. 
Performance compared with other four DE variants indicates that our algorithm outperforms 
them in terms of convergence speed and solution accuracy. 

Keywords: optimal trajectory searching; differential evolution; search behaviour. 

Reference to this paper should be made as follows: Jiang, D., Li, L., Gong, J. and Fan, Z. (2015) 
‘Optimal trajectory searching based differential evolution’, Int. J. Wireless and Mobile 
Computing, Vol. 8, No. 4, pp.384–393. 

Biographical notes: Dazhi Jiang received his BA in Computer Science from the China 
University of Geoscience (Wuhan) in 2004. He obtained his PhD from the State Key Laboratory 
of Software Engineering, Wuhan University, China in 2009. Since then, he has been with the 
Department of Computer, Shantou University, China, where he is an Associate Professor. His 
research interests include evolutionary algorithm, automatic programming, data mining and 
applications of artificial intelligence. 

Liyu Li obtained his BS in Electronic Information Science and Technology from Hubei 
University of Technology in 2012 and MS in Computer Technology Application from Shantou 
University in 2015, respectively. His research interest includes evolutionary computation, deep 
learning and artificial intelligence. 

Jian Gong obtained his BS in Electronic Information Engineering from Hubei University of 
Technology in 2013. Since then, he has been with the Department of Computer, Shantou 
University, China, where he is a graduate student. His research interest includes evolutionary 
computation and data mining 

Zhun Fan is a Professor of Electronic and Information Engineering at the University of Shantou, 
Guangdong, China. She received her PhD in Electrical and Computer Engineering from 
Michigan State University. Her current research focuses on evolutionary algorithm, intelligent 
mechatronic systems, mechatronic design automation, etc. 

 

 

 
 
 
 



 Optimal trajectory searching based differential evolution 385 
 

1 Introduction 

Inspired by the natural evolution of species to solve 
optimisation problems, Differential Evolution, which was 
written as DE for short, is arguably one of the most competitive 
evolutionary algorithms for continuous optimisation (Storn and 
Price, 1997; Moraglio and Togelious, 2009; Chen et al., 2013). 
Compared with the traditional evolutionary algorithms (Rana 
and Zaveri, 2013), DE is also a reliable and effective global 
optimiser algorithm that has been successfully applied in  
a wide range of application (Wang et al., 2013). The 
behaviour of DE has attracted much attention in the research 
community during the past decade. It was influenced not 
only by mutation and crossover operators, but also by the 
adaptive parameters controlling and search strategies in DE 
algorithm (Zaharie, 2007; Zielinski et al., 2006; Gaemperle 
et al., 2002). 

In terms of adaptive parameters controlling, feedback 
from the evolutionary search is used to dynamically change 
the control parameters (Wang et al., 2013). For factor F 
adaptation in DE, Ali and Torn (2004) introduced auxiliary 
population and automatic calculating of the amplification 
factor F. To develop a self-adaptive control mechanism to 
adjust the parameters F and Cr, Brest et al. (2006) introduced 
self-adapting control parameter settings into DE (SADE).  
Qin and Suganthan (2005) emphasised the adaptation of 
parameter settings during the evolving procedure and 
accordingly established a self-adaptive DE called SaDE for 
numerical optimisation (Huang et al., 2006; Qin et al., 2009). 
Yong et al. established a neighbourhood search strategy for 
DE (NSDE), which uses Gaussian and Cauchy distributed 
functions to generate parameter F (Yang et al., 2008a). 
Although SaDE and NSDE have quite different emphases on 
improving DE’s performance, Yang et al. (2008b) proposed 
SaNSDE (self-adaptive NSDE) which introduces SaDE’s 
self-adaptive mechanisms into NSDE.  

As to developing new search strategies in DE algorithm, 
Noman and Iba (2008) adopted an adaptive hill climbing 
strategy that uses a crossover-based adaptive local search 
operation to enhance the DE algorithm performance. 
Following a learning strategy to calculate the opposite 
solutions of current population, Rahnamayan et al. (2008) 
developed a novel opposition-based DE (ODE) algorithm to 
accelerate the convergence speed in differential evolution. 
Some research showed that the performance of DE can be 
improved by combining several effective trail vector 
generation strategies with some suitable control parameter 
settings (Mallipeddi et al., 2011; Wang et al., 2011).  

However, most of DE variants mentioned above are 
concreted on rand/1, rand-to-best/1 and rand/2 schemes of 
DE. There has been no method developed solely based on 
greedy DE variants (such as DE/best/1 and DE/best/2) that 
utilises the information of the best solution(s) in the current 
population. The reason seems straightforward: a greedy 
variant may lead to premature convergence (Zhang and  
 
 
 

Sanderson, 2009). However, we note that in the processes of 
problem solving, a well-designed best solution selection 
scheme is usually beneficial to enhance the effectiveness 
and efficiency of algorithm. 

In view of the above consideration, we developed an 
improved DE algorithm that adapts an optimal trajectory  
searching strategy in mutation, which could be considered  
as a variant of DE/best/1 algorithm (DE/best-local/1). As a 
generalisation of DE/best/1, DE/best-local/1 utilises the best  
solution information in local populations. This idea comes 
after the research of geometric characteristic of DE 
According to the geometric characteristic in DE, we found 
the new candidates are generated by mutation around the 
fixed trajectories. When searching candidates in some fixed 
trajectories (optimal trajectories), the fitness of those 
candidates always outperform candidates generated with the 
trajectories remained. In spite of its greedy property, the 
proposed strategy just makes effort in several individuals 
which are selected from population so that the problems 
such as premature convergence can be alleviated. The study 
shows that, an optimal trajectory searching mechanism 
included in the search behaviour of mutation improves the 
efficiency and effectiveness of problem solving.  

The paper proceeds as follows. Section 2 briefly 
introduces the traditional DE algorithms. In Section 3, we 
explain the concept of geometric interpretation in DE, 
especially the optimal trajectory searching in DE. Section 4 
presents DE algorithms based on optimal trajectory search. 
The experimental verifications of our DE algorithm are 
illustrated in Section 5. Finally, the concluding section 
draws some general implications and points to what remain. 

2 A brief introduction to differential evolution 

DE is a population-based, direct, robust and efficient search 
method. Like other evolutionary algorithms, DE starts with an 
initial population vector randomly generated in the solution 
space (Storn and Price, 1997). Assume N is a constant 
number which presents the size of population, and D is the 
dimension of parameter vectors. So, the population is 
expressed as Xi(t), where i = 1, 2, …, N, t is the generation. 
The main difference between DE and other evolutionary 
algorithms, such as Genetic Algorithm and Particle Swarm 
Optimisation algorithm, is its new generation vectors 
generating method. In order to generate a new population 
vectors, three vectors in population are randomly selected, 
and weighted difference of two of them is added to the  
third one. After crossover, the new vector is compared with 
the predetermined vector in population. If the new vector  
is better than predetermined one, replace it; else, the 
predetermined vector saved in the next generation’s 
population. For traditional DE, the procedure is illustrated as 
following: 
 



386 D. Jiang et al.  

Mutation: For each vector i from generation t, a mutant 
vector ( 1)iX t   is defined by 

1 2 3
( 1) ( ) ( ( ) ( ))i r r rX t X t F X t X t      (1) 

where {1, 2, , }i N  and 1 2 3, , [0, ]r r r N , i , 1r , 2r and 3r  are 

different. The differential mutation parameter F, known as 
scale factor, is a positive real normally between 0 and 1, but 
it also can take values greater than 1. Simply, larger values 
for F result in higher diversity in the generated population 
and the lower values in faster convergence. 

Furthermore, mutant vector ( 1)iX t   could be defined 

by other mutation strategies, such as: 

2 3
( 1) ( ) ( ( ) ( ))i best r rX t X t F X t X t      (2) 

1 2

( 1) ( ) ( ( )

( )) ( ( ) ( ))
i i best

i r r

X t X t F X t

X t F X t X t

  
  

 (3) 

1 2

3 4

( 1) ( ) ( ( ) ( ))

( ( ) ( ))

i best r r

r r

X t X t F X t X t

F X t X t

   

 
 (4) 

1 2 3

4 5

( 1) ( ) ( ( ) ( ))

( ( ) ( ))

i r r r

r r

X t X t F X t X t

F X t X t

   

 
  (5) 

where Xbest(t) is the best vector in generation t, and i, r1, r2, 
r3, r4 and r5 are different numbers which generated from 
[0, ]N . Schemes (1) and (3), which were notated as DE/ 

rand/1/bin and DE/current to best/2/bin, are used frequently 
in literature due to the high performance. 

Crossover: Crossover also plays an important role in DE 
algorithm which increases the diversity of the population. A 
crossover vector ( 1)iX t   is defined as following: 

, , ,( 1) ( ( 1), ( 1), , ( 1))i i j i j i jX t X t X t X t         

where {1, 2, , }j D   and 

,

,
,

( 1), ( ) ,
( 1)

( ), .
i j r

i j
i j

X t if rand j C
X t

X t else

    


  

The recombination probability parameter Cr takes values in 
[0,1] , and ( ) [0,1]rand j  .  

3 Geometric analyses of DE 

Using (1), denote ( 1)iX t   by U with 
1
( )rX t , 

2
( )rX t  and 

3
( )rX t  by 1X , 2X  and 3X , respectively. Thus, (1) can 

be rewritten as follows: 

3 1 2U F X X F X      (6) 

Divide both sides by 1+F and let 
1

1 F



, then we will have: 

3 1 2(1 ) (1 )U X X X            (7) 

In (7), with [0,1]F  , [0.5,1] . Both sides of (7) are a 

typical form of arithmetic crossover operators in traditional 
evolutionary algorithms. 

Supposing 1 2(1 )E X X     , get (1 )U      

3X E , and U can be rewritten as follows. 

3
3

(1 ) 1 1
1

E X
U E X


  

       
 

  (8) 

The algebraic operations on real vectors in (8) can be 
represented graphically as in Figure 1. 

Figure 1 Construction of U with parent vectors 

 

Fortunately, a geometric description of (7) in terms of 
convex combinations (see Figure 1) can be allowed  
for interpretation. In Figure 1, calling E the vector obtained 
by the convex combinations with both sides of (7). 
Geometrically the point E must be the intersection points  
of the segments X1X2 and UX3. For the new point generated 
by (8), it can be determined geometrically by firstly 
determine E as convex combination of X1 and X2; then,  
a new point U obtained by projecting X3 beyond E 
(extension ray). 

Definition: Suppose that V3 is the convex space combined  
by X1, X2 and X3, thus the point U will always be out of  
the V3. 

Proof: According to Figure 1, to prove U is not in the V3, if 
and only if U does not belong to the segment EX3. With 

simplified equation 
1 1

1 3U E X
 

    
 

. For [0.5,1] , 

hence 
1

[1,2]

  and 

1
1 [ 1,0]


   . With the parameters 

1


 and 

1
1


 , the new point U obtained by the linear 

combination of points E and X3 is out of the segment EX3, 
which means that U is not between E and X3.  

Supposing U is in the segment EX3, if and only if 
1 1

,1 [0,1]
 

   and 
1 1

1 1
 

    
 

. 

The process of mutation for traditional DE can be 
interpreted as follows (use scheme 1). Selecting three 
vectors X1, X2 and X3 in ( )N t , for any * , where 



 Optimal trajectory searching based differential evolution 387 

* [0.5,1]  , intersection points *E  can be obtained by the 

formula * *
1 2(1 )X X    . Then, according to the *  and 

*E , new points *U  will be obtained by formula of 

*
* *

1 1
1 3E X

 
   
 

. 

For this process, considering two cases of *  as follows. 

1 * 1    

 With two equations * * *
1 2(1 )E X X      and 

* *
* 3

*

(1 )E X
U




 
 , it is obvious that points 1X , *E  

and *U  are all concentrated together where 1X  located 

before mutation. 

2 * 0.5   

 Similarly, with equation * * *
1 2(1 )E X X     , point 

*E  is the midpoint of segment 1 2X X . While, with 

equation 
* *

* 3
*

(1 )E X
U




 
 , point *U  is located in 

the extension ray of segment 
*

3X E , and *E  is the 

midpoint of segment 
*

3X U  simultaneously.  

With these two cases, we can construct a more detailed 
geometric expression for DE mutation (Figure 2).  

Figure 2 Geometric expression for DE mutation 

 

The process of mutation for DE can be interpreted in detail 

as follows. Selecting three vectors 1X , 2X  and 3X  in 

( )N t , with * [0.5,1]  , get 

*
1 1 1 3 2 1 2 2 3 2 3 3{ , , , , , }U X U X U X U X U X U X U . 

Beside, 1 1 1 3 2 1 2 2 3 2 3 3 3 1{ , , , , , } { ,X U X U X U X U X U X U V X   

2 3, }X X . 

4 DE algorithm based on optimal  
trajectory searching 

4.1 Optimal trajectory in DE algorithm 

For the DE/rand/1/bin algorithm, according to the geometric 
expression of DE, new point *U  is determined by *E  
(determined by 1X , 2X ) and 3X . It is obviously that 1X , 

2X
 and 3X  have distinguishing function in the mutation 

equation 1 2 3( )   U X F X X . 

Here we consider 1X , 2X  and 3X  as three different 

locations. Thus for three individuals iX , 
jX  

and kX  which is 

randomly selected in population, there are six kinds of 
combination values when the individuals are located in the 
different locations. According to the fitness of iX , 

jX  
and kX , 

there are three cases for location 1X , which are the individual 

with best fitness, the medium fitness and the worst one. In the 
view of fitness discrepancy, 1 2 3( )U X F X X    could be 

transformed into three new forms as follows. 

Case 1: best individual in location 1X : 

( )   best middle worstU X F X X  

( )   best worst middleU X F X X  

Case 2: middle individual in location 1X : 

( )   middle best worstU X F X X  

( )   middle worst bestU X F X X  

Case 3: worst individual in location 1X : 

( )   worst best middleU X F X X  

( )   worst middle bestU X F X X  

When iX , 
jX  

and kX  are located in the determined location, 

the trajectory for generated new candidates is determined in the 
meanwhile. After that, the algorithm will search candidates in 
the fixed searching trajectories. For the Case 1, the trajectories 
are 1 1X U  and 1 3X U ; for the Case 2, the trajectories are 2 1X U  

and 2 2X U ; for the Case 3 are 3 2X U  and 3 3X U .The question 

is which are the optimal searching trajectories when generating 
new candidates with mutation operator? 

Through experimental observation that the offspring 
generated by Case 1 have the highest probability to surpass 
the father individuals compared with DE, Case 2 and  
Case 3. It means that the optimal trajectories in DE 
mutation 1 2 3( )   U X F X X  are 1 1X U  and 1 3X U .  

4.2 The framework of DEOTS 

The evolving framework of algorithm is constructed as 
follows:  
 
 



388 D. Jiang et al.  

Evolving Framework of DEOTS: 

Initialise population of pN  vectors at random, 0t   

While stop criterion not met do 

For all vectors ( )iX t  in the population do 

Mutation strategy: 
Step I: Pick at random three distinct vectors from the 

current population
1
( )rX t ,

2
( )rX t and 

3
( )rX t , 

where, 1 2 3r r r  . 

Step II: Find the vector ( )rX t  with best fitness 

in
1
( )rX t ,

2
( )rX t and

3
( )rX t , where 

1 2 3{ , , }r r r r .  

Step III: Create intermediate vector ( 1)iX t   

with ( 1) ( ) ( ( ) ( ))i r a bX t X t F X t X t    , 

where 1 2 3, { , , } { }a b r r r r   and a b . 

Crossover strategy: 

Create vector ( 1)iX t   

with
,

,
,

( 1), ( ) ,
( 1)

( ) .

i j r

i j
i j

X t if rand j C
X t

X t else

    
 ，

, where 

rC is the recombination parameter.  

Selection strategy: 

If ( ( 1))if X t   better than ( ( ))if X t then 

     Set the i-th vector in the next population 

     ( )iY t = ( 1)iX t   

Else 

     ( )iY t = ( )iX t  

End if 

End for 

For all vectors ( )iX t  in the population do  

Set ( 1)iX t  = ( )iY t , 1t t   

End for 

End while 

5 Experimental verification 

All test functions applied in this experiment are well-known 
benchmark functions which have been frequently used in 
literature (Yao et al., 1999). All of these functions used in 
this paper are minimisation problems. The conducted 
experiments are categorised in two groups in order to 
investigate the performance of DEOTS. To evaluate the 
performance of convergence accurately, the number of 
function calls (NFC) was employed. 

5.1 Experiment 1 

In Experiment1, DEOTS is compared with some excellent 
algorithms, which are SaDE, NSDE and SaNSDE. The 

following parameters are used by DEOTS in current 
experiment: 

 Population size, N=100. 

 Dimension, D=30. 

 F=Rand(0.0,1.0). 

 Cr = 0.5. 

 Maximum number of function calls (MAXNFC): 
1500*100 for F1-F4, 5000*100 for F5, 1500*100 for 
F6-F13, 200*100 for F14, 1500*100 for F15 and 
200*100 for F16-F21. 

The average results of 20 independent trials on functions F1 
to F21 are summarised in Table 1. Especially, the results for 
three algorithms, SaDE, NSDE and SaNSDE, are cited from 
Yang et al. (2008b). 

Table 1 Comparison of DEOTS with SaDE, NSDE and 
SaNSDE, where Mean Best indicates the average best 
fitness values 

F MAXNFC
SaDE 

Mean Best
NSDE 

Mean Best 
SaNSDE

Mean Best
DEOTS

Mean Best

F1 150000 7.49E-20 7.76E-16 3.02E-23 1.23E-41 

F2 150000 6.22E-11 4.51E-10 4.64E-11 8.01E-25 

F3 150000 1.12E-18 1.06E-14 6.62E-22 2.04E-39 

F4 150000 2.96E-02 2.54E-02 1.59E-03 1.32E-243

F5 500000 2.10E+01 1.24E+01 4.13E-30 4.36 E+00

F6 150000 0.0 0.0 0.0 0.0 

F7 150000 7.58E-03 1.20E-02 7.21E-03 4.78E-03 

F8 150000 –12569.5 –12569.5 –12569.5 –12557.6 

F9 150000 4.00E-08 7.97E-02 1.84E-05 3.58 

F10 150000 9.06E-11 6.72E-09 2.36E-12 5.95E-15 

F11 150000 8.88E-18 6.72E-09 0.0 0.0 

F12 200000 1.21E-19 5.63E-17 5.94E-23 1.57E-32 

F13 200000 1.75E-19 5.52E-16 3.12E-22 1.35E-32 

F14 200000 0.998 0.998 0.998 0.998 

F15 200000 3.07E-4 3.07E-4 3.07E-4 3.07E-4 

F16 200000 –1.03 –1.03 –1.03 –1.03 

F17 200000 0.398 0.398 0.398 0.398 

F18 200000 3 3 3 3 

F19 200000 –10.15 –10.15 –10.15 –10.15 

F20 200000 –10.40 –10.40 –10.40 –10.40 

F21 200000 –10.54 –10.54 –10.54 –10.54 

For functions F1-F4 and F7, DEOTS achieved better than 
SaDE, NSDE and SaNSDE, typically in F1-F4. For function 
F10, DEOTS, as well as SaNSDE, obtain the same 
performance. For functions F6 and F8, all four algorithms 
performed exactly the same. SaNSDE achieved the best in 
function F5, and the DEOTS better than SaDE and NSDE 
clearly. The most difference from the results is the function 
F9, where SaDE performs best and, DEOTS performs the 
most trivial among them. 
 



 Optimal trajectory searching based differential evolution 389 
 

Figure 3 Convergence curves of DE and DEOTS for test functionsF1–F9. X axis represents number of function calls and Y axis 
represents the best fitness. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f) F6. (g) F7. (h) F8. (i) F9 (see online version for colours) 

    

             (a) (b) 

   

 (c)  (d) 

  

 (e)          (f) 

 

 

 

 



390 D. Jiang et al.  

Figure 3 Convergence curves of DE and DEOTS for test functionsF1–F9. X axis represents number of function calls and Y axis 
represents the best fitness. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f) F6. (g) F7. (h) F8. (i) F9 (see online version for colours) 
(continued) 

   

 (g) (h) 

 

(i) 

The convergence comparisons between DE and DEOTS are 
shown in Figure 3. For simplicity, each figure shows the 
result of a random trial. Because of space limitation, just 
some samples are presented. Actually, DEOTS converges to 
a better optimal solution than DE in the anaphase of 
evolution (sometimes when number of function calls is 
bigger than 20000 approximately) in every trail. What’s 
more, with the help of optimal trajectory searching, the 
DEOTS converges quickly compared with DE. 

The significant improvement achieved by DEOTS can 
be attributed to the local optimisation around the optimal 
individuals. With the optimal trajectory searching, algorithm 
generated new competitive candidates around the 1X .  

When the 1X has the best fitness, the mutation operator will  

 
 

generate the new candidates in better positions with a high 
probability. Therefore, DEOTS performs better in terms of 
convergence speed and solution accuracy. 

5.2 Experiment 2 

In SaDE, two candidate strategies are used to improve the 
performance of algorithm (Qin and Suganthan, 2005). For this 
purpose, two probabilities are applied to decide which strategy 
is chosen for each individual in current population. Moreover, 
for adaptability, the probabilities are changed in the evolution 
according to the ratio of trial vectors successfully entering the 
next generation and the vectors discard. A strategy with bigger 
success times, to some extent, indicates that it has more 
potential to generate good candidates.  
 
 



 Optimal trajectory searching based differential evolution 391 

Thus, for Experiment 2, a hybrid algorithm is constructed 
with two mutation strategy DE/rand/1/bin and DE/best-
local/1 which focuses on the times the trail vectors 
successfully enter the next generation. In hybrid algorithm, 
two mutation strategies generated trail vectors respectively, 
then compared for each individual in the current population. 
Assuming the success times of trail vectors entering the  
next generation by applying DE/rand/1/bin and DE/best-
local/1 are recorded as ts1 and ts2 respectively. Those two 
numbers are accumulated within a specified number of 
function calls (1000 in our experiments). After the 
accumulated period, both of them will be reset for another 
accumulation step. 

All experiments in Experiment 2 have been repeated 20 
times with different random initialisation, for each benchmark 
function to obtain statistically reliable performance numbers. 
For time saving, only eight test functions (F1-F9) are selected 
to test for Experiment 2. 

Parameters Settings: The parameter settings for 
comparison success times between hybrid algorithms are as 
follows. 

 Test functions: F1~F8. 

 Population size, N=100. 

 Dimension, D=100. 

 F=Rand(0.0,1.0) 

 Cr = 0.5. 

 Maximum number of evaluations (MAXNFC):1E+06 for 
all test functions. 

As seen in the Figure 4, st2 is frequently bigger than the st1 
obviously (especially in Figure 4 (a, b, c, d, e, f, g)), and it 
means that mutation strategy with DE/best-local/1 has more 
chance and potential to generate good candidates compared 
with traditional DE. 

Figure 4 The success times of trail vectors entering the next generation by applying DE mutation (ts1) and DEOTS mutation (ts2) for test 
functionsF1-F9. X axis represents a period of number of function calls and Y axis represents the success times. (a)F1. (b) F2.  
(c) F3. (d) F4. (e) F5. (f) F6. (g) F7. (h) F8. (i) F9 (see online version for colours) 

   

 (a) (b) 

    

 (c) (d) 

 



392 D. Jiang et al.  

Figure 4 The success times of trail vectors entering the next generation by applying DE mutation (ts1) and DEOTS mutation (ts2) for test 
functionsF1-F9. X axis represents a period of number of function calls and Y axis represents the success times. (a)F1. (b) F2.  
(c) F3. (d) F4. (e) F5. (f) F6. (g) F7. (h) F8. (i) F9 (see online version for colours) (continued) 

  

 (e) (f) 

 

 (g) (h) 

 

(i) 

 



 Optimal trajectory searching based differential evolution 393 
 

6 Conclusion and future work  

Reference to the DE’s common mutation strategies, such as 
DE/rand/1/bin, DEOTS can be donated as DE/rand/1/bin/ 
Arrange algorithm which the vectors chose for mutation is 
sorted with a given ordering before mutation. 

In this paper, optimal trajectory is analysed based on the 
geometric characteristic of DE. With optimal trajectory 
searching mechanism, an effective algorithm named as 
DEOTS is presented in this paper. According to the analyses 
of ejection mechanism and numerical experiments, generating 
new candidates around the optimal trajectory is more likely to 
get the global optimal solutions (for minimum problems). 

The DEOTS achieves better performance in many well-
known benchmark functions. As an improved DE algorithm, 
DEOTS does not introduce any additional parameters into the 
DE algorithm to enhance the efficiency compared with SaDE, 
NSDE and SaNSDE. Actually, the number and the setting of 
parameters for DEOTS are same as the traditional DE. In 
DEOTS, such tiny arrangement which can make so much 
significant effort is exciting and delightful for algorithm 
designer, while useful and helpful for algorithm designing. 

Optimal trajectory searching has a high potential to improve 
performance of optimisation algorithm and can be embedded 
with various mutation strategies of DE. This work presents 
preliminary results of optimal trajectory searching. The future 
works will focus on the combinations of optimal trajectory 
searching and other DE algorithms, such as DE/ best/1/bin, 
DE/best/2/bin, DE/rand/2/bin, etc. Moreover, some related 
works on parameter or strategy adaptation in evolutionary 
algorithms have been done in many literatures. Another aspect 
of future research is the adaptations of the learning strategies 

and parameters settings during the evolution procedure. 

Acknowledgements 

The authors would like to thank the anonymous reviewers 
for their very detailed and helpful comments that help us to 
increase the quality of this work. This work was supported 
by Natural Science Foundation of Guangdong Province 
(No.: S2013010013974), in part by the Shantou University 
National Foundation Cultivation Project (No.: NFC13003), 
in part by the National Natural Science Foundation of China 
(No.: 61175073), in part by the Leading Talent Project of 
Guangdong Province. 

References 

Ali, M.M. and Torn, A. (2004) ‘Population set-based global 
optimization algorithms: some modifications and numerical 
studies’, Computers & Operations Research, Vol. 31, No. 10, 
pp.1703–1725. 

Brest, J., Greiner, S., Boskovic, B., Mernik, M. and Zumer, V. 
(2006) ‘Self-adapting control parameters in differential 
evolution: a comparative study on numerical benchmark 
problems’, IEEE Transactions on Evolutionary Computation, 
Vol. 10, No. 6, pp.646–657. 

Chen, L., Wang, W. and Wang, H. (2013) ‘Accelerating Gaussian 
bare-bones differential evolution using neighbourhood mutation’, 
International Journal of Computing Science and Mathematics, 
Vol. 4, no. 3, pp.266–276. 

Gaemperle, R., Mueller, S.D. and Koumoutsakos, P. (2002) ‘A 
parameter study for differential evolution’, in Grmela, A., 
Mastorakis, N.E. (Eds): Advances in Intelligent Systems, Fuzzy 
Systems, Evolutionary Computation, WSEAS Press, pp.293–298. 

Huang, V.L., Qin, A.K. and Suganthan, P.N. (2006) ‘Self-adaptive 
differential evolution algorithm for constrained real-parameter 
optimization’, Proceedings of the IEEE Congress on Evolutionary 
Computation (CEC’06), Vancouver, BC, Canada, July. 

Mallipeddi, R., Suganthan, P.N., Pan, Q.K. and Tasgetiren, M.F. 
(2011) ‘Differential evolution algorithm with ensemble of 
parameters and mutation strategies’, Applied Soft Computing, 
Vol. 11, No. 2, pp.1679–1696. 

Moraglio, A. and Togelious, J. (2009) ‘Geometric differential 
evolution’, Proceedings of the 11th Annual Conference on 
Genetic and Evolutionary Computation, pp.1705–1712. 

Noman, N. and Iba, H. (2008) ‘Accelerating differential evolution 
using an adaptive local search’, IEEE Transactions on 
Evolutionary Computation, Vol. 12, No. 1, pp.107–125. 

Qin, A.K. and Suganthan, P.N. (2005) ‘Self-adaptive differential 
evolution algorithm for numerical optimization’, Proceedings 
of the 2005 IEEE Congress on Evolutionary Computation, 
Edinburgh, UK, September. 

Qin, A.K., Huang, V.L. and Suganthan, P.N. (2009) ‘Differential 
evolution algorithm with strategy adaptation for global 
numerical optimization’, IEEE Transactions on Evolutionary 
Computation, Vol. 13, No. 2, pp.398–417. 

Rahnamayan, S., Tizhoosh, H.R. and Salama, M.M.A. (2008) 
‘Opposition-based differential evolution’, IEEE Transactions 
on Evolutionary Computation, Vol. 12, No. 1, pp.64–79. 

Rana, K. and Zaveri, M. (2013) ‘Energy-efficient routing for 
wireless sensor network using genetic algorithm and particle 
swarm optimization techniques’, International Journal of 
Wireless and Mobile Computing, Vol. 6, No. 4, pp.392–406. 

Storn, R. and Price, K. (1997) ‘Differential evolution – a simple and 
efficient heuristic for global optimization over continuous 
spaces’, Journal of Global Optimization, Vol. 11, pp.341–359. 

Wang, H., Lu, Y. and Peng, W. (2013) ‘Permutation flow-shop 
scheduling using a hybrid differential evolution algorithm’, 
International Journal of Computing Science and Mathematics, 
Vol. 4, No. 3, pp.298–307. 

Wang, Y., Cai, Z. and Zhang, Q. (2011) ‘Differential evolution with 
composite trial vector generation strategies and control 
parameters’, IEEE Transactions on Evolutionary Computation, 
Vol. 15, No. 1, pp.55–66. 

Yang, Z., He, J. and Yao, X. (2008a) ‘Making a difference to 
differential evolution’, Advance in Metaheuristics for Hand 
Optimization, pp.397–414. 

Yang, Z., Tang, K. and Yao, X. (2008b) ‘Self-adaptive differential 
evolution with neighborhood search’, IEEE Congress on 
Evolutionary Computation, pp.1110–1116. 

Yao, X., Liu, Y. and Lin, G. (1999) ‘Evolutionary programming 
made faster’, IEEE Transactions on Evolutionary 
Computation, Vol. 3, No. 2, pp.82–102.  

Zaharie, D. (2007) ‘A comparative analysis of crossover variants 
in differential evolution’, Proceedings of the International 
Multi Conference on Computer Science and Information 
Technology, pp.171–181.  

Zhang, J. and Sanderson, A.C. (2009) ‘JADE: adaptive differential 
evolution with optional external archive’, IEEE Transactions 
on Evolutionary Computation, Vol. 13, No. 5, pp.945–958. 

Zielinski, K., Weitkemper, P., Laur, R. and Kammeyer, K-D. (2006) 
‘Parameter study for differential evolution using a power 
allocation problem including interference cancellation’, IEEE 
Congress on Evolutionary Computation, Vancouver, BC, Canada. 


