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Abstract In this paper, we propose two multi-objective
memetic algorithms (MOMAs) using two different adaptive
mechanisms to address combinatorial optimization prob-
lems (COPs). One mechanism adaptively selects solutions
for local search based on the solutions’ convergence toward
the Pareto front. The second adaptive mechanism uses the
convergence and diversity information of an external set
(dominance archive), to guide the selection of promising
solutions for local search. In addition, simulated anneal-
ing is integrated in this framework as the local refinement
process. The multi-objective memetic algorithms with the
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two adaptive schemes (called uMOMA-SA and aMOMA-
SA) are tested on two COPs and compared with some
well-known multi-objective evolutionary algorithms. Exper-
imental results suggest that uMOMA-SA and aMOMA-SA
outperform the other algorithms with which they are com-
pared. The effects of the two adaptive mechanisms are also
investigated in the paper. In addition, uMOMA-SA and
aMOMA-SA are compared with three single-objective and
three multi-objective optimization approaches on software
next release problems using real instances mined from bug
repositories (Xuan et al. IEEE Trans Softw Eng 38(5):1195–
1212, 2012). The results show that these multi-objective
optimization approaches perform better than these single-
objective ones, in general, and that aMOMA-SA has the best
performance among all the approaches compared.

Keywords Multi-objective combinatorial optimization ·
Memetic algorithms · Decomposition-based method · Local
search · Adaptation

1 Introduction

Combinatorial optimization problems (COPs), such as the
travelling salesman problem, knapsack problem, next release
problem, flowshop scheduling problem and vehicle routing
problem (Arroyo and Armentano 2005; Durillo et al. 2011;
Papadimitriou and Steiglitz 1998; Peng et al. 2009; Sato et al.
2007; Tan et al. 2006), have been extensively studied for
many years because of their widespread application in real
life.MostCOPs areNP-hard,whichmeans that no exact algo-
rithms are known to solve these problems within polynomial
computation time, due to their huge search spaces, many
local optima and complex constraints. Numerous previous
publications have shown that meta-heuristics, such as evolu-
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tionary algorithms (EAs), are very suitable to address such
problems (Borges and Hansen 1998). As a stochastic search
technique, EAs have become prevalent for a wide range of
engineering optimization problems. Originally, EAs mimic
the evolutionary process to sample, learn and adapt from a
population of solutions, by applying genetic operations such
as crossover and mutation.

In general, evolutionary algorithms are capable of explor-
ing and exploiting promising regions of the search space.
However, it takes them a relatively long time to locate the
exact local optimum within the region of convergence when
facing complex optimization problems (Grosan and Abra-
ham 2007). Memetic algorithms (MAs) (Chen et al. 2011;
Nguyen et al. 2009; Ong et al. 2010) are usually considered
as extensions of EAs, which introduce the individual learn-
ing as a separate local search process for speeding up the
search process. InMAs, EAs usually explore the entire search
space as a global optimizer for locating the most promising
regionswith a population of individuals, while heuristic local
searches exploit the located regions by improving the indi-
viduals in the population.

Real-world applications of combinatorial optimization
usually require several conflicting objectives to be opti-
mized at once. Consequently, memetic algorithms have been
extended to multi-objective forms, which are usually called
multi-objective memetic algorithms (MOMAs), to address
complex multi-objective COPs. Very naturally, many local
search techniques in single-objective heuristics, such as iter-
ative local search (Paquete and Sttzle 2009), guided local
search (Alsheddy andTsang 2010), tabu search (Ulungu et al.
1999), variable neighborhood search (Liang and Lo 2010),
ant colony optimization (García-Martínez et al. 2007) and
simulated annealing (Maulik et al. 2008) have been general-
ized to solve multi-objective COPs.

In multi-objective optimization problems, the improve-
ments of one objective usually lead to the degradation for
at least one other objective. Thus, different from a single-
objective optimization problem where one optimal solution
exists, a set of non-dominated solutions co-exists for a multi-
objective optimization problem. These solutions represent
the trade-offs among the multiple objectives. In this situa-
tion, how to assign fitness values to a solution becomes very
critical to allow selecting fitter and more diverse solutions in
MOMAs. In Ke et al. (2014), Sindhya et al. (2013), Pareto
local search (dominance) and aggregation (decomposition)
are two different fitness assignment schemes for local search,
which have been frequently used in MOMAs.

– Pareto local search Lust and Jaszkiewicz (2010), Lust
and Teghem (2010) explores the neighborhood regions of
a solution to find more diverse non-dominated solutions
for updating the current population. The non-dominated
solutions are selected based on Pareto dominance and

they are further selected by some diversity maintenance
or crowding scheme.

– Aggregation method Ke et al. (2014), Shim et al. (2012)
transforms a multi-objective optimization problem into
a number of single-objective subproblems and solve
them simultaneously. The objective function in each
subproblem can be a linear or nonlinear weighted aggre-
gation function of all the objective functions in question.
Under mild conditions, an optimal solution to one single-
objective subproblem is one of many Pareto-optimal
solutions for the multi-objective optimization problem.
Consequently, a single-objective local searchmethod can
be directly applied to multiple single-objective subprob-
lems for locating a set of Pareto optimal solutions.

For example, Ishibuchi and Murata (1996) proposed a
multi-objective genetic local search based on aggregation
for a flow shop scheduling problem. Jaszkiewicz (2002)
designed aweighted-sum-function-basedMOMAfor a knap-
sack problem. Shim et al. (2012) proposed a MOMA based
on aggregation to tackle multi-objective travelling salesman
problems. In Shim et al. (2012), an estimation of distri-
bution algorithm is adopted as the global search engine
and combined with three different local search methods
based on meta-heuristics. Different from Shim et al. (2012)
that concentrates on local search based on a weighted
sum, the memetic-based Pareto archived evolution strat-
egy (M-PAES), presented by Knowles and Corne (2000),
uses Pareto-ranking-based selection for local search. Later,
Lust and Jaszkiewicz (2010) proposed a two-phase Pareto
local search (2PPLS). The 2PPLS combines Pareto local
search and aggregation using two phases. Phase one gener-
ates promising solutions for local search using a number of
linear aggregation formulations. Phase two applies a Pareto
local search to every solution generated in phase one to find
Pareto optimal solutions. Very recent work in Ke et al.
(2014), Shim et al. (2014) integrates Pareto local search into
a popular multi-objective evolutionary algorithm based on
decomposition (MOEA/D), which shows that the combina-
tion of aggregation and Pareto local search is very promising
to further improve the performance of MOMAs.

Motivated by Ke et al. (2014), Lust and Jaszkiewicz
(2010), Shim et al. (2014), this paper is dedicated to propos-
ing an adaptive multi-objective memetic framework based
on both Pareto local search and aggregation. Over the recent
decades, adaptation has been considered as one of the most
promising areas of research in memetic algorithms and
has attracted much attention. For many real-world applica-
tions where limited insight has been provided, it is difficult
to design a specific MA without adaptation that can still
work well. Adaptive MAs take advantage of the infor-
mation about the given problem and adapt themselves to
the problem’s characteristics during the search process, for
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accelerating the search process and achieving better per-
formance. For instance, Ong and Keane (2004) proposed
a type of Meta-Lamarckian learning in which refinement
procedures are cooperative and competitive according to
adaptive strategies. Krasnogor and Gustafson (2004) pre-
sented a self-generating mechanism by which various local
search mechanisms to be used in a memetic algorithm are
executed adaptively. Nguyen et al. (2007) investigated the
impacts of the refinement frequency, selection of individ-
ual subset and intensity of refinement on MAs through
empirical experiments. Later, they proposed a probabilis-
tic framework to discuss the adaptation of single-objective
MAs (Nguyen et al. 2009). Ishibuchi et al. (2003) investigated
the impact of frequency of refinement in both single- and
multi-objective contexts for permutation flowshop schedul-
ing, where only the elite individuals of the population
undergo refinement.

In a more recent survey Chen et al. (2011), summarized
adaptation schemes into the following categories: (1) fre-
quency of refinement and selection of the individual subset to
undergo refinement, (2) intensity of refinement and (3) choice
of procedures to conduct refinement. Among them, fre-
quency of refinement and individual subset selection defines
the proportion of a population that should undergo the refine-
ment process (Sudholt 2006), which aims to balance the
amount of computational budget allocated for global and
local search. It has been proved in Krasnogor and Smith
(2005),Nguyen et al. (2007) andNguyen andOng (2009) that
adaptive selection of the individual subset to undergo refine-
ment helps enhance overall search productivity. Intensity
of refinement defines the amount of computational budget
allocated to a local refinement process. Relevant studies
have confirmed its significant impact on performance of
memetic algorithms (Droste et al. 2002). The adaptive selec-
tion of refinement procedures aims to address the issue
of what refinement procedure, among multiple refinement
methods, should be applied during the various stages of
the search process. It has demonstrated its significance to
memetic algorithms on a variety of problems (Ong et al.
2006).

However, very little research has been conducted on
the adaptation of MOMAs. Among the above adaptation
issues, the adaptive selection of refinement procedures was
investigated based on cross-dominance (Caponio and Neri
2009) and resource productivity criteria (Bosman 2012).
To the best of our knowledge, frequency of refinement
and individual subset selection and Intensity of refinement
have been little investigated in MOMAs. In this paper,
we adopt two adaptive mechanisms to address the issue
of frequency of refinement and individual subset selec-
tion, in our multi-objective memetic framework, to further
enhance its search ability with respect to convergence and
diversity.

The main contributions of this paper are as follows:

– A multi-objective memetic framework is proposed with
simulated annealing integrated as the local search meta-
heuristic, to tackle multi-objective COPs.

– We investigated the impacts of refinement frequency
and selection of individual subset in our multi-objective
memetic framework. Furthermore, we adopt and inves-
tigate two adaptive mechanisms, namely utility-based
and external-set-guided mechanisms, to select promising
individual subsets for local search.

– Our algorithm was validated on the multi-objective soft-
ware next release problem (MONPR)with both synthetic
and real test instancesmined frombug repositories (Xuan
et al. 2012) and on the multi-objective travelling sales-
man problem (MOTSP). For the real test instances of
MONRP, our MOMAs were compared with the state-
of-the-art single-objective approaches as well as well-
known MOEAs. The results showed that our MOMAs
outperformed these other approaches.

The rest of this paper is organized as follows: Since
this paper focuses on multi-objective optimization problems,
Sect. 2 revisits basic concepts of multi-objective optimiza-
tion problems (MOPs). The introduction of MOEAs is also
included in this section. Section 3 analyses some design
issues in MOMAs. Section 4 is mainly dedicated to the
detailed descriptions of the multi-objective memetic frame-
work and two adaptive mechanisms for local search. Section
5 introduces two representative benchmark multi-objective
COPs. Experimental studies and discussions are detailed in
Sect. 6. The effects of the local search process as well as the
two adaptivemechanisms are also investigated in this section.
The final conclusions of this paper are provided in Sect. 7.

2 Background

Since this paper focuses on multi-objective optimization,
this section introduces multi-objective optimization prob-
lems and multi-objective evolutionary algorithms as follows.

2.1 A Multi-objective optimization problem

Amulti-objective optimization problem (MOP) can be stated
as follows:

maximize F(x) = ( f1(x), . . . , fm(x))

subject to x ∈ �, (1)

where � is the decision space and F : � → Rm consists of
m real-valued objective functions. The attainable objective
set is {F(x)|x ∈ �}. In the case when � is a finite set, (1) is
called a discrete MOP.
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Let u, v ∈ Rm , u is said to dominate v, denoted by u � v,
if and only if ui ≥ vi for every i ∈ {1, . . . ,m} and u j > v j

for at least one index j ∈ {1, . . . ,m}.1 Given a set S in Rm , a
point in it is called non-dominated in S if no other point in S
can dominate it. A point x∗ ∈ � is Pareto-optimal if F(x∗) is
non-dominated in the attainable objective set. F(x∗) is then
called a Pareto-optimal (objective) vector. In other words,
any improvement in one objective of a Pareto optimal point
must lead to deterioration in at least one other objective. The
set of all Pareto-optimal points is called the Pareto set (PS)
and the set of all Pareto-optimal objective vectors is called
the Pareto front (PF) (Miettinen 1999).

2.2 Multi-objective evolutionary algorithms

In order to effectively tackle MOPs, a suitable framework
that assigns fitness and maintains the diverse trade-off Pareto
optimal solutions must be applied. Based on the use of differ-
ent schemes for fitness assignment, MOEAs can be further
divided into three categories: dominance-based (Deb 2001;
Deb et al. 2002; Zitzler et al. 2002), indicator-based and
decomposition-based (Zhang and Li 2007) MOEAs.

Well-known representatives of dominance-basedMOEAs
include SPEA2 (Zitzler et al. 2002) andNSGA-II (Deb 2001;
Deb et al. 2002). In these algorithms, diversity is maintained
by eliminating solutions with high density (e.g., crowding
distancemethods inNSGA-II andnearest neighboursmethod
in SPEA2).

The multi-objective evolutionary algorithm based on
decomposition is a popular decomposition-based MOEA
(Zhang and Li 2007). It decomposes a MOP into sev-
eral single-objective subproblems, which are defined by a
weighted aggregation function of all the objective functions
in question, and all the subproblems are optimized in a col-
laborativemanner. One solution is associatedwith each of the
subproblems. Two subproblems are called neighbours if their
weight vectors are close to eachother.MOEA/Dexplores cor-
relation relationships among neighbouring subproblems to
speedup its search. InMOEA/D, the replacement of solutions
(population convergence) is determined by their aggregation
function values, and population diversity is achieved by dis-
tributing the subproblemswidely throughweights.MOEA/D
and its variants have been tested and proven very effective
on various benchmark functions and real-world problems
in the literature (Chang et al. 2008; Ishibuchi et al. 2009;
Kafafy et al. 2012; Li and Zhang 2009; Konstantinidis et al.
2010; Peng and Zhang 2012; Peng et al. 2009). The goal of
this paper was to design a multi-objective memetic frame-
work that is able to combine the advanced characteristics of
MOEA/D and Pareto local search.

1 In the case of minimization, the inequality signs should be reversed.

3 Two important design issues in MOMAs

Weaddressmainly the following two important design issues
of MOMAs, as follows.

3.1 Fitness assignment scheme for local search

According to Ke et al. (2014), Sindhya et al. (2013), both
Pareto local search (dominance) and aggregation (decom-
position) are used as fitness assignment schemes for local
search in the framework of MOMAs. In this paper, we adopt
both fitness assignment schemes through two populations
in MOMA: a decomposition population and an external set.
The external set is used as the output of the algorithm—the
final solution set for the MOP. In addition, the information
extracted from the external set can be used to guide the search
direction in the decomposition population.

3.2 Adaptation

As surveyed inSect. 1, very little research has been conducted
on the adaptation ofMOMAs. However, existing research on
adaptation in the context of multiobjective optimization can
be inspirations for designing MOMAs. For multiobjective
optimization, the algorithm is desirable to balance between
convergence and diversity for obtaining good approximation
to the set of Pareto optimal solutions. Convergence can be
defined as the distance of solutions towards the PF, which
should be as small as possible. Diversity can be defined as
the spread of solutions along the PF, which should be as
uniform as possible. The use of convergence and diversity
information helps to locate “promising regions” and guide
more efficient search. For example, MOEA/D-DRA (Zhang
et al. 2009), a state-of-the-art variant of MOEA/D adopted a
dynamic mechanism of resource allocation to provide differ-
ent computational efforts for different subproblems based on
each subproblem’s convergence information (utility). More
recently, an adaptive mechanism, which extracts both the
convergence and diversity information to guide the search,
was proposed in Cai et al. (2014) and Li et al. (2014). The
proposed algorithm resorts to an external archive to guide the
search.

In this paper, we proposed two adaptive memetic algo-
rithms to address combinatorial optimization problems. Two
adaptivemechanisms, one based onutility (Zhang et al. 2009)
and the other based on the external archive (Cai et al. 2014; Li
et al. 2014), are adopted to determine the frequency of refine-
ment and the selection of solutions for refinement during
different phases of the search process, in our multiobjective
memetic framework. For convenience, the adaptive memetic
algorithm that uses utility is named uMOMA-SA and the one
that adopts the external archive to guide the local search is
named aMOMA-SA in this paper.
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The external-set-guided adaptive mechanism is inspired
by EAG-MOEA/D (Cai et al. 2014). So this section dis-
cusses the similarities and differences between aMOMA-SA
and EAG-MOEA/D. Both aMOMA-SA and EAG-MOEA/D
adopt adaptive selection of solutions. However, these two
algorithms are different in the following aspects:

1. The frameworks of the aMOMA-SA and EAG-MOEA/D
are different.

(a) aMOMA-SA is essentially a multiobjective memetic
algorithm, which uses external-set-guided selection
for the local search (simulated annealing)whileEAG-
MOEA/D does not have any local search. It only uses
external set to guide the global search.

(b) In EAG-MOEA/D, all the generated solutions have
been put in a temporary population L , which later
is used to update the external set A. However, in
aMOMA-SA, the update of population L is based
on Boltzmann criterion (see Sect. 4.2.4).

2. The adaptive mechanisms for choosing subproblems are
different. In EAG-MOEA/D, the probability for choosing
a subproblem is calculated based on the contributions of
each subproblem on the external set over the last certain
number of generations. However, in aMOMA-SA, the
probability is calculated based on the contributions of
each subproblem on the current external set.

4 The proposed multi-objective memetic
algorithms

Our multi-objective memetic algorithm with simulated
annealing as its local search method (MOMA-SA) decom-
poses a MOP into N single-objective optimization subprob-
lems by aggregating objective functionswith differentweight
vectors. In principle, we can adopt any aggregation method
for this purpose. For simplicity, we use the weighted sum
approach with N weight vectors:

λ j = (λ
j
1, . . . , λ

j
m) j = 1, . . . , N . (2)

where λ j ∈ Rm+ and
∑m

i=1 λ
j
i = 1, m is the number of

objectives. Subproblem k is:

minimize gws
k (x) = ∑m

i=1 λ
j
i fi (x)

subject to x ∈ � (3)

For each k = 1, . . . , N , set B(k) stores the indices of the
T closest weight vectors to λk in terms of the Euclidean dis-
tance. Subproblem i is defined as a neighbour of subproblem
k, when i ∈ B(k).

The following solution are maintained during the evolu-
tionary process:

– Decompositionpopulation set P={x1, . . . , xk, . . . , xN },
where xk is the best solution associated with subproblem
k.

– External set (dominance archive) A, which contains
N solutions selected by fast-non-dominated-sorting and
crowding-distance-assignment in NSGA-II (Deb 2001;
Deb et al. 2002).

– L , which stores solutions after undergoing local search.
– Y , which stores solutions after undergoing global search.

The pseudocode of the framework is presented in Algo-
rithm 1. It works as follows:

Step 1 Initialization: Initialize P and A.
Step 2 Local Search: Use a mechanism to select solutions

from P (in Sect. 4.3) to undergo local search; the
generated new solution set are stored in L .

Step 3 Global Search: Perform global search on P to gen-
erate a new solution set Y .

Step 4 Update of Population andExternal Set:Use L and
Y to update P and A.

Step 5 Stopping Criterion: If preset criteria are satisfied,
output A. Otherwise, go to Step 2.

More detailed descriptions of Steps 1–4 of Algorithm 1
are given as follows:

4.1 Initialization

AMOP is originally decomposed into N subproblems based
on Eqs. 2 and 3. The decomposition population P is ran-
domly generated and assigned to the external set A. The T
closest neighbours, in terms of Euclidean distance, to each
weight vector are determined. Therefore, subproblem i has
T neighbours, denoted as B(i) = {i1, . . . , iT }. The whole
process of initialization is shown in Step 1.

4.2 Local search

The procedures of local search are demonstrated in Step 2
as follows. In Step 2a, using one of the following mecha-
nisms, N solutions are chosen from P for local search. This
is actually to address the issue of the frequency of refine-
ment and individual subset selection in Sudholt (2006). In
this work, one baseline and two adaptive mechanisms for
selecting individuals for local search are adopted as follows.
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4.2.1 Global selection

When we equally select all the solutions of the population
set P for local search, we are actually considering all the
subproblems are equally promising, which is against our
motivation of the adaptive mechanisms. However, it can be
thought of a baselinemechanism; and theMOMAframework
with this mechanism is named gMOMA-SA for comparison.

Algorithm 1: MOMA-SA
Input:

1. A multi-objective COP;
2. a stopping criterion;
3. N : the population size of P and A, as well as the number of subprob-

lems;
4. a uniform spread of N weight vectors: λ1, . . . ,λN ;
5. T : the size of the neighborhood of each subproblem;

Output: External set A;
Step 1: Initialization:

a) Decompose a multi-objective COP into N subproblems using
λ1, . . . ,λN .

b) Randomly initialize a population P = {x1, . . . , xN}.
c) External set is initialized as P : A = P .
d) Calculate the Euclidean distance between any two weight vectors

and obtain T closest weight vectors to each weight vector. For each
i = 1, . . . , N , set B(i) = {i1, . . . , iT}, where λi1 , . . . , λiT are the T
closest weight vectors to λi.

Step 2: Local search

a) Select N solutions from P , where Index = {k1, ..., kN} are the indices
of the selected solutions in P .

b) Conduct a local search on the selected solutions: Set L = ∅, (P, L) =
SA(P, Index, L).

Step 3: Global search

For each i ∈ P , do:
a) Randomly choose two indices k and l from B(i).
b) Apply genetic operators on xk and xl to generate yj ∈ Y for Sub-

problem i.
End do

Step 4: Update of the population and external set

/* Use Y to update decomposition population P*/
For each i ∈ P , do:

a) Use Y to update neighboring subproblems: For each index k ∈ B(i),
if gws(yi|λk) ≤ gws(xk|λk), then set xk = yi and F (xk) = F (yi).
End do
/* Use L to update decomposition population P*/
For each j ∈ L, do:

b) Use L to update neighboring solutions: If Lj is generated from sub-
problem i, for each index k ∈ B(i), if gws(Lj |λk) ≤ gws(xk|λk), then
set xk = Lj and F (xk) = F (Lj).
End do
/* Use Y and L to update external set A*/

c) Z = A ∪ Y ∪ L; apply fast-non-dominated sorting and crowding-
distance-assignment in NSGA-II[42] on Z to obtain the best N solu-
tions; and store them as the new A.

Step 5: Termination

a) If stopping criteria is satisfied, terminate the algorithm and output
A. Otherwise, go to Step 2.

4.2.2 Utility-based selection

This solution selectionmechanism for local search is inspired
by MOEA/D-DRA (Zhang et al. 2009), as follows;

For subproblem (solution) i of the decomposition popu-
lation P , the utility π i is calculated as the progress of that
subproblem and is updated every 50 generations, as shown
in Eqs. 4 and 5.

π i =
{
1 if �i > 0.001(
0.95 + 0.05 �i

0.001

)
π i otherwise,

(4)

where �i is defined as the relative decrease in the objective
value of subproblem i , considered as a minimization prob-
lem.

�i = Old function value − New function value

Old function value
(5)

In Eq. 4, if the progress ratio for subproblem i (�i in
Eq. 5) between the current generation and 50 generations
earlier is larger than a preset threshold value (0.001), the
utility value π i of subproblem i remains at 1. Otherwise, π i

for subproblem i is reduced accordingly.
Then, a size-10 tournament selection is applied to choose

solutions for local search based on the utility values given in
Eq. 4. More specifically, the solution with the highest utility
value π out of 10 randomly selected solutions from P is
chosen for local search. This process is repeated N times
until N solutions are chosen for local search. The MOMA
framework with this mechanism is named uMOMA-SA in
this paper.

4.2.3 External-set-guided selection

In our MOMA framework, the dominance archive has been
updating in each generation and outputted as the final solu-
tion set. Undoubtedly, it contains convergence and diversity
information during the whole optimization process. Such
information may be very valuable for guiding the selection
of solutions to undergo local search (Cai et al. 2014; Li et al.
2014).

If a solution survives in A after NSGA-II selection, it
makes a contribution to A. Thus the number of such solutions
generated through local search of a subproblem records the
convergence and diversity information of this subproblem. In
other words, we can use the number of “successful” solutions
of each subproblem to estimate its potential.

Let us assume dsi,g is the number of successful solutions
generated from subproblem i at generation g. The total num-
ber of successful solutions at generation g is used to compute
the probability for each subproblem to be selected for local
search, as follows.
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At generation g, the probability of choosing subproblem
i (i = 1, 2, . . . , N ) is

probi,g = Di,g
∑N

i=1 Di,g
, (6)

where

Di,g = dsi,g
N

+ ε, (i = 1, 2, . . . , N ); (7)

Di,g is the proportion of solutions generated from subprob-
lem i at generation g, dsi,g is the number of non-dominated
solutions in A generated from subproblem i and the total
number of non-dominated solutions in A is N . A small con-
stant value ε = 0.002 is adopted as a floor to avoid possible
zero selection probabilities. We also normalize Di,g , making
the Di,g for all subproblems sum to 1.

Roulette wheel selection is applied to select a subproblem
based on the probabilities calculated by Eq. 6. This process
is repeated N times until N solutions have been selected for
local search. For convenience, the MOMA framework with
external-set-guided local search is named aMOMA-SA.

4.2.4 Simulated annealing as local search

In Step 2(b) of Algorithm 1, local search is applied on
the selected solution set {xk1 , . . . , xkN }, where Index =
{k1, . . . , kN } is the index of selected solutions in P . A new
solution set L , which is used to store the solution set gener-
ated by local search, is set to ∅ before local search.

In general, any local search meta-heuristic can be inte-
grated into our proposed multi-objective memetic frame-
work. In this paper, simulated annealing (SA) (Rodriguez-
Alvarez et al. 2004) is adopted for simplicity. Thepseudocode
of (P, L) = SA(P, Index, L) is described in Algorithm 2.

The basic operation in SA is the random perturbation
of a solution to search for a local neighbour. For each
selected solution, a bit string of the solution is flipped to
generate a new solution (binary case). The resulting solu-
tion is evaluated and compared with the original one. In
the solution update step, SA accepts superior solutions and
allows the acceptance of inferior solutions based on a Boltz-
mann criterion random(0, 1) < exp(F(y j ) − F(xki )/T e),
where random(0, 1) is a randomly generated floating number
between 0 and 1; F(y j ) and F(xki ) are weighted objective
values of solutions with regard to subproblem ki . Usually,
T e is set to a relatively high value at the beginning; and it
gradually decreases based on the annealing schedule factor
α, where α ∈(0,1). Based on the above criterion, inferior
solutions have a relatively high probability to survive at the
early stages, and this probability gradually decreases during
the search process.

In addition, solution set L is used to store “good” solutions
generated by local search in the following two conditions:

– A solution y j that is better than the original one (F(y j ) <

F(xki )), with regard to subproblem ki .
– A solution that is worse than the original one, but fits
the Boltzmann criterion (random(0, 1) < exp(F(y j ) −
F(xki )/T e))

The former condition guarantees that a superior solution,
in terms of a lower (better) weighted objective value in the
associated subproblem,will be accepted in L . However, some
slightly inferior solutions, according to the latter condition,
will also be accepted based on the Boltzmann criterion. In
addition to its normal motivation in SA, another reason for
adopting the latter condition is motivated by the fact that a
slightly inferior solution still may be a non-dominated solu-
tion in the external set (dominance archive) and so be worthy
of storing.

An alternative method is to store all the solutions gener-
ated by local search in L . However, because J local searches
are applied on each selected solution, a total of J∗N solutions
are generated by local search. Such a large set is bound to
increase the computational burden when sorting the merged
set of A, L and P to obtain the new A in the process of
updating A (Step 4d in Algorithm 1).

Algorithm 2 : (P, L) = SA(P, Index, L)
Input: Index = {k1, . . . , kN}, P = {x1, . . . , xN}, L and temperature(Te),
Output: P and L

For i = 1 to N(For each ki ∈ Index)
/* N is number for solutions undergoing local search*/

Initial solution: xki

For j = 1 to J
/* J is the number of local neighbors */

2: Reproduction: Create local neighbor (yj) by flipping a
single bit of xki

.
Evaluation: Calculate the fitness value of yj , F (yj)

4: Update solution:
If F (yj) < F (xki

) then
xki

= yj

6: L = yj ∪ L
else if random(0,1) < exp(F (yj )-F (xki

) / Te) then
xki

=yj

8: L = yj ∪ L
End if

End for j
End for i

T e = α ∗ Te; 0< α < 1

4.3 Global search

The procedures of global search process are explained in Step
3. For each subproblem i , two parent solutions are randomly
selected from its T neighbouring subproblems, as illustrated
in Step 3a. Subsequently, genetic operators are applied to
them for generating an offspring solution yi , in the follow-
ing Step 3b. For software next release problem, a one-point
crossover and a bit-wise mutation operator are applied. For
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travelling salesman problem, a position based crossover and
an exchange mutation operator (Larrañaga et al. 1999) are
adopted. By repeating Step 3a–3b N times, an offspring pop-
ulation Y = {y1, . . . , yN } can be obtained.

4.4 Update of the population and external set

The update of the population P and the external set A is
conducted in Step 4, using the offspring population Y . More
specifically, for each solution in Y , the neighbouring sub-
problems of its associated subproblem are updated in Steps
4a. Then, solution set generated by local search, L , is used to
update P in Step 4b, as follows. For each solution L j ∈ L ,
suppose it was generated from subproblem i . For each index
k ∈ B(i) of subproblem i , it replaces a neighbour xk with
L j if L j performs better than xk with regard to subprob-
lem k. Finally, the external set is updated in Step 4c, where
the offspring population Y is merged with A and L; and the
combined population Z is sorted by the fast-non-dominated-
sorting and the crowding-distance-assignment. The best N
solutions after sorting are kept in the external set as the new
A.

5 Benchmark problems

In this paper, we consider two NP-hard multi-objective
COPs: the multi-objective software next release problem (an
instance of the knapsack problem, MONRP) and the multi-
objective travelling salesman problem (MOTSP). These
combinatorial optimization problems have been widely used
in testing the performance of various MOEAs (Cai et al.
2012; Gaspar-Cunha 2005; Li and Landa-Silva 2011; Shim
et al. 2012; Zhang et al. 2007).

5.1 The single and biobjective software next release
problem

In the software next release problems, an existing software
system is associated with several customers whose require-
ments must be considered for the next release of the software
system. Let us assume the set of customers is denoted by

S = {s1, s2, . . . , sn}

The set of all the requirements that need to be considered is
denoted by

R = {r1, r2, . . . , rq}

Resources, i.e., the cost of development, are required to
accomplish each requirement. A cost vector can be used to
denote the resources as follows:

C = (c1, . . . , c j , . . . , cq),

where c j denotes the cost of implementing a requirement
r j ∈ R. A request qi j ∈ Q denotes whether customer si
requests requirement r j to be implemented in the next release
of the software; qi j = 1 denotes that si requests r j , and
qi j = 0 denotes otherwise.

Once customers’ requirements have been satisfied in the
next release of the software, the software provider can gain
the certain income, denoted by

W = (w1, . . . , wi . . . , wn),

where wi denotes the income from customer si when the
customers’ requirements have been satisfied.

The task of the single-objective NRP is to find an optimal
solution X�, to maximize Profit(X) = ∑

(i,1)∈X wi gained
from customers, which is the sum of income gained from
the selected customers, minus Cost(X) ≤ b, where b is a
predefined budget constraint and Cost(X) = ∑

rk∈R(X) ck ,
where R(X) = ⋃

(i,1)∈X,qi j=1 {r j} is the requirement for X .
It is very convenient to transform a single-objective NRP

into a bi-objective NRP. The two objectives are the Profit(X)

to be maximized and the required Cost(X) to be minimized.
To apply MOEAs to this problem, we change the first objec-
tive to a minimization formulation.

5.2 The multi-objective travelling salesman problems

The travelling salesman problem (TSP) can be modelled as
a graph G(V,E), where V ={1,…,n} is the set of vertices
(cities) and E = {ei, j }n×n is the set of edges (connections
between cities). The goal is to find a Hamiltonian cycle of
minimal distance that visits each vertex only once. In the
case of the multi-objective TSP (MOTSP), each edge ei, j is
associated with multiple values such as cost, length, travel-
ling time, etc. Each of them corresponds to one criterion. The
mathematical definition of a MOTSP is as follows:

minimize fi (π) =
n−1∑

j=1

c(i)
π( j),π( j+1) + c(i)

π(1),π(n)

i = 1, . . . ,m, (8)

where π = (π(1), . . . , π(n)) is a permutation of cities and
c(i)
s,t is the cost of the edge between city s and city t with
respect to criterion i.

5.3 Test instances

AMONRP test instancewithn customers andq requirements
is denoted as Cu-n/R-q in this paper. Four randomly gener-
ated test instances are used in our studies, which include
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Table 1 Details of the real NRP instances Xuan et al. (2012)

Eclipse Gnome

Instance group name nrp-e1 nrp-e2 nrp-e3 nrp-e4 nrp-g1 nrp-g2 nrp-g3 nrp-g4
Source repository

Bug report ID 150001–160000 160001–170000 450001–460000 460001–470000

Bug reports time period Jul.2006–Oct.2006 Oct.2006–Jan.2007 Jun.2007–Jul.2007 Jul.2007–Aug.2007

Requests of customer 4–20 5–30 4–15 5–20 4–20 5–30 4–15 5–20

Requirements 3502 4254 2844 3186 2690 2650 2512 2246

Cost of requirement 1–7 1–7 1–7 1–7 1–7 1–7 1–7 1–7

Customers 536 491 456 399 445 315 423 294

Profit of customer 10–50 10–50 10–50 10–50 10–50 10–50 10–50 10–50

Cu-200/R-1000, Cu-300/R-1500, Cu-400/R-2000 and Cu-
500/R-2500. For the test instances of MONRP, the cost of
each requirement ranges from 1 to 9while the profit of imple-
menting each requirement ranges from 5 to 50.

A MOTSP with n cities and m objectives is denoted as c-
n-m in this paper. In our studies, we consider four randomly
generated test instance of MOTSP with two objectives and
two test instances of MOTSP with three objectives, which
include c-300-2, c-400-2, c-500-2, c-600-2, c-200-3 and c-
300-3.

In addition, real instances of MONRP have also been
adopted. These real NRP test instances were mined from bug
repositories of two open source software projects, namely
Eclipse (2011) and Gnome (2011). The XML form of these
bug repositories are available inMiningChallenges 2007 and
2009 of the IEEE Working Conference on Mining Software
Repositories (MSR) (Mining challenges 2009; Xuan et al.
2012). The detailed descriptions of the real test instances of
MONRP are summarized in Table 1. For convenience, test
instances from the open source software projects of Eclipse
(2011) andGnome (2011) are denoted as nrp−e and nrp−g,
respectively, in this paper.

6 Experimental studies and discussions

To explore the performance of gMOMA-SA, uMOMA-SA
and aMOMA-SAandunderstand their behaviour, this section
describes the following experimental work:

– investigations of the effects of the local search, gMOMA-
SA.

– investigations of the effects of two adaptive local searches,
uMOMA-SA and aMOMA-SA.

– comparisons of gMOMA-SA,uMOMA-SAandaMOMA-
SA with three single-objective and four multi-objective
approaches on MONRP using real instances.

In our experiments, each algorithm is run independently 20
times on each test instance.

6.1 Performance indicators

The performance of a MOEA is usually evaluated in two
aspects. First, the non-dominated set obtained should be as
close to the truePareto front as possible. This aspect is usually
called convergence. Second, the non-dominated set obtained
should be distributed diversely and uniformly. This aspect is
usually called diversity. Various metrics have been designed
to reflect either one or both aspects to evaluate the perfor-
mance of a MOEA (Knowles et al. 2006). In this paper, we
adopt the two best-known performance indicators, both of
which are able to reflect performance in the two aspects at
the same time, as follows:

– Hypervolume indicator (IH ) (Zitzler and Thiele 1999):
Let y∗ = (y∗

1 , . . . , y
∗
m) be a point in the objective space

which is dominated by any of the Pareto optimal objective
vectors. Let P be the approximation to the PF obtained in
the objective space. Then the IH value of P (with respect
to y∗) is the volume of the region which is dominated by
P and bounded by y∗. The higher the hypervolume, the
better the approximation.
In our experiments, unfortunately we don’t know the
maximum value of the actual Pareto front, so we set the
maximum value of the obtained non-dominated set as
the ideal maximum point: y∗ = ( f max

1 , f max
2 ) for bi-

objective test instances and y∗ = ( f max
1 , f max

2 , f max
3 )

for three-objective ones.
– Inverted generational distance (IGD) (Coello Coello and
Cortés 2005): The IGD measures the average distance
from a set of reference points P∗ in the PF to the approx-
imation set P . It can be formulated as follows:

IGD(P, P∗) = 1

|P∗|
∑

v∈P∗
dist(v, P), (9)
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where dist(*,*) is the Euclidean distance. Ideally, the
points in P∗ should be uniformly distributed on the PF.
However, the true PF is not known in either the MONRP
or the MOTSP test instances. In our experiments, P∗ for
a test instance is the set of all non-dominated solutions
obtained by all the algorithms in all runs.

6.2 Experimental setups

All the experiments were conducted on a PC with a 3.4-GHz
Intel Core i7 processor, 4 GB of RAM. All the algorithms
were implemented in Matlab. Their parameter settings for
MONRP and MOTSP are listed in Table 2. The algorithms
compared (NSGA-II and MOEA/D) were fine-tuned and the
parameters of MOMA-SA(s) (gMOMA-SA, uMOMA-SA
and aMOMA-SA) were set in such a way that they shared
the same key parameter values with MOEA/D.

The experimental setups are specified in Table 2, where
the population sizes for all the compared algorithms were set
to 200 for MONRP, 100 for bi-objective TSP and 120 for
tri-objective TSP. The number of neighbours was set to 10
forMONRP andMOTSP. The crossover rate was set to 1 and
mutation rate was set to 1/n, where n is the length of a solu-
tion. For the MOTSP instances, each candidate solution was
coded as a permutation, and the position based-crossover and
exchange mutation operators (Larrañaga et al. 1999) were
used for generating new solutions. Different from other com-
pared algorithms, where the crossover rate was set to 1; the
crossover rate for NSGA-II was set to 0.8 as the experimental
analysis shows this setting was better than 1. The number of
function evaluations (FEs)was set to 300,000 for all synthetic
MONRP instances and 600,000 for allMOTSP instances. For
real instances ofMONRP, the number of function evaluations
was set to 100,000.

The setting of N weight vectors (λ1, . . . , λN ) was con-
trolled by a positive integer parameter H , which specifies
the granularity or resolution of weight vectors, as in Zhang
and Li (2007). Each individual weight takes a value from

{
0

H
,
1

H
, . . . ,

H

H

}

.

The number of weight vectors was determined by both para-
meter H and the number of objectives m: N = Cm−1

H+m−1.
H was set to 200 for bi-objective NRP, 100 for bi-objective
TSP and 14 for 3-objective TSP, to ensure that the num-
ber of weight vectors was equal to the population size in
Table 2.

We conducted experiments to investigate the sensitivity of
parameter J ,which is the number of generated local offspring
solutions based on each parent solution, as shown in Fig. 1.
They showed that the MOMA-SA has the best performance
when the parameter J is set to around 5, which is the valuewe
adopted in the other experiments. Simulated annealing was
used as the local search meta-heuristic in our framework; its
initial temperature (Te) was set to 100 and scheduling factor
(α) was set to 0.99.

6.3 The effects of the local search (gMOMA-SA)

gMOMA-SA adopts simulated annealing as local search
process; thus, it is necessary to verify its effects. Figs. 2 and
3 present the final solution sets with the best (i.e., largest)
hypervolume values obtained by gMOMA-SA, NSGA-II,
MOEA/D and MOEA/DD over 20 runs on bi-objective
MONRP andMOTSP and 3-objectiveMOTSP instances. By
MOEA/DD,wemean gMOMA-SA inwhich there is no local
search. From another angle, MOEA/DD can also be consid-
ered as MOEA/D with the external set serving as the final
output.

We make the following observations:

– For bi-objective MONRP instances, gMOMA-SA pro-
duces solutions with the best convergence and diver-
sity.

– For bi-objective MOTSP instances, gMOMA-SA pro-
duces the set of solutions with the best convergence
and which completely dominates the non-dominated sets
produced by the other algorithms, although the non-
dominated sets produced by all four of the algorithms
compared have very good diversity.

– For 3-objective MOTSP instances, gMOMA-SA pro-
duces solutions with the best diversity, although all the

Table 2 Parameter settings

Population size # of neighbours Crossover rates Mutation rates # of function evaluations

MONRP MOTSP MONRP MOTSP MONRP MOTSP MONRP MOTSP MONRP MOTSP

NSGA-II 200 100 or 120 – – 0.8 0.8 1/n 1/n 300,000 600,000

MOEA/D 200 100 or 120 10 10 1 1 1/n 1/n 300,000 600,000

gMOMA-SA 200 100 or 120 10 10 1 1 1/n 1/n 300,000 600,000

uMOMA-SA 200 100 or 120 10 10 1 1 1/n 1/n 300,000 600,000

aMOMA-SA 200 100 or 120 10 10 1 1 1/n 1/n 300,000 600,000
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Fig. 1 Sensitivity test of parameter J (intensity of local search)

non-dominated sets produced by all four algorithms com-
pared have very good convergence.

– Overall, it is clear that gMOMA-SA gives the best per-
formance among all the approaches compared on all test
instances.

The evolution of the average hypervolume values with
the numbers of function evaluations in the four algorithms
on MONRP test instances are plotted in Fig. 4. This figure
shows both the convergence speed of each algorithm and the
quality of its final solution set. It is worth noting that one
local search makes small changes to the solutions and does
not need a complete function evaluation. However, to com-

pare gMOMA-SAwith the algorithmswithout local searches
(i.e., NSGA-II, MOEA/D andMOEA/DD) and show its effi-
ciency, the function evaluations for either global or local
searches are treated the same in Fig. 4.

To validate the results statistically, Table 3 lists the mean
and standard deviation values of IH on ten MONRP and
MOTSP instances. Note that a larger IH indicates bet-
ter performance of the algorithm. Clearly, these results
confirm that gMOMA-SA outperforms the other three algo-
rithms on all ten test instances. All the above observa-
tions support the idea that using simulated annealing as a
local search operator significantly improves the algorithmic
performance.
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Fig. 2 The non-dominated solutionswith the best (i.e., largest) hypervolume values obtained byNSGA-II,MOEA/D,MOEA/DDand gMOMA-SA
over 20 runs, on MONRP and MOTSP instances

6.4 The effects of two adaptive local searches

As elaborated in Sect. 4.3, three different mechanisms of
solution selection for local search were explored, namely
gMOMA-SA, uMOMA-SA and aMOMA-SA.

Among them, gMOMA-SA selects each solution for
each subproblem to conduct local search. uMOMA-SA and
aMOMA-SA both use adaptive strategies to select solu-
tions for local search. uMOMA-SA adopted the concept of
utility proposed in Zhang and Rockett (2009), which uses
the convergence information of subproblems to adaptively
decide which solutions to choose for local search. In con-
trast, aMOEA-SA uses both the convergence and diversity

information extracted from the dominance archive to adap-
tively select solutions for local search.

To understand the effects of the various methods of select-
ing points for adaptive local searches, we conducted the
following comparisons:

6.4.1 gMOMA-SA vs. uMOMA-SA

Table 4 compares the performance of gMOMA-SA and
uMOMA-SAon tenMONRPandMOTSP instances.Clearly,
in terms of IH , uMOMA-SA outperforms gMOMA-SA on
all six MOTSP instances with statistical significance and
on all four MONRP instances, but not always at the level
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Fig. 3 The non-dominated solutionswith the best (i.e., largest) hypervolume values obtained byNSGA-II,MOEA/D,MOEA/DDand gMOMA-SA
over 20 runs, on MOTSP instance c-200-3

of statistical significance of p < 0.05. In terms of IGD,
uMOMA-SA outperforms gMOMA-SA on all MONRP and
MOTSP instances except c-300-3. However, statistical sig-
nificance can be seen only on Cu-500/R-2500, c-400-2 and
c-500-2. Based on these results, we can claim that uMOMA-
SA is better than gMOMA-SA. This is consistent with
our argument in Sect. 1, that is, that utility-based solution
selection for local search is able to effectively utilize each
subproblem’s convergence information to guide local search
during the optimization process.

6.4.2 gMOMA-SA vs. aMOMA-SA

Table 5 compares the performances of gMOMA-SA and
aMOMA-SA, in terms of both IH and IGD metric. In
terms of IH , it can be observed that aMOMA-SA performs
statistically better than gMOMA-SA, on all ten instances
except for c-200-3. On c-200-3, aMOMA-SA produces a

larger IH value; however, it is not statistically significant.
In terms of IGD, aMOMA-SA performs statistically better
than gMOMA-SA on all ten instances except for Cu-200/R-
1000 and c-200-3. Based on these results, we can claim that
aMOMA-SA performs better than gMOMA-SA.

6.4.3 uMOMA-SA vs. aMOMA-SA

Because uMOMA-SA and aMOMA-SA adopt two different
adaptive local search strategies, it is interesting to study the
commonalities and differences between them. For this pur-
pose, we have run uMOMA-SA and aMOMA-SA with the
same parameter settings in Table 2 on all the test instances.

Table 6 presents the average values of IH and IGD over
20 independent runs. In terms of IH , it can be observed
that aMOMA-SAperforms statistically better than gMOMA-
SA, on all ten instances except for c-200-3. On c-200-3,
aMOMA-SA produces a larger IH value; however, it is

123



2228 X. Cai et al.

0 2 4 6 8 10

x 10
4

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
x 10

7

Number of FEs

H
yp

e
rv

o
lu

m
e
(m

e
a
n
)

NSGA−II
MOEA/D
MOEA/DD
gMOMA−SA

0 2 4 6 8 10

x 10
4

4

5

6

7

8

9

10

11
x 10

7

Number of FEs

H
yp

e
rv

o
lu

m
e
(m

e
a
n
)

NSGA−II
MOEA/D
MOEA/DD
gMOMA−SA

0 1 2 3 4 5 6

x 10
5

0

0.5

1

1.5

2

2.5
x 10

8

Number of FEs

H
yp

e
rv

o
lu

m
e
(m

e
a
n
)

NSGA−II
MOEA/D
MOEA/DD
gMOMA−SA

0 1 2 3 4 5 6

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

8

Number of FEs

H
yp

e
rv

o
lu

m
e
(m

e
a
n
)

NSGA−II
MOEA/D
MOEA/DD
gMOMA−SA

0 1 2 3 4 5 6

x 105

0

0.5

1

1.5

2

2.5

3
x 1011

Number of FEs

H
yp

e
rv

o
lu

m
e
(m

e
a
n
)

NSGA−II
MOEA/D
MOEA/DD
gMOMA−SA

0 1 2 3 4 5 6

x 105

0

1

2

3

4

5

6

7

8

9
x 1011

Number of FEs

H
yp

e
rv

o
lu

m
e
(m

e
a
n
)

NSGA−II
MOEA/D
MOEA/DD
gMOMA−SA

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Convergence plots in terms of average IH over 20 runs, obtained by four algorithms on MONRP and MOTSP instances
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Table 3 Mean and standard
deviation values of IH obtained
by four algorithms on MONRP
and MOTSP instances

NSGA-II MOEA/D MOEA/DD gMOMA-SA

Cu-200/R-1000

Mean 1.6518e+07 1.7793e+07 1.8665e+07 1.8732e+07

Std 1.9904e+05 1.0193e+05 3.7785e+04 2.5803e+04

Cu-300/R-1500

Mean 3.1568e+07 2.6528e+07 3.5676e+07 3.6332e+07

Std 4.3181e+05 4.0284e+06 3.4274e+05 6.3052e+05

Cu-400/R-2000

Mean 6.0050e+07 6.2748e+07 7.1928e+07 7.3481e+07

Std 8.7525e+05 1.1012e+06 5.1543e+05 5.2123e+05

Cu-500/R-2500

Mean 7.6671e+07 7.6933e+07 9.6964e+07 1.0136e+08

Std 1.4111e+06 2.5817e+06 1.0428e+06 4.3044e+05

c-300-2

Mean 7.8647e+07 1.0028e+08 1.0172e+08 1.1757e+08

Std 1.0299e+06 1.0677e+06 1.4351e+06 1.2675e+06

c-400-2

Mean 1.2177e+08 1.6419e+08 1.6759e+08 1.9890e+08

Std 2.2033e+06 4.1758e+06 1.9895e+06 1.8527e+06

c-500-2

Mean 1.4621e+08 2.1001e+08 2.1324e+08 2.6294e+08

Std 2.8420e+06 2.7892e+06 3.6784e+06 3.5585e+06

c-600-2

Mean 3.0337e+08 4.4358e+08 4.4479e+08 5.3350e+08

Std 5.7284e+06 5.9462e+06 5.0039e+06 3.8984e+06

c-200-3

Mean 8.3293e+10 1.9088e+11 1.9563e+11 2.6648e+11

Std 4.9150e+09 5.5013e+09 7.1752e+09 5.7416e+09

c-300-3

Mean 1.9450e+11 5.2645e+11 5.4080e+11 8.0558e+11

Std 1.6676e+10 1.5060e+10 1.7951e+10 1.5218e+10

The best mean values are highlighted in bold

not statistically significant. In terms of IGD, aMOMA-SA
performs statistically better than gMOMA-SA on all ten
instances except for Cu-200/R-1000 and c-200-3. Based on
these results, we can claim that aMOMA-SA performs better
than uMOMA-SA.

The above observations support the assertion that the
external-set-guided selection uses not only convergence
information but also diversity information to effectively
guide the search process during the whole optimization
process, which further enhances the performance compared
with uMOMA-SA.

To further understand two adaptive mechanisms in
uMOMA-SA and aMOMA-SA, we conducted two sets of
experiments to show the conditions of solution selection for
local search over the last 10 generations of the optimization
process. For the first set of experiments, the utility values of
each subproblem in uMOMA-SA are shown in the left panel

of Fig. 5. For the second set of experiments, the contributions
of subproblems to the external set are shown in the right panel
of Fig. 5.

Two important phenomena can be observed in Fig. 5.
First, different subproblems either have very different utility
values or generate very different numbers of diverse non-
dominated solutions. As our proposed memetic framework
decomposes the objective space into multiple subproblems,
the identification of promising regions is transformed into the
identification of the promising subproblems. By estimating
the convergence information using utility estimation or the
contributions of various subproblems to the non-dominated
archive, both adaptive mechanisms are able to identify the
likelihood of promising regions in the objective space.

Second, although uMOMA-SA and aMOMA-SA use dif-
ferent strategies to select solutions for local search, they share
similar patterns in terms of frequencies of each subproblem to
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Table 4 Wilcolxon’s rank sum at 0.05 significance level and comparison between gMOMA-SA and uMOMA-SA in term of IH and IGD on
MONRP and MOTSP instances

Instance IH Wilcoxon test IGD Wilcoxon test

gMOMA-SA uMOMA-SA p value gMOMA-SA uMOMA-SA p value

Cu-200/R-1000

Mean 1.8732e+07 1.8732e+07 0.5979 14.6043 14.2365 0.4094

Std 2.5803+04 1.6518e+04 1.5322 1.3284

Cu-300/R-1500

Mean 3.6332e+07 3.6152e+07 0.3104 91.4978 93.4667 0.6168

Std 6.3052e+05 4.5845e+05 17.8290 14.7129

Cu-400/R-2000

Mean 7.3481e+07 7.3595e+07 0.7972 84.6500 79.0654 0.5609

Std 5.2123e+05 3.3390e+05 18.2419 12.6135

Cu-500/R-2500

Mean 1.0136e+08 1.0159e+08 0.0962 93.5148 82.8278 0.0179

Std 4.3044e+05 4.0189e+05 17.3351 10.7403

c-300-2

Mean 1.1757e+08 1.1860e+08 0.0114 475.6433 473.8120 0.9031

Std 1.2675e+06 1.0999e+06 112.4731 109.4998

c-400-2

Mean 1.9890e+08 2.0263e+08 6.6737e−06 736.9799 583.2016 9.2091e−04

Std 1.8527e+06 2.0353e+06 138.6911 130.1067

c-500-2

Mean 2.6294e+08 2.6966e+08 4.5401e−06 945.7849 718.2724 8.3572e−04

Std 3.5585e+06 2.8175e+06 204.9886 207.3562

c-600-2

Mean 5.3350e+08 5.3863e+08 6.6104e−05 1.0461e+03 1.0167e+03 0.5979

Std 3.8984e+06 3.1461e+06 215.7218 213.3891

c-200-3

Mean 2.6648e+11 2.7333e+11 4.1550e−04 631.7064 621.6250 0.5428

Std 5.7416e+09 5.1255e+09 77.7115 101.7903

c-300-3

Mean 8.0558e+11 8.2858e+11 1.2941e−04 941.6841 1.0216e+03 0.0720

Std 1.5218e+10 1.6313e+10 104.5864 162.9990

The values in bold are significantly better than other algorithms

be selected for local search. This can be observed by compar-
ing the utility values of subproblems (the right panel of Fig.
5 with the contributions of subproblems to the dominance
archive (the left panel of Fig. 5), both of which determine
the probabilities that each subproblem is selected for local
search.

6.5 Analysis of computational time

Table 7 presents the average computational time of each algo-
rithm for one run on MOTSP and MONRP. It can be seen
from Table 7 that MOEA/D runs much faster than NSGA-II.
On the other hand, the computational time of MOEA/DD is
very close to that of NSGA-II, which reflects that a large pro-

portion of the computational time spent on MOEA/DD is for
NSGA-II selection. Furthermore, the computational time of
our proposed algorithms (gMOMA-SA, uMOMA-SA and
aMOMA-SA) is just slightly larger than MOEA/D but far
less than NSGA-II and MOEA/DD. This indicates that our
proposed algorithm is very efficient by using local search.
In addition, it is worth noting that we have used Matlab to
implement all the algorithms. The computational time can be
further improved using C++.

6.6 Single-objective vs. multi-objective optimization
algorithms on real NRP instances

In this section, we compare various algorithms for solv-
ing NRP problems based on real instances. These real NRP
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Table 5 Wilcolxon’s rank sum at 0.05 significance level and comparison between gMOMA-SA and aMOMA-SA in term of IH and IGD on
MONRP and MOTSP instances

Instance IH Wilcoxon test IGD Wilcoxon test

gMOMA-SA aMOMA-SA p value gMOMA-SA aMOMA-SA p value

Cu-200/R-1000

Mean 1.8732e+07 1.8743e+07 0.0663 14.6043 14.5498 0.9892

Std 2.5803+04 1.4609e+04 1.5322 1.9024

Cu-300/R-1500

Mean 3.6332e+07 3.7184e+07 1.8935e−05 91.4978 64.4330 1.2505e−05

Std 6.3052e+05 4.2604e+05 17.8290 15.1879

Cu-400/R-2000

Mean 7.3481e+07 7.4301e+07 5.2269e−07 84.6500 49.8014 3.4156e−07

Std 5.2123e+05 2.2610e+05 18.2419 10.5886

Cu-500/R-2500

Mean 1.0136e+08 1.0239e+08 2.5629e−07 93.5148 55.1305 6.9166e−07

Std 4.3044e+05 2.9678e+05 17.3351 12.4397

c-300-2

Mean 1.1757e+08 1.2200e+08 7.8980e−08 475.6433 281.4687 3.4995e−06

Std 1.2675e+06 1.5036e+06 112.4731 80.0110

c-400-2

Mean 1.9890e+08 2.0758e+08 6.7596e−08 736.9799 390.1924 3.4156e−07

Std 1.8527e+06 2.3867e+06 138.6911 103.1213

c-500-2

Mean 2.6294e+08 2.7813e+08 6.5756e−08 945.7849 466.2101 8.6848e−07

Std 3.5585e+06 2.8940e+06 204.9886 107.1382

c-600-2

Mean 5.3350e+08 5.5480e+08 6.0426e−08 1.0461e+03 590.7146 9.1573e−06

Std 3.8984e+06 3.7734e+06 215.7218 154.6201

c-200-3

Mean 2.6648e+011 2.7534e+11 4.6804e−05 631.7064 589.7356 0.4301

Std 5.7416e+09 5.6315e+09 77.7115 62.1813

c-300-3

Mean 8.0558e+11 8.4217e+11 3.4995e−06 941.6841 876.4832 0.0491

Std 1.5218e+10 1.9663e+10 104.5864 121.7361

The values in bold are significantly better than other algorithms

instances were mined from bug repositories of two open
source software projects (Xuan et al. 2012), namely Eclipse
(2011) and Gnome (2011).

In previous literature, NRP is defined as a constrained
single-objective optimization problem, that is, the income
from customers is to be maximized under various budget
(cost) bounds. The budget bounds can be defined by the users
based on the cost ratio, which is the budget bounds over the
total costs when all requirements are implemented. It is very
natural to reformulate NRP into a bi-objective optimization
problembyconverting the cost constraints into another objec-
tive.

Three single- and six multi-objective algorithms were
tested and compared on all the real NRP instances. The

single-objective optimization algorithm includegenetic algo-
rithm (GA) (Sagrado et al. 2010), multi-start simulated
annealing (MSSA) (Mart 2003) and the Backbone-based
Multilevel Algorithm (BMA) (Xuan et al. 2012); and the
multi-objective EAs compared are NSGA-II (Deb et al.
2002), MOEA/D (Zhang and Li 2007), MOEA/DD (Cai and
Wei 2013), MOEA/D-STM (Li et al. 2014), gMOMA-SA,
uMOMA-SA and aMOMA-SA. The parameter setting of
MOEA/D-STM is the same as that of MOEA/D, as shown in
Table 2. To conduct fair comparisons, we set the number of
function evaluations for all the compared algorithms, single-
or multi-objective, to 100,000.

Table 8 shows the best and the average values of profit of
the best solutions over 30 runs, obtained by ten approaches,
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Table 6 Wilcolxon’s rank sum at 0.05 significance level and comparison between uMOMA-SA and aMOMA-SA in term of IH and IGD on
MONRP and MOTSP instances

Instance IH Wilcoxon test IGD Wilcoxon test

uMOMA-SA aMOMA-SA p value uMOMA-SA aMOMA-SA p value

Cu-200/R-1000

Mean 1.8732e+07 1.8743e+07 0.0239 14.2635 14.5498 0.3235

Std 1.6518+04 1.4609e+04 1.3284 1.9024

Cu-300/R-1500

Mean 3.6152e+07 3.7184e+07 2.0616e−06 93.4667 64.4330 2.0407e−05

Std 4.5845e+05 4.2604e+05 14.7129 15.1879

Cu-400/R-2000

Mean 7.3595e+07 7.4301e+07 1.3761e−06 79.0654 49.8014 4.5390e−07

Std 3.3390e+05 2.2610e+05 12.6135 10.5886

Cu-500/R-2500

Mean 1.0159e+08 1.0239e+08 2.6898e−06 82.8278 55.1305 9.1266e−07

Std 4.0190e+05 2.9678e+05 10.7403 12.4397

c-300-2

Mean 1.1860e+08 1.2200e+08 1.9177e−07 473.8120 281.4687 2.0616e−06

Std 1.0999e+05 1.5036e+06 109.4998 80.0110

c-400-2

Mean 2.0263e+08 2.0758e+08 1.5757e−06 583.2016 390.1924 1.8074e−05

Std 2.0353e+06 2.3867e+06 130.1067 103.1213

c-500-2

Mean 2.6966e+08 2.7813e+08 3.4156e−07 718.2724 466.2101 9.2780e−05

Std 2.8175e+06 2.8940e+06 207.3562 107.1382

c-600-2

Mean 5.3863e+08 5.5480e+08 1.4149e−05 1.0167e+03 590.7146 1.0473e−06

Std 3.1461e+06 3.7734e+06 213.3891 154.6201

c-200-3

Mean 2.7333e+11 2.7534e+11 0.2977 621.6250 589.7356 0.5792

Std 5.1255e+09 5.6315e+09 101.7903 62.1813

c-300-3

Mean 8.2858e+11 8.4217e+11 0.0223 1.0216e+03 876.4832 0.0033

Std 1.6313e+10 1.9663e+10 162.9990 121.7361

The values in bold are significantly better than other algorithms

on eight real NRP instances. Each NRP instance may have
two different cost ratios (the ratio of the budget to the max-
imum cost, equal to either 0.3 or 0.5). For convenience, the
nrp-g1 instance with cost ratio 0.3 is denoted as nrp-g1-0.3,
for example, as shown in the first column of Table 8. The
budget bounds corresponding to the cost ratio are presented
in the second column of the table.

From Table 8, it can be seen that the performances of
all of the multi-objective optimization algorithms, except for
NSGA-II, were superior to those of the single-objective opti-
mization algorithms, in terms of finding solutionswith higher
profit values within predefined budget bounds. Although
BMA in Xuan et al. (2012) achieves the best performance
in terms of average and best profit values for all the

instances among the single-objective approaches, its per-
formance is worse than MOEA/D, MOEA/DD, MOEA/D-
STM, gMOMA-SA, uMOMA-SA and aMOMA-SA in all
the test instances, except for nrp-g2 and nrp-g4-0.3. This
observation is interesting given the naive intuition that multi-
objective problems may be more difficult to solve than
single-objective problems. One possible explanation is that
themulti-objective formulation of NRP constructs a different
search space from that of the single-objective formulation,
which may help the search process circumvent local optima.
In addition, it is clear to see from Table 8 that both of our pro-
posed approaches (uMOMA-SA or aMOMA-SA) achieve
the best performance in most NRP instances. It is worth
noting that uMOMA-SA and aMOMA-SA outperform the
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Fig. 5 Utility values in uMOMA-SA (the left panel) and the contributions of subproblems to the dominance archive in aMOMA-SA (the right
panel) over the past 10 generations on MONRP and MOTSP instances

Table 7 Comparisons among three single-objective and six multi-objective optimization algorithms on real NRP instances

Instance Time (s)

NSGA-II MOEA/D MOEA/DD gMOMA-SA uMOMA-SA aMOMA-SA

Cu-200/R-1000 1366 313 1315 387 370 412

Cu-300/R-1500 1578 388 1543 400 458 504

Cu-400/R-2000 1725 403 1648 464 502 542

Cu-500/R-2500 1894 462 1795 542 562 586

c-300-2 2846 1263 1296 456 420 504

c-400-2 3182 2154 2634 567 528 645

c-500-2 4026 3035 4174 712 658 801

c-600-2 5638 4546 5500 1018 816 961

c-200-3 2344 881 2594 430 575 446

c-300-3 2573 1460 3131 528 582 611

Significantly best values are highlighted in bold

123



2234 X. Cai et al.

Ta
bl
e
8

C
om

pa
ri
so
ns

of
th
re
e
si
ng

le
-o
bj
ec
tiv

e
an
d
si
x
m
ul
ti-
ob

je
ct
iv
e
op

tim
iz
at
io
n
al
go

ri
th
m
s
on

re
al
N
R
P
in
st
an
ce
s

In
st
an
ce

M
SS

A
G
A

B
M
A

N
SG

A
-I
I

M
O
E
A
/D

M
O
E
A
/D
D

M
O
E
A
/D
-S
T
M

gM
O
M
-S
A

uM
O
M
A
-S
A

aM
O
M
A
-S
A

nr
p-
e1
-0
.3

B
ou
nd
:3
94
5

B
es
t

57
23

66
62

75
72

71
35

78
36

78
78

78
36

77
73

78
56

78
79

A
ve
ra
ge

56
56
.5

65
53
.4

75
28
.2

70
63
.6

77
74
.6

78
12

77
74
.1

77
15
.8

77
71
.3

77
72
.3

nr
p-
e1
-0
.5

B
ou
nd
:6
57
5

B
es
t

65
75

98
01

10
66
4

10
56
3

10
94
9

10
93
3

11
01
4

11
00
0

11
03
2

11
00
8

A
ve
ra
ge

85
50

97
56
.3

10
58
9.
2

10
49
1.
4

10
88
1.
3

10
87
2.
2

10
97
0.
6

10
87
7.
6

10
89
3.
4

10
92
1.
0

nr
p-
e2
-0
.3

B
ou
nd
:4
72
2

B
es
t

53
21

62
75

71
69

66
99

73
57

73
44

73
11

72
90

73
60

73
67

A
ve
ra
ge

52
81
.0

62
19
.6

71
09
.9

64
72
.6

72
80
.8

72
77
.6

70
39
.4

72
31
.5

72
78
.7

72
83
.6

nr
p-
e2
-0
.5

B
ou
nd
:7
87
1

B
es
t

79
32

92
03

10
09
8

98
12

10
28
6

10
26
7

10
24
4

10
26
3

10
27
8

10
26
8

A
ve
ra
ge

78
69
.6

91
72
.9

99
99
.8

97
73
.6

10
23
4.
8

10
18
2.
4

99
05
.6

10
16
3.
1

10
20
5.
3

10
18
9.
4

nr
p-
e3
-0
.3

B
ou
nd
:4
77
8

B
es
t

50
31

57
95

64
61

85
58

88
58

88
54

87
63

87
97

88
52

88
68

A
ve
ra
ge

49
06
.4

56
93
.1

64
13
.0

85
04
.3

78
00
.6

87
95
.1

82
57
.9

86
73
.3

88
03
.9

87
89
.1

nr
p-
e3
-0
.5

B
ou
nd
:7
96
4

B
es
t

74
36

84
91

91
75

10
40
1

11
92
2

11
92
2

11
92
1

11
92
2

11
92
1

11
92
6

A
ve
ra
ge

73
40
.5

83
91
.1

91
00
.1

10
18
3.
2

11
53
8.
8

11
88
0.
0

11
81
8.
4

11
86
4.
5

11
87
6.
4

11
88
7.
4

nr
p-
e4
-0
.3

B
ou
nd
:5
09
9

B
es
t

43
32

50
65

56
92

72
51

74
77

74
80

74
46

74
35

74
88

74
74

A
ve
ra
ge

42
67
.9

50
23
.8

56
36
.2

72
09
.8

69
61
.5

73
22

73
55
.5

72
09
.8

73
62
.4

73
91
.6

nr
p-
e4
-0
.5

B
ou
nd
:8
49
9

B
es
t

64
59

74
87

80
43

94
88

10
17
6

10
17
6

10
17
5

10
16
1

10
17
5

10
17
8

A
ve
ra
ge

63
91
.1

74
18
.9

79
68
.0

90
90
.2

98
66
.6

10
11
1.
2

10
09
4.
4

10
09
8.
7

10
09
5.
4

10
14
1.
9

nr
p-
g1
-0
.3

B
ou
nd
:4
14
0

B
es
t

48
06

54
94

59
38

60
36

62
77

62
81

61
51

62
78

62
62

62
83

A
ve
ra
ge

47
23
.0

54
37
.0

59
11
.3

59
33
.7

61
59
.0

61
26
.6

59
41
.1

61
55
.3

61
73
.8

62
05
.4

nr
p-
g1
-0
.5

B
ou
nd
:6
90
0

B
es
t

73
39

82
23

87
14

88
25

91
23

91
18

91
14

91
00

91
34

91
26

A
ve
ra
ge

72
50
.3

81
51
.7

86
60
.0

87
92
.3

90
03

90
86
.4

89
64
.6

90
19
.4

90
50
.4

90
88
.6

nr
p-
g2
-0
.3

B
ou
nd
:3
67
7

B
es
t

35
83

42
56

45
26

43
61

44
72

44
75

44
38

44
68

44
72

44
74

A
ve
ra
ge

35
49
.9

41
95
.5

44
86
.2

43
09
.6

42
62
.4

44
30
.1

44
15

44
32
.3

44
42
.2

44
44
.8

nr
p-
g2
-0
.5

B
ou
nd
:6
12
9

B
es
t

54
33

62
19

65
02

63
22

63
98

64
13

64
13

64
20

64
07

64
13

A
ve
ra
ge

53
59
.8

61
38
.4

64
70
.2

62
83
.3

62
38
.3

63
87
.0

62
64
.3

63
84
.2

63
85
.1

63
75
.3

nr
p-
g3
-0
.3

B
ou
nd
:4
25
8

B
es
t

46
63

53
51

58
02

63
72

65
81

65
73

65
33

65
60

65
93

65
84

A
ve
ra
ge

45
93
.1

52
96
.6

57
36
.5

63
17
.6

63
73
.9

65
27
.1

64
40
.2

64
92
.3

65
25
.1

65
41
.6

nr
p-
g3
-0
.5

B
ou
nd
:7
09
7

B
es
t

70
32

79
03

87
14

90
08

93
75

93
75

93
33

93
55

93
70

93
55

A
ve
ra
ge

69
48
.1

78
49
.8

83
26
.8

89
52
.1

92
72
.2

93
36
.3

92
52
.8

93
01
.4

93
28
.4

93
29
.9

nr
p-
g4
-0
.3

B
ou
nd
:3
12
0

B
es
t

33
86

39
51

41
90

40
29

41
09

41
13

40
85

41
06

41
12

41
21

A
ve
ra
ge

33
13
.9

39
09
.9

41
59
.0

40
17

40
75
.8

40
68
.5

40
70
.6

40
78
.6

40
77
.2

40
78
.0

nr
p-
g4
-0
.5

B
ou
nd
:5
35
0

B
es
t

50
41

57
51

60
30

59
78

60
54

60
52

60
58

60
52

60
56

60
57

A
ve
ra
ge

49
91
.6

57
21
.3

59
86
.5

59
42
.5

59
94
.3

60
24
.9

59
35
.6

60
40
.2

60
40
.7

60
46
.6

T
he

bo
ld

va
lu
es

in
di
ca
te
th
e
hi
gh
es
tp

ro
fit
s
w
ith

in
th
e
bu
dg
et
bo
un
ds

ob
ta
in
ed

by
al
lt
he

al
go
ri
th
m
s
fo
r
di
ff
er
en
tN

R
P
in
st
an
ce
s

123



An adaptive memetic framework for multi -objective combinatorial optimization. . . 2235

state-of-art MOEA/D-STM on all the test instances, except
for nrp-g4-0.5 and nrp-e1-0.5.

7 Conclusion

In this paper, we have proposed a decomposition-based
multi-objective memetic framework using two adaptive
mechanisms for local search (called uMOMA-SA and
aMOMA-SA) to address COPs. The first mechanism adap-
tively selects solutions for local search based on the solu-
tions’ convergence information (utility). The second adaptive
mechanism extracts convergence and diversity information
from an external dominance archive to guide the selection
of promising solutions for local search. The effects of the
two adaptive mechanisms were investigated onMONRP and
MOTSP instances. In addition, we compared three single-
objective and four multi-objective optimization approaches
on software next release problems using real instances mined
from a bug repository. The results showed that the multi-
objective optimization approaches performed better than the
single-objective ones overall and that aMOMA-SA had the
best performances among all the approaches compared.
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