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Abstract—This paper proposes a novel and simple unsuper-
vised vessel segmentation algorithm using fundus images. At
first, the green channel of a fundus image is preprocessed to
extract a binary image after the isotropic undecimated wavelet
transform, and another binary image from the morphologically
reconstructed image. Secondly, two initial vessel images are
extracted according to the vessel region features for the connected
regions in binary images. Next, the regions common to both
initial vessel images are extracted as the major vessels. Then
all remaining pixels in two initial vessel images are processed
with skeleton extraction and simple linear iterative clustering.
Finally the major vessels are combined with the processed vessel
pixels. The proposed algorithm outperforms its competitors when
compared with other widely used unsupervised and supervised
methods, which achieves a vessel segmentation accuracy of 95.8%
and 95.8% in an average time of 9.7s and 14.6s on images from
two public datasets DRIVE and STARE, respectively.

I. INTRODUCTION

The morphological attributes of retinal blood vessels play an
important role in diagnosis, treatment, and evaluation of var-
ious ophthalmologic diseases. Any damage to retinal vessels
can result in acquired blindness. Vascular diseases are closely
related to public health problem of society. Since the detection
and analysis on fundus images is vital to many clinical
applications, an accurate vessel segmentation algorithm with
low computational complexity is desired for the vessel analysis
system.

Broadly speaking, all of the established algorithms for
automated blood vessels segmentation using fundus images
can be divided into unsupervised and supervised algorithms.
In terms of supervised algorithms, the trained classifiers such
as neural network [1], k-nearest neighbor (kNN) [2], decision
trees [3], and adaboost [4] have been applied to extract blood
vessels from fundus images. In the unsupervised category
of algorithms, a lot of effective algorithms such as line
detectors [5], morphological transformations [6] or model-
based methods [7] are used to label the pixels on fundus
images as vessel or not. In this paper, a novel and simple vessel
segmentation method is proposed that firstly segments the
major vessels, and then adds processed vessel pixels by using
skeleton extraction [8] and simple linear iterative clustering
(SLIC) [9]. This simple approach performs well on fundus

images, and has higher computational efficiency than most
methods.

This paper proposes a novel and simple blood vessel seg-
mentation method, where region features of blood vessels
are applied to segment initial estimates of vasculature, and
7 region features of blood vessel are defined and utilized.
These regions features are able to describe the shape of blood
vessels and proved to be suitable in the detection and analysis
of blood vessel. The proposed vessel segmentation algorithm
require less segmentation time and achieves consistent vessel
segmentation accuracy on normal images as well as images
with pathology, uneven illumination, pigmentation and fields
of view (FOV) when compared with other methods.

The remainder of the paper is structured as follows: Section
II illustrates the proposed method and materials. In Section III,
the experimental results are presented. Section IV gives a short
discussion.

II. METHODS AND DATASETS

The proposed algorithm for vessel segmentation is per-
formed as follows: Firstly, two binary images are obtained by
thresholding two vessel enhanced images, one is preprocessed
by isotropic undecimated wavelet transform (IUWT) [10]
and another by morphological reconstruction [3]. Secondly,
region features of blood vessels are used to extract initial
segmented vessels. Next, the regions common to both initial
segmented vessel images are extracted as the major vessels. At
last, skeleton extraction and simple linear iterative clustering
(SLIC) are used to process the rest of pixels in two initial
vessel images. The proposed algorithm is evaluated on two
public datasets.

A. Datasets

In order to evaluate the vessel segmentation algorithm, two
publicly available datasets containing fundus images were
used.

DRIVE [11] dataset includes 40 images with 45◦ FOV,
obtained in the course of a diabetic retinopathy screening
program in the Netherlands. This dataset is divided into a test
set (DRIVE Test) and a training set (DRIVE Train) with 20
images respectively.
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STARE [12] dataset includes 20 images with 35◦ FOV,
captured by a TopCon TRV-50 fundus camera. This dataset
includes ten normal images (STARE Normal) and ten abnor-
mal images (STARE Abnormal).

B. Proposed Method

1) Vessel Enhancement: The green channel of a fundus
image is regularized in [0,1](I) firstly. Each image (I) is
reversed to transform the vessel regions into the brightest
regions, resulting in image (Ic). Then Ic is subjected to
vessel enhancement followed by IUWT and morphological
reconstruction.

IUWT: Before applying IUWT, firstly Ic is subjected to
morphological top-hat transformation (disc structuring element
of length 8 pixels in radius) with the purpose of removing
vessel central light reflex [1], resulting in image It. Applied to
a signal c0 = It, subsequent scaling coefficients are calculated
by convolution with a filter h↑j

cj+1 = cj ∗ h↑j

where h0 = [1, 4, 6, 4, 1]/16 is derived form the cubic B-
spline, h↑j is the upsampled filter obtained by inserting 2j−1
zeros between each pair of adjacent coefficients of h0. Wavelet
coefficients are the difference between two adjacent sets of
scaling coefficients, i.e.,

wj+1 = cj − cj+1

After the computation of n wavelet levels

It = cn +
n∑
j=1

wj

In vessel segmentation, wavelet scales:2-3 are selected accord-
ing to [10], thereby resulting in vessel enhanced image Ti.

Morphological reconstruction:The morphological top-hat
reconstruction is listed in Equation (1),

Iθth = Ic − (Ic ◦ Sθe ) (1)

where ”Iθth” is the top-hat reconstruction image, ”Sθe” is
structuring elements for morphological opening, ”◦”, and ”θ”
is the angular rotation of the structuring element. The chosen
structuring element is 1-pixel width and 21-pixels length. Its
size fits the diameter of the biggest vessels approximately in
the retinal images.

Tm =
∑
θ∈A

Iθth (2)

The sum of top-hat reconstruction Tm is defined in Equa-
tion (2). Each angular orientation of structuring elements
belongs to set ”A”, which can be defined as {x|0 < x <
π & x mod (π/12) = 0}. The sum of the top-hat reconstruc-
tion on the retinal image can enhance each vessel, resulting in
a vessel enhanced image Tm.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1: Vessel segmentation after IUWT on an image from the DRIVE
dataset. (a) Green plane image (I). (b)Vessel enhanced image (Ti0).
(c)Threshold image (Vi0) (d)Vi1(0 < AreaVi0

) < ai1). (e)Vi2(ai1 ≤
AreaVi0

< ai2). (f)Vi3(AreaVi0
≥ ai2). (g)Vi2a(ExtentVi2

< ei1).
(h)Vi2b(ExtentVi2

> ei2&&V BRatioV 2 > ri). (i)The final segmented
vessels (V IF ).

Algorithm 1 : Vessel Segmentation After IUWT
Input:
Vessel Enhanced Image Ti0

Output:
The final segmented vessel image (V IF )
Process:

∀(x, y), Vi0(x, y) =

{
1 if Ti0(x, y) > pi
0 otherwise

Vi0 =

 Vi1 if 0 < AreaVi0
< ai1

Vi2 if ai1 6 AreaVi0
< ai2

Vi3 if AreaVi0
> ai2

Let a = [a1Vi2
, a2Vi2

, a3Vi2
, ..., anVi2

] represent labels of each connected
regions in Vi2

∀x ∈ a Vi2a =

{
1 if Extentx < ei1
0 otherwise

Vi2b =

{
1 if Extentx > ei2 && V BRatiox > ri
0 otherwise

V IF = Vi3 ∪ Vi2a ∪ Vi2b

2) Vessel Segmentation: Two binary images Vi0 and Vm0

are obtained by global thresholding the vessel enhanced image
Ti and Tm for pixels greater than ”pi” and ”pm”:pi ∈
[−0.2, 0.2], pm ∈ [0, 1]. For images from DRIVE and STARE
datasets, optimal values of ”pi = 0.003” and ”pm = 0.3”
are selected to retain the 4-connected regions [8] as much as
possible and minimizing error in the final segmented vessel
image.

For each 4-connected region in Vi0 or Vm0, 7 effective
region features of blood vessels are defined and used to
classify it as vessel region or not.
• Area is the number of pixels in each connected region.



• Bounding Box specifies the smallest rectangle containing
the connected region.

• Extent is the proportion of pixels in the connected region
to pixels in the total bounding box. Extent reflects the
extensibility of each connected region. Generally blood
vessel performs well on extensibility.

• VBRatio is the ratio of width and length of bounding
box and used to describe the shape of blood vessels. The
value of VRation of vessels is larger than nonvessels in
general.

• ConvexArea specifies the number of pixels in convex
hull. Convex Hull specifies the smallest convex polygon
that can contain the connected region.

• Solidity is the ratio of the pixels in the convex hull that are
also in the region and is computed as Area/ConvexArea. It
is used to describe the solidity of each connected region.

• VCRatio is the ratio of Extent and Solidity. It reflects the
comprehensive situation of extensibility and solidity of
blood vessels.

For binary image Vi0, at first, the 4-connected regions in
Vi0 are divided into three parts according to Area of each
connected region: Vi1(0 < AreaVi0

< ai1), Vi2(ai1 ≤
AreaVi0

< ai2) and Vi3(AreaVi0
≥ ai2). Vi3 is preserved

while Vi1 is abandoned since almost all connected regions in
Vi3 appear as vessel regions, but most of connected regions in
Vi1 belong to noise region. Secondly, we retain the connected
regions in Vi2 whose ExtentVi2 is less than ei1 since it is more
likely that the region having high extended level belongs to
vessel regions (Vi2a). At Last, the connected regions in Vi2
whose ExtentVi2

is greater than ei2 and V BRatio is more
than ri are saved (Vi2b). V IF represents the final segmented
vessels. These steps are summarized in Algorithm 1. Also
Fig.1 gives an example of vessel segmentation. All of the
parameters in Algorithm 1 are shown as follows: ai1 = 100;
ai2 = 1000; ei1 = 0.2; ei2 = 0.29; ri = 3.

For binary image Vm0, the process of vessel segmentation
and parameters are similar as Vi0. At first, the 4-connected
regions in Vm0 are divided into three parts according to
Area of each connected region: Vm1(0 < AreaVm0

< am1),
Vm2(am1 ≤ AreaVm0

< am2) and Vm3(AreaVm0
≥ am2).

Vm3 is preserved and Vm1 is abandoned. Secondly, the con-
nected regions in Vm2 are divided into two parts according to
Extent of each each connected region: Vme1(ExtentVm2

<
em) and Vme2(ExtentVm2

>= em). Vme1 is saved. Also
the connected regions in Vme2: Vme2a(V BRatio > rm) and
Vme2b(V BRatio 6 rm&&V CRatio > c) are preserved.
VMF represents the final segmented vessels. These steps are
summarized in Algorithm 2. Also Fig.2 provides the same
example of vessel segmentation. All of the parameters in
Algorithm 2 are shown as follows: am1 = 30; am2 = 1000;
em = 0.25; rm = 2.2; c = 2.

3) Vessel Combination: It can be observed that the oper-
ation of obtaining VIF can effectively identify vessel pixels
while the operation of obtaining VMF can classify nonvessel
pixels effectively. Thus, in order to obtain a good segmentation
result, vessel combination is performed as follows:

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2: Vessel segmentation after morphological reconstruction on an image
from the DRIVE dataset. (a)Vessel enhanced image (Tm0). (b)Threshold im-
age (Vm0). (c)Vm1(0 < AreaVm0 < am1). (d)Vm2(am1 ≤ AreaVm0 <
am2). (e)Vm3(AreaVm0

≥ am2) (f)Vme1(ExtentVm2
< em).

(g)Vme2a(V BRatio > rm). (h)Vme2b(V BRatio 6 rm&&V CRatio >
c). (i)The final segmented vessels (VMF ).

Algorithm 2 : Vessel Segmentation After Morphological Reconstruction
Input:
Vessel Enhanced Image Tm0

Output:
The final segmented vessel image (VMF )
Process:

∀(x, y), Vm0(x, y) =

{
1 if Tm0(x, y) > pm
0 otherwise

Vm0 =

 Vm1 if 0 < AreaVm0
< am1

Vm2 if ai1 6 AreaVm0 < am2

Vm3 if AreaVm0
> am2

Vm2 =

{
Vme1 if ExtentVm2 < em
Vme2 if ExtentVm2

>= em

Let a = [a1Vme2
, a2Vme2

, a3Vme2
, ..., anVme2

] represent labels of each
connected regions in Vme2

∀x ∈ a Vme2a =

{
1 if V BRatiox > rm
0 otherwise

Vme2b =

{
1 if V BRatiox 6 rm && V CRatiox > c
0 otherwise

VMF = Vm3 ∪ Vme1 ∪ Vme2a ∪ Vme2b

Firstly, the regions common to both VIF and VMF are
extracted as the major vessels. For the remaining regions
in VMF, we only abandoned the connected regions with
Area > 70 && Extent > 0.29 && V BRatio < 2.2,
resulting in vessel image Vmf . For the remaining regions in
VIF (VIE), the connected regions whose Area is less than a
are saved (VIE1). Next, skeleton extraction is performed to
obtain the vessel skeleton of connected regions in VIE whose
Area is more than 70. Then SLIC is employed to generate
superpixels [9] on vessel enhanced image (Ti0), which groups



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3: Vessel combination. (a)Segmented vessel (V IF ). (b)Segmented
vessel (VMF ). (c) The major vessels. (d)Vessel image Vmf . (e)Vessel image
VIE1. (f)Skeleton image in VIE . (g)Skeleton expansion image. (h) Final
vessel image after combination. (i) The ground-truth of this fundus image.

pixels into perceptually meaningful regions. Finally, skeleton
expansion is implemented by means of a simple strategy that
for each superpixel in Ti0, if it exists skeleton pixels, then
this superpixel is considered as vessel superpixel and added
to the final vessel image. The process of vessel combination
is shown in Fig.3.

III. EXPERIMENTS AND RESULTS

In this section we present experiments to evaluate the perfor-
mance of our proposed method. Three commonly used metrics
were applied to evaluate the performance of the competing
methods in terms of pixels: Sensitivity(Se) = tp/(tp+fn),
Specificity(Sp) = tn/(tn + fp) and Accuracy(Acc) =
(tp + tn)/(tp + fp + tn + fn). tp, tn, fp and fn indicate
the true positive (vessels), true negative (non-vessels), false
positive (pixels falsely classified as vessels), and false neg-
ative (pixels falsely classified as non-vessels), respectively.
Sensitivity is a ratio of well-classified vessel pixels. Specificity
performs the same function for nonvessel pixels. Accuracy is a
comprehensive measurement of pixels which can be classified
correctly. Furthermore, the segmentation time of each image
for implementing the proposed segmentation algorithm is
recorded.

In order to show the effectiveness of the proposed method,
we first compare our algorithm with other existing methods.
Then the performance on the STARE Abnormal dataset is
analyzed with the purpose of demonstrating the robustness of
the proposed approach. For the DRIVE dataset and STARE
dataset, the manual segmentations of the first observer are
used as the ground truth. Because most existing methods
have utilized the manual segmentations of the first observer
to analyse the segmentation performance of blood vessels.

A. Vessel Segmentation Performance

The segmentation performance of blood vessels on the
two test datasets is given in Table I. From Table I, it can
be observed that the IUWT segmentation method and the
morphological reconstruction method have good performance
on segmentation accuracy. However, they have a low value of
sensitivity or specificity. So the proposed method improves the
segmentation performance by further combing two segmented
vessel images VIF and VMF and produces a comprehensive
good result.

In addition, Table II provides the results of the proposed
algorithm and other methods. From Table II, it can be observed
the proposed approach outperforms other existing methods in
terms of accuracy except for [14]. However, the method [14]
has high computational efficiency due to application of SVM
classifier, which may need to train again for a new dataset.
Also, from Table II, it can be observed that the sensitivity
and specificity are competitive when compared with other
methods.

B. Abnormal Image Analysis

TABLE III: THE PERFORMANCE OF VESSEL SEGMENTATION ON
THE STARE ABNORMAL DATASET

Method Acc Time

Hoover et.al. [12] 0.9211 5min
Jiang et.al. [16] 0.9352 8-36s
Mendonca et.al. [17] 0.9426 3min
Soares et.al. [13] 0.9425 3min
Vermeer et.al. [24] 0.9287 -
Marin et.al. [1] 0.9510 90s
Lam and Yan [18] 0.9474 8min
Lam et.al. [7] 0.9556 13min
Roychowdhury and Koozekanani [15] 0.9453 8.36s
Roychowdhury et.al. [23] 0.9535 3.87s
Proposed 0.9561 13.92s

The existing algorithms [14], [17], [18] have demonstrated
that the segmentation performance on abnormal retinal image
can be applied to test the robustness of vessel segmenta-
tion algorithms. Table III gives the comparative segmentation
performance of the proposed approach compared with other
state-of-art methods on STARE Abnormal dataset. It can be
observed that the proposed method outperforms all other
methods in terms of accuracy and has low computational
complexity on STARE Abnormal dataset, which demonstrates
the robustness of the proposed algorithm.

IV. DISCUSSION AND CONCLUSION

The paper has proposed a novel and simple unsupervised
vessel segmentation algorithm and evaluated it on two public
datasets: DRIVE and STARE. This algorithm obtains two
binary images by thresholding two vessel enhanced images,
where one is enhanced by isotropic undecimated wavelet
transform and another by morphological reconstruction. Then
region features of blood vessels are used to extract initial
segmented vessels. Finally, we combine two segmented vessel



TABLE I: THE SEGMENTATION PERFORMANCE OF THE PROPOSED METHOD ON THE TEST DATASETS

Dataset Segmentation Acc Se Sp Time(s)

DRIVE Test
IUWT 0.9525(0.0047) 0.7542(0.0469) 0.9717(0.0072) 2.5151(0.1556)

Morphological Reconstruction 0.9601(0.0048) 0.6604(0.0719) 0.9890(0.0047) 3.0883(0.4311)
Proposed 0.9578(0.0038) 0.7408(0.0569) 0.9788(0.0063) 9.7080(0.7892)

STARE
IUWT 0.9516(0.0088) 0.8200(0.0700) 0.9621(0.0123) 4.4461(0.2663)

Morphological Reconstruction 0.9578(0.0106) 0.7230(0.1913) 0.9763(0.0131) 3.6016(0.5113)
Proposed 0.9580(0.0075) 0.7880(0.1268) 0.9716(0.0121) 14.5802(1.7566)

STARE Normal
IUWT 0.9501(0.0084) 0.8435(0.0690) 0.9584(0.0119) 4.4864(0.2581)

Morphological Reconstruction 0.9638(0.0054) 0.8044(0.1454) 0.9756(0.0114) 3.8810(0.3440)
Proposed 0.9600(0.0063) 0.8400(0.1083) 0.9689(0.0112) 15.2403(1.7185)

STARE Abnormal
IUWT 0.9530(0.0093) 0.7966(0.0660) 0.9659(0.0121) 4.4058(0.2819)

Morphological Reconstruction 0.9517(0.0113) 0.6417(0.2034) 0.9770(0.0153) 3.3223(0.5101)
Proposed 0.9561(0.0084) 0.7360(0.1274) 0.9743(0.0129) 13.9200(1.6101)

Mean performance metrics and their standard deviation is given in ().

TABLE II: COMPARATIVE PERFORMANCE OF THE PROPOSED METHOD ON THE TEST DATASETS WITH EXISTING METHODS

Test Data DRIVE Test STARE

Method Acc Se Sp Time Acc Se Sp Time System

Supervised Methods
Niemeijer et.al. [2] 0.942 0.689 0.969 - - - - - -
Staal et.al. [11] 0.944 0.719 0.977 15min 0.952 0.697 0.981 15min 1.0 GH, 1 GB RAM
Soares et.al. [13] 0.946 0.733 0.978 ∼3min 0.948 0.720 0.975 ∼3min 2.17 GHz, 1 GB RAM
Ricci et.al. [14] 0.959 0.775 0.972 - 0.965 0.903 0.939 - -
Marin et.al. [1] 0.945 0.706 0.980 ∼90s 0.952 0.694 0.982 ∼90s 2.13 GHz, 2 GB RAM
Fraz et.al. [3] 0.948 0.740 0.981 ∼100s 0.953 0.755 0.976 ∼100s 2.27 GHz, 4 GB RAM
Roychowdhury and Koozekanani [15] 0.952 0.725 0.983 3.11s 0.951 0.772 0.973 6.7s 2.6 GHz, 2 GB RAM

Unsupervised Methods
Hoover et.al. [12] - - - - 0.928 0.65 0.810 5min Sun SPARCstation 20
Jiang et.al. [16] 0.891 0.83 0.9 8-36s 0.901 0.857 0.900 8-36s 600MHz PC
Mendonca et.al. [17] 0.945 0.734 0.976 2.5min 0.944 0.699 0.973 3min 3.2 GHz, 980 MB RAM
Lam et.al. [18] - - - - 0.947 - - 8min 1.83 GHz, 2 GB RAM
Al-Diri et.al. [19] - 0.728 0.955 11min - 0.752 0.968 - 1.2 GHz
Lam and Yan [7] 0.947 - - 13min 0.957 - - 13min 1.83 GHz, 2 GB RAM
Budai et.al. [20] 0.949 0.759 0.968 11s 0.938 0.651 0.975 16s 2.0 GHz, 2 GB SDRAM
Budai et.al. [21] 0.957 0.644 0.987 - 0.938 0.58 0.982 - 2.3 GHz, 4 GB RAM
Perez et.al. [22] 0.925 0.644 0.967 ∼2min 0.926 0.769 0.944 ∼2min Parallel Cluster
Miri et.al. [6] 0.943 0.715 0.976 ∼50s - - - - 3 GHz, 1 GB RAM
Nguyen et.al. [5] 0.941 - - 2.5s 0.932 - - 2.5s 2.4 GHz, 2 GB RAM
Roychowdhury et.al. [23] 0.949 0.739 0.978 2.45s 0.956 0.732 0.984 3.95s 2.6GHz, 2 GB RAM
Proposed 0.958 0.741 0.979 9.7s 0.958 0.788 0.972 14.6s 2.5 GHz, 8-GB RAM

images with skeleton extraction and simple linear iterative
clustering.

The proposed vessel segmentation performs well on abnor-
mal retinal images since the algorithm use the region infor-
mation of vessels. It achieves a vessel segmentation accuracy
of 95.8% and 95.8% on images from two public datasets
DRIVE and STARE, respectively. Our method outperforms
other existing approaches except for the method of [14].
However, in [14], the computational time is much complex.

From above description, the proposed vessel segmentation
algorithm has high computational efficiency and is indepen-
dent on the training data. It is suitable for vessel pathology
detection and analysis.
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