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Abstract—In this paper, we design a novel method to handle
multi- and many-objective optimization problem. The proposed
method adopts the idea of tomographic scanning in medical
imaging to decompose the objective space into a combination of
many tomographic maps to reduce the dimension of objectives
incrementally. Moreover, subpopulations belonging to different
tomographic maps can help each other in evolving the optimal
results. We compared the performance of the proposed algorithm
with some classical algorithms such as NSGA-II and MOEA/D-
TCH and their state-of-the-art variants including MOEA/D-
DE, NSGA-III and MOEA/D-PBI. The experimental results
demonstrate that the proposed method significantly outperforms
MOEA/D-TCH, MOEA/D-DE and NSGA-II, and is very compet-
itive with MOEA/D-PBI and NSGA-III in terms of convergence
speed.

Keywords-Many-Objective Optimization, Reduce dimensional-
ity, Decomposition

I. INTRODUCTION

Many of real-world problem that have the number of

objectives or criterions more than one, which stated as multi-

objective optimization problem(MOP). A MOP can be defined

as follow:

minimize F (X) = (f1(X), ..., fm(X))T

subject to X ∈ Ω (1)

Where Ω is decision space, F (X) is a vector of objective and

m is the number of objective with the problem. Meanwhile,

these objectives usually conflict with each other. In general,

hence, there have no point in space Ω which can make each

objective to reach the optimal value simultaneously. Unlike

single objective optimization problems, which generally just

have single optimal solution, in MOP, there have a set of

optimal solutions instead of only solution. Such a set called

Pareto Set(PS), mapping the Pareto Set(PS)to the objective

space obtained Pareto Front(PF).

In the past decade, multi-objective evolutionary algo-

rithms(MOEAs) have been widely used for solving MOPs with

two- or three-objective, which concerned with performances of

convergence and diversity for algorithm. Some state-of-the-

art MOEAs have been proposed, such as dominance based

NSGA-II[1] and decomposition-based method MOEA/D[2].

However, with the increase of practical demands, MOPs

involve four or more objectives. Many of difficulties appear

for current MOEAs’ designer. The primary difficulty is that

pressure of selection decreased with dimensionality increasing.

The more details present in Section II.

During this period of time, many researchers also try to

solve a more higher dimensionality MOP using current evolu-

tionary multi-objective optimization(EMO). In this paper, we

review some of previous efforts to deal with many-objective

optimization problem(MaOP) that have four or more objec-

tives, which include visualization[3], reduced-dimensionality

using principal component analysis[4],[5], preference-based

using reference-points[6]. However, there still have certain

performances been worth to develop.

In this paper, we compared our proposed algorithm

NSGA/TD with some state-of-the-art MOEAs which are

MOEA/D-TCH[2], MOEA/D-PBI[2], MOEA/D-DE[7]. The

experimental result have shown at latter section.

The remainder of this paper organized as follows. In sec-

tion II, we discuss difficulties in MaOP and some of methods

presented for solving MaOP in sectionIV. Therefore, we

outline our proposed method in detail. Result of the DTLZ test

problem[8] are shown in section IV. Finally, the conclusion of

this paper are drawn in section V.



II. DIFFICULTIES WITH MANY-OBJECTIVE OPTIMIZATION

PROBLEMS AND CURRENT EMO FOR MANY-OBJECTIVE

OPTIMIZATION PROBLEMS

In general, many-objective optimization problems have four

or more objectives to optimize simultaneously. With increas-

ing dimensionality of objectives, traditional MOEAs are be-

coming inefficient when solving many-objective optimization

problem (MaOP). A series of difficulties in many-objective

optimization problems have been stated in[6],[9], two primary

difficulties are presented as the following:

1) Difficulty in convergence, that is, while the dimensional-

ity of objectives increased, almost of all individuals do

not dominate each other and difficult to generate new

non-dominated solution efficiently. Thereby, pressure of

evolutionary selection will decrease significantly. Above

can slow down efficient of search process or search pro-

cess will be stagnant from perspective of convergence.

2) With increasing objective, leading to aggravation of

conflict between convergence and diversity [10].

From above, the most primary difficulty in high-

dimensionality objective is decreasing of selection pressure.

There have proposed a lot of method for enhancing the

selection pressure, balancing convergence and diversity. These

have four types of method for dealing with MOEAs:

1) Modified traditional definition of Pareto dominance and

proposed new principle of dominance for strength-

ening selection pressure, such as epsilon dominance

(ε-dominance), L-Optimality[11], Fuzzy-domination[12]

and level sorting based on preference[13], etc.

2) To combine classical principle of both Pareto-dominated

and convergence-based. This method adopts dominated

principle to sort firstly, then selects solutions by conver-

gence principle, such as GrEA[14].

3) To design innovation mechanism that based on met-

rics performance. There has three algorithm, IBEA[15],

SMS-EMOA[16], HypE[17]. IBEA adopt pre-defined

optimization problem to measure distribution for each

solution and that SMS-EMOA and HypeE select solution

by value of Hypervolume.

4) To decompose high-dimension objective space for re-

duced the dimensionality and that searching based on

referent-point or pre-define direction, classical meth-

ods include MOEA/D[2], MOEA/D-M2M[18], NSGA-

III [6]and principal component analysis(PCA-NSGA-

II[4],L-PCA[5]), etc.

III. MAIN IDEA AND ALGORITHM

The proposed idea concerned providing a decomposition

method for solving MaOP, the main different is gradually

decomposed an MaOP to many two- or three-objectives MOP.

As mentioned before, many-objective optimization prob-

lems have M objectives that are often four or more and

the dimensionality of PF which is an m-dimension hyper-

surface(if the hyper-surface was linear, then called hyper-

plane). Loosely speaking, there have two type of problems in

many-objective optimization problem, Hard-MaOP and Soft-

MaOP, by relationship between dimensionality of objectives

and PF.

• Hard-MaOP: If m = M , the dimensionality of problem

is equal to dimensionality of PF. In this situation, conflict

exists between objectives which have no redundancy or

relative. In the case of the DTLZ2(three objectives) [8],

the PF shown at Figure 1.

• Soft-MaOP: If m < M , the dimensionality of PF

is lower than dimensionality of problem. There have

some redundancy between objectives. In the case of the

DTLZ5(three objectives)[8], the PF shows as Figure 1.
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Fig. 1. Pareto Front of MOP.(Left: DTLZ2, Right: DTLZ5)

As analyzed in PCA-NSGA-II[4], when redundancy existed

within MOP, we can obtain some relativity between objectives

from the analyzed result, then we can reduce the dimension-

ality of objectives. In the case of DTLZ5, f1 is linear relative

with f2, so the number of objectives can reduce from three to

two(f3,f2 or f3,f1) and pressure of selection will increase.

To be inspired by PCA-NSGA-II, we proposed a method

tomographical decomposition(TD) to deal MaOP. In similar,

if we can decompose a Hard-MaOP to many Soft-MaOP,

the problem can be get more redundancy and the pressure

of selection will increase with redundancy increased. For

Firstly, starting in three-objective optimization problem, for

establishing the faultage to use a hyper-plane which crosses

axe of f3 and intersect a curve Ci, which curve is a part

of PF. If we used enough hyper-plane, the whole PF will be

present by the set of curves Ci. Such each hyper-plane is a

subproblem, each curve is PF of the subproblem. And each

subproblem has been related by a population to search optimal

solutions using traditional MOEAs.

Then, there has given faultage definition and subproblem

decomposition as the following:

f2 = kf1

k ∈ R (2)

where k is a factor that decided the position of faultage.

We suggested individuals that have same behaviors in same

faultage, which show at decision variables with some particular

mode or function, such as certain decision variable is decided

individual at which faultage. In the case of a series of test

problem DTLZ, we can obtain certain relationship between

space of objective and decision for appointed value of k. For

example, in DTLZ1, for satisfying condition within Eq.(2), we

can obtain relationship x2 = 1

k+1
through solving Eq.(2), and



Problem Name Relevant Variable and Relationship

DTLZ1 x2 =
1

k+1

DTLZ2 xM−1 = arctan k ×
π

2

DTLZ3 xM−1 = arctan k ×
π

2

DTLZ4 xM−1 = 100

√

arctan k ×
π

2

TABLE I
RELATIONSHIP BEWTEEN FAULTAGE AND INDIVIDUAL VARIABLE
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Fig. 2. PF of DTLZ2 and DTLZ5 test problem, (Left: DTLZ2, Right: DTLZ5)

we can know that other decision variables are irrelevant with

position of faultage. In similar to DTLZ2-DTLZ4, we can also

get certain relationship within decision variables. Hence, factor

k can determine the position of faultage and individuals.In our

work, we have the relationship in DTLZ1-DTLZ4 shown at

Table I. By this way, we can obtain key variables to decide

which faultage individual generated.

IV. EXPERIMENTAL DESIGN AND EXPERIMENTAL RESULT

A. Experimental Setting

In order to evaluate the performance of proposed method in

Section III, we combined the method with NSGA-II and then

studied the experimental results on DTLZ1-DTLZ4[8]. Thirty

independent runs with the four algorithms are conducted. The

experimental parameter set as follows.

• The mutation probability Pm = 1/n (n is the number of

decision variables). For the DE operator, we set CR =
1.0 and F = 0.5 as recommended in[19].

• Each population size: N = 30. Population number:

Popn = 5.

• Number of runs and stopping condition: Each algorithm

runs 30 times independently on each test problems. The

algorithm stops until 300, 000 function evaluations.

B. Performance Metric

In our work, performance of many-objective evolutionary

algorithm is evaluated in two aspects convergence and distri-

bution. Convergence describes the closenfess of the obtained

solutions to the true Pareto front. Distribution depicts diversity

of obtained solutions in objective space. Two metrics were

chosen - inverted generation distance (IGD)[20] and hyper-

volume(HV)[21]. Detailed definitions are given as follows.

Inverted Generational Distance (IGD):

Let R∗ is the true Pareto front set, P is a set of obtained

solutions achieved by evolutionary multi-objective algorithm.

IGD metric denotes the Euclidean distance between R∗ and

P . It is defined as follows:

IGD(R∗, P ) =

∑

y∗∈R∗ d(y∗, P )

|R∗|

d(y∗, P ) =min







√

√

√

√

m
∑

i=1

(y∗i − yi)2







(3)

Where M is the number of objectives, |R∗| denotes the size

of set R∗, d(y∗, P ) denotes the minimum Euclidean distance

between y∗ and P . IGD metric can present the convergence

and diversity simultaneously. The smaller IGD metric means

the better performance.

Hypervolume (HV):

HV simultaneously considers the distribution of the obtained

Pareto front P and its vicinity to the true Pareto front. HV is

defined as the volume enclosed by P and the reference vector

r = (r1, r2, ..., rm). HV can be defined as:

HV (R) =
⋃

i∈R

voli (4)

Here, vol(i) denotes the volume enclosed by solution i ∈
P and the reference vector r. The maximum value of each

objective in the true Pareto front set gives the value of each

dimension of the reference point r, and thus constructs the

reference point.

C. Experimental Result

In order to demonstrate the effectiveness of the proposed

decomposition method, we first compared NSGA/TD with

NSGA-II. The final populations with the best IGD and HV

metric in 30 independent runs for DTLZ1-DTLZ4 compared

with NSGA-II are shown in Figure 3. As shown result,

NSGA/TD is better than NSGA-II for DTLZ1-DTLZ4 in

metrics HV and IGD. The variation of IGD metric value with

NSGA-II and NSGA/TD are shown in Figure 4. The figure

shown the convergence speed of NSGA/TD is significantly

better than NSGA-II. Furthermore, the result that compared

with current state of the art MOEAs which include MOEA/D-

PBI, MOEA/D-DE, MOEA/D-TCH and NSGA-III are shown

at Table VI. As shown result, NSGA/TD is better than other

four algorithms for DTLZ1 and better than MOEA/D-TCH

and MOEA/D-DE for DTLZ2-DTLZ4 in IGD metric. The

experimental results shown NSGA/TD significantly outper-

formed NSGA-II in DTLZ1-DTLZ4 test problem and quite

comparable with NSGA-III, MOEA/D-PBI, MOEA/D-TCH

and MOEA/D-DE.

V. CONCLUSION

In this paper, we have proposed tomographic decomposition

and algorithm NSGA/TD. To design experiment to demon-

strate the efficiency of tomographic decomposition to handle

3-objective MOP and also compared with some state-of-the-art

algorithms. The result shown method of tomographic decom-

position is effective for accumulating speed of convergence



TABLE II
BEST, MEDIAN, AND WORST IGD METRIC VALUES OBTAINED FOR

NSGA/TD AND NSGA-II ON 3-OBJECTIVE DTLZ1, DTLZ2,
DTLZ3 AND DTLZ4 PROBLEMS. BEST PERFORMANCE IS SHOWN IN

BOLD

Instance NSGA/TD NSGA-II

DTLZ1

Min 3.17E-04 9.91E-03
Mean 5.75E-04 1.50E-02
Worst 1.10E-03 3.20E-02
Var. 3.56E-08 3.73E-05

DTLZ2

Min 6.14E-04 1.60E-02
Mean 1.88E-03 1.93E-02
Worst 3.77E-03 2.14E-02
Var. 5.07E-07 1.35E-06

DTLZ3

Min 3.61E-03 2.57E-02
Mean 1.56E-02 2.28E-01
Worst 3.31E-02 1.07E+00
Var. 6.20E-05 8.12E-02

DTLZ4

Min 1.72E-03 1.56E-02
Mean 2.28E-03 1.83E-02
Worst 2.89E-03 2.24E-02
Var. 7.99E-08 1.22E-06

TABLE III
BEST, MEDIAN, AND WORST HV METRIC VALUES OBTAINED FOR

NSGA/TD AND NSGA-II ON 3-OBJECTIVE DTLZ1, DTLZ2,
DTLZ3 AND DTLZ4 PROBLEMS. BEST PERFORMANCE IS SHOWN IN

BOLD

Instance NSGA/TD NSGA-II

DTLZ1

Best 9.91E-02 9.09E-02
Mean 9.90E-02 8.78E-02
Worst 9.89E-02 8.54E-02
Var. 1.29E-09 3.31E-06

DTLZ2

Best 4.14E-01 3.49E-01
Mean 4.11E-01 3.40E-01
Worst 4.09E-01 3.33E-01
Var. 1.06E-06 1.76E-05

DTLZ3

Best 4.05E-01 3.20E-01
Mean 3.76E-01 1.65E-01
Worst 3.08E-01 1.25E-01
Var. 3.25E-04 9.04E-03

DTLZ4

Best 4.13E-01 3.57E-01
Mean 4.11E-01 3.48E-01
Worst 4.09E-01 3.35E-01
Var. 7.19E-07 2.55E-05

TABLE IV
T-TEST VALUES OF IGD AMONG NSGA/TD AND NSGA-II

NSGA/TD vs. NSGA-II

- h-value p-value

DTLZ1 1.00E+00 1.95E-18

DTLZ2 1.00E+00 2.70E-57

DTLZ3 1.00E+00 1.70E-04

DTLZ4 1.00E+00 1.01E-59

TABLE V
T-TEST VALUES OF HV AMONG NSGA/TD AND NSGA-II

NSGA/TD vs. NSGA-II

- h-value p-value

DTLZ1 1.00E+00 2.80E-39

DTLZ2 1.00E+00 1.49E-63

DTLZ3 1.00E+00 6.00E-17

DTLZ4 1.00E+00 1.62E-56

TABLE VI
BEST, MEDIAN, AND WORST IGD VALUES OBTAINED FOR NSGA/TD, NSGA-III AND TWO VERSIONS OF MOEA/D ON 3-OBJECTIVE DTLZ1, DTLZ2,

DTLZ3 AND DTLZ4 PROBLEM. BEST PERFORMANCE IS SHOWN IN BOLD

Problem M NSGA/TD NSGA-III MOEA/D-PBI MOEA/D-TCH MOEA/D-DE

DTLZ1 3

Min 4.78E-04 4.88E-04 4.10E-04 3.30E-02 5.47E-03
Mean 7.88E-04 1.31E-03 1.50E-03 3.32E-02 1.78E-02
Worst 1.10E-03 4.88E-03 4.47E-03 3.36E-02 3.39E-01

DTLZ2 3

Min 1.60E-03 1.26E-03 5.43E-04 7.50E-02 3.85E-02
Mean 2.50E-03 1.36E-03 6.41E-04 7.57E-02 4.56E-02
Worst 3.20E-03 2.11E-03 8.01E-04 7.66E-02 6.07E-02

DTLZ3 3

Min 1.70E-03 9.75E-04 9.77E-04 7.60E-02 5.61E-02
Mean 3.50E-03 4.01E-03 3.43E-03 7.66E-02 1.44E-01
Worst 1.28E-02 6.67E-03 9.11E-03 7.76E-02 8.89E-01

DTLZ4 3

Min 1.80E-03 2.92E-04 2.93E-01 2.17E-01 3.28E-02
Mean 2.20E-03 5.97E-04 4.28E-01 3.72E-01 6.05E-02
Worst 2.90E-03 4.29E-01 5.23E-01 4.42E-01 3.47E-01

in DTLZ1-DTLZ4. In DTLZ1-DTLZ4 test problems, the pro-

posed algorithm has been significant better than NSGA-II and

quite comparable with NSGA-III, MOEA/D-PBI, MOEA/D-

TCH and MOEA/D-DE. In many real-world problem, the

function of objectives are quite complex, maybe we can not

obtain the decision variable that decided position of individual

by solving eqution. In future work, it is a key point that

generating individuals on faultage. Mechine Learning will

provide some effective ways to solving the issue.
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