
Swarm and Evolutionary Computation 44 (2019) 665–679

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

Push and pull search for solving constrained multi-objective optimization
problems

Zhun Fan a,∗, Wenji Li a, Xinye Cai b, Hui Li c, Caimin Wei d, Qingfu Zhang e,
Kalyanmoy Deb f, Erik Goodman f

a Department of Electronic Engineering, Shantou University, Guangdong, China
b College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Jiangsu, China
c School of Mathematics and Statistics, Xi’an Jiaotong University, Shaanxi, China
d Department of Mathematics, Shantou University, Guangdong, China
e Department of Computer Science, City University of Hong Kong, Hong Kong, China
f BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA

A R T I C L E I N F O

Keywords:
Push and pull search
Constraint-handling mechanisms
Constrained multi-objective evolutionary
algorithms
Multiobjective evolutionary algorithm based
on decomposition (MOEA/D)

A B S T R A C T

This paper proposes a push and pull search (PPS) framework for solving constrained multi-objective optimiza-
tion problems (CMOPs). To be more specific, the proposed PPS divides the search process into two different
stages: push and pull search stages. In the push stage, a multi-objective evolutionary algorithm (MOEA) is
used to explore the search space without considering any constraints, which can help to get across infeasible
regions very quickly and to approach the unconstrained Pareto front. Furthermore, the landscape of CMOPs
with constraints can be probed and estimated in the push stage, which can be utilized to conduct the param-
eter setting for the constraint-handling approaches to be applied in the pull stage. Then, a modified form of
a constrained multi-objective evolutionary algorithm (CMOEA), with improved epsilon constraint-handling, is
applied to pull the infeasible individuals achieved in the push stage to the feasible and non-dominated regions.
To evaluate the performance regarding convergence and diversity, a set of benchmark CMOPs and a real-world
optimization problem are used to test the proposed PPS (PPS-MOEA/D) and state-of-the-art CMOEAs, including
MOEA/D-IEpsilon, MOEA/D-Epsilon, MOEA/D-CDP, MOEA/D-SR, C-MOEA/D and NSGA-II-CDP. The compre-
hensive experimental results show that the proposed PPS-MOEA/D achieves significantly better performance
than the other six CMOEAs on most of the tested problems, which indicates the superiority of the proposed PPS
method for solving CMOPs.

1. Introduction

Many real-world optimization problems can be summarized as opti-
mizing a number of conflicting objectives simultaneously with a set of
equality and/or inequality constraints. Such problems are called con-
strained multi-objective optimization problems (CMOPs). Without lose
of generality, a CMOP considered in this paper can be defined as follows
[1]:

⎧⎪⎪⎨⎪⎪⎩

minimize F(x) = (f1(x),… , fm(x))T

subject to gi(x) ≥ 0, i = 1,… , q
hj(x) = 0, j = 1,… , p
x ∈ ℝn

(1)

∗ Corresponding author.
E-mail address: zfan@stu.edu.cn (Z. Fan).

where F(x) = (f1(x), f2(x),… , fm(x))T is an m-dimensional objective vec-
tor, and F(x) ∈ ℝm. gi(x) ≥ 0 is an inequality constraint, and q is the
number of inequality constraints. hj(x) = 0 is an equality constraint,
and p represents the number of equality constraints. x ∈ ℝn is an n-
dimensional decision vector.

When solving CMOPs with inequality and/or equality constraints,
we usually convert the equality constraints into inequality constraints
by introducing an extremely small positive number 𝛿. The detailed
transformation is given as follows:

hj(x)′ ≡ 𝛿 − |hj(x)| ≥ 0 (2)

To deal with a set of constraints in CMOPs, the overall constraint
violation is a widely used approach, which summarizes the violations

https://doi.org/10.1016/j.swevo.2018.08.017
Received 12 January 2018; Received in revised form 27 June 2018; Accepted 28 August 2018
Available online 5 September 2018
2210-6502/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.swevo.2018.08.017
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/swevo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2018.08.017&domain=pdf
mailto:zfan@stu.edu.cn
https://doi.org/10.1016/j.swevo.2018.08.017

Z. Fan et al. Swarm and Evolutionary Computation 44 (2019) 665–679

into a single scalar as follows:

𝜙(x) =
q∑

i=1
|min(gi(x),0)| +

p∑
j=1

|min(hj(x)′,0)| (3)

Given a solution xk ∈ ℝn, if 𝜙(xk) = 0, xk is feasible. All the feasible
solutions constitute a feasible solution set S, which is defined as S =
{x ∣ 𝜙(x) = 0, x ∈ ℝn}. For any two solutions xa, xb ∈ S, xa is said to
dominate xb if fi(xa) ≤ fi(xb) for each i ∈ {1,… ,m} and fj(xa) < fj(xb)
for at least one j ∈ {1,… ,m}, denoted as xa ⪯ xb. If there is no other
solution in S dominating solution x∗ , then x∗ is called a Pareto optimal
solution. All of the Pareto optimal solutions constitute a Pareto optimal
set (PS). The mapping of the PS in the objective space is called a Pareto
optimal front (PF), which is defined as PF = {F(x) ∣ x ∈ PS}.

A key issue in CMOEAs is to maintain a balance between minimizing
the objectives and satisfying the constraints. In fact, most constraint-
handling mechanisms in evolutionary computation are designed to try
to achieve this balance. For example, the penalty function approach
adopts a penalty factor 𝜆 to maintain the balance between minimiz-
ing the objectives and satisfying the constraints. It converts a CMOP
into an unconstrained MOP by adding the overall constraint violation
multiplied by a predefined penalty factor 𝜆 to each objective [2]. In
the case of 𝜆 = ∞, it is called a death penalty approach [3], which
means that infeasible solutions are totally unacceptable. If 𝜆 is a static
value during the search process, it is called a static penalty approach
[4]. If 𝜆 is changing during the search process, it is called a dynamic
penalty approach [5]. In the case in which 𝜆 is changing according
to the information collected during the search process, it is called an
adaptive penalty approach [6–9].

In order to avoid the need to tune the penalty factors, another type
of constraint-handling method is also in use, which compares the objec-
tives and constraints separately. Representative examples include the
constraint dominance principle (CDP) [10], epsilon constraint-handling
method (EC) [11], stochastic ranking approach (SR) [12], and so on. In
CDP [10], three basic rules are adopted to compare any two solutions.
In the first rule, given two solutions xi, xj ∈ ℝn, if xi is feasible and xj

is infeasible, xi is better than xj. If xi and xj are both infeasible, the one
with a smaller constraint violation is better. In the last rule, xi and xj

are both feasible, and the one dominating the other is better. CDP is
a popular constraint-handling method, as it is simple and has no extra
parameters. However, it is not suitable for solving CMOPs with very
small and narrow feasible regions [13]. For many generations, most or
even all solutions in the working population are infeasible when solv-
ing CMOPs with this property. In addition, the diversity of the working
population can hardly be well maintained, because the selection of solu-
tions is only based on the constraint violations according to the second
rule of CDP.

In order to solve CMOPs with small and narrow feasible regions, the
epsilon constraint-handling (EC) [11] approach has been suggested. It
is similar to CDP except for the relaxation of the constraints. In EC, the
relaxation of the constraints is controlled by the epsilon level 𝜀, which
can help to maintain the diversity of the working population in the case
when most solutions are infeasible. To be more specific, if the overall
constraint violation of a solution is less than 𝜀, this solution is deemed
feasible. The epsilon level 𝜀 is a critical parameter in EC. In the case of
𝜀 = 0, EC is the same as CDP. Although EC can be used to solve CMOPs
with small feasible regions, controlling the value of 𝜀 properly is not at
all trivial.

Both CDP [10] and EC [11] first compare the constraints, then com-
pare the objectives. SR [12] is different from CDP and EC in terms of
the order of comparison. It adopts a probability parameter pf ∈ [0,1]
to decide if the comparison is to be based on objectives or constraints.
For any two solutions, if a random number is less than pf , the one with
the non-dominated objectives is deemed better—i.e., the comparison
is based on objectives. On the other hand, if the random number is
greater than pf , the comparison is based first on the constraints, then

on the objectives, as is the case with CDP. In the case of pf = 0, SR is
equivalent to CDP.

In recent years, much work has been done in the field of many-
objective evolutionary algorithms (MaOEAs) [14], which gives us new
ways to solve CMOPs. In order to balance the constraints and the objec-
tives, some researchers adopt multi-objective evolutionary algorithms
(MOEAs) or MaOEAs (when the number of objectives is greater than
three) to deal with constraints [15]. For an M-objective CMOP, its con-
straints can be converted into one or k extra objectives. Then the M-
objective CMOP is transformed into an (M + 1)- or (M + k)-objective
unconstrained MOP, which can be solved by MOEAs or MaOEAs. Rep-
resentative examples include Cai and Wang’s Method (CW) [16] and
the infeasibility driven evolutionary algorithms (IDEA) [17].

To maintain a good balance between minimizing the objectives and
satisfying the constraints, some researchers combine several constraint-
handling mechanisms, which can be further divided into two categories,
including adopting different constraint-handling mechanisms in either
different evolutionary stages or in different subproblems. For example,
the adaptive trade-off model (ATM) [18] uses two different constraint-
handling mechanisms, including a multi-objective approach and adap-
tive penalty functions, in different evolutionary stages. The ensem-
ble of constraint-handling methods (ECHM) [19] uses three different
constraint-handling techniques, including epsilon constraint-handling
(EC) [11], self-adaptive penalty functions (SP) [9] and superiority of
feasible solutions (SF) [20]. Three subpopulations are generated in
ECHM, and each subpopulation uses a different constraint-handling
method.

In this paper, we propose a biphasic CMOEA, namely push and pull
search (PPS), to balance objective minimization and constraint satisfac-
tion. Unlike the above-mentioned constraint-handling methods, the PPS
divides the search process into two different stages. In the first stage,
only the objectives are optimized, which means the working popula-
tion is pushed toward the unconstrained PF without considering any
constraints. Furthermore, the landscape of constraints in CMOPs can be
estimated in the push stage, which can be applied to conduct the param-
eter setting of the constraint-handling approaches to be applied in the
pull stage. In the pull stage, an improved epsilon constraint-handling
approach is adopted to pull the working population to the constrained
PF. In summary, it provides a new framework and has the following
potential advantages.

1. It has the ability to get across large infeasible regions of the con-
strained PF. Since the constraints are ignored in the push stage, any
infeasible regions encountered before the true PF present no barriers
for the working population.

2. It facilitates the parameter setting in the constraint-handling meth-
ods. Since the landscape of constraints has already been explored by
the push process, much information has been discovered and gath-
ered to guide the parameter setting for the pull stage.

The rest of the paper is organized as follows. Section 2 introduces
the general idea of PPS. Section 3 gives an instantiation of PPS in the
framework of MOEA/D, called PPS-MOEA/D. Section 4 designs a set
of experiments to compare the proposed PPS-MOEA/D with six other
CMOEAs, including MOEA/D-IEpsilon [21], MOEA/D-Epsilon [22],
MOEA/D-SR [23], MOEA/D-CDP [23], C-MOEA/D [24] and NSGA-II-
CDP [10]. Then, a real-world optimization problem, namely the robot
gripper optimization, is used to test the performance of PPS-MOEA/D
and the other six CMOEAs in Section 5. Finally, conclusions are drawn
in section 6.

2. The general framework of push and pull search

Constraints define infeasible regions in the decision space, and
sometimes are defined in such a way that they have an effect on the
PF in the objective space. The influence of infeasible regions on PFs can
be generally classified into three different situations. For each situa-

666

Z. Fan et al. Swarm and Evolutionary Computation 44 (2019) 665–679

Fig. 1. Infeasible regions block the way towards the PF, and the unconstrained PF is the same as the constrained PF. (a)–(e) show the various stages of the push
search process, and show the working population getting across the infeasible regions without any extra efforts dealing with constraints. (f) shows the pull search
process, which is the same as (e) in this particular case, since the true PF is the same as the unconstrained PF, and has already been achieved by the working
population in the push search process.

tion, the search behavior of PPS is illustrated by Figs. 1–3, respectively,
which can be summarized as follows.

1. Infeasible regions block the way towards the PF, as illustrated by
Fig. 1(a). In this circumstance, the unconstrained PF is the same as

the constrained PF, and PPS has significant advantages compared
with other CMOEAs. Since the constraints are ignored in the push
stage of PPS, the infeasible regions have no effect on the search-
ing of PPS. Fig. 1(a)–(e) show the push process at various stages,

Fig. 2. The unconstrained PF is covered by infeasible regions and all of it is infeasible. The true PF thus lies on some constraint boundaries. (a)–(c) show the push
search process, in which the working population crosses the infeasible regions without any barriers. (d)–(f) show the pull search process, in which the infeasible
solutions in the working population are gradually pulled to the feasible and non-dominated regions.

667

Z. Fan et al. Swarm and Evolutionary Computation 44 (2019) 665–679

Fig. 3. Infeasible regions make the original unconstrained PF partially feasible. (a)–(c) show the push search process, and some parts of the true PF have been found
in this process. In the pull stage, infeasible solutions are gradually pulled to the feasible and non-dominated regions, as shown in (d)–(f).

showing that the working population crosses the infeasible regions
in this case without any extra effort. Because the constrained PF
is the same as the unconstrained PF, the true PF has already been
approximated by the working population in the push process, so the
pull search has no effect on the working population, as shown in
Fig. 1(f).

2. The unconstrained PF is covered by infeasible regions and all of it
is infeasible. Every constrained Pareto optimal point thus lies on
some constraint boundary, as illustrated by Fig. 2(a). In this circum-
stance, PPS first approaches the unconstrained PF by using the push
strategy as illustrated by Fig. 2(a)–(c). After the working popula-
tion approaches the unconstrained PF, the pull strategy is applied to
pull the working population towards the true (constrained) PF, as
illustrated by Fig. 2(d)–(f).

3. Infeasible regions make the original unconstrained PF partially feasi-
ble, as illustrated by Fig. 3(a). In this situation, some parts of the true
PF have already been achieved during the push search, as illustrated
by Fig. 3(c). In the pull stage, infeasible solutions are pulled to the
feasible and non-dominated regions, as illustrated by Fig. 3(d)–(f).
Finally, the entire true PF has been found by PPS. It is worth noting
that infeasible regions may reduce the dimensionality of the PF in
this situation.

From the above analysis, it can be observed that PPS can deal with
CMOP situations with all types of interactions among constraints and
the unconstrained PF.

The main steps of PPS includes the push and pull search processes.
However, the decision as to when to switch from the push to the pull
search process is very critical. A strategy for when to switch the search
behavior is suggested as follows.

rk ≡ max{rzk, rnk} ≤ 𝜖 (4)

where rk represents the max rate of change between the ideal and nadir
points during the last l generations. 𝜖 is a user-defined parameter; for
the examples in this paper, we have set 𝜖 = 1e − 3. The rates of change
of the ideal and nadir points during the last l generations are defined in

Eq. (5) and Eq. (6), respectively.

rzk = max
i=1,…,m

{
|zk

i − zk−l
i |

max{|zk−l
i |,Δ}} (5)

rnk = max
i=1,…,m

{
|nk

i − nk−l
i |

max{|nk−l
i |,Δ}} (6)

where zk = (zk
1,… , zk

m), nk = (nk
1,… , nk

m) are the ideal and nadir points
in the k-th generation, and zk

i = minj=1,…,N fi(xj), nk
i = maxj=1,…,N fi(xj).

N is the population size. zk−l = (zk−l
1 ,… , zk−l

m), nk−l = (nk−l
1 ,… , nk−l

m) are
the ideal and nadir points in the (k − l)-th generation. rzk and rnk are
two points in the interval [0,1]. Δ is a very small positive number,
which is used to make sure that the denominators in Eq. (5) and Eq. (4)
are not equal to zero. In this paper, Δ is set to 1e − 6.

At the beginning of the search, rk is initialized to 1.0. At each gen-
eration, rk is updated according to Eq. (4). If rk is less than or equal to
the predefined threshold 𝜖, the search behavior is switched to the pull
search.

To summarize, PPS divides its search process into two differ-
ent stages: push search and pull search. During the first stage, push
search, which disregards the constraints, is adopted to approximate
the unconstrained PF. Once Eq. (4) is satisfied, pull search is used
to pull any infeasible solutions to the feasible and non-dominated
regions—constraints are fully considered. PPS terminates when a prede-
fined halting condition is met. In the following section, we will describe
the instantiation of the push and pull strategy in a MOEA/D framework
in detail.

3. An instantiation of PPS in MOEA/D

This section describes the details of an instantiation of the push
search method and the pull search method in the framework of a
particular type of MOEA/D search, thus capturing the entire PPS
method.

668

Z. Fan et al. Swarm and Evolutionary Computation 44 (2019) 665–679

Algorithm 1 Push Subproblem.

Algorithm 2 Pull Subproblem.

3.1. The push search

In the push search stage, an unconstrained MOEA/D is used to
search for non-dominated solutions without considering any con-
straints. When solving a MOP by using MOEA/D, we decompose the
MOP into a set of single optimization subproblems and optimize them
simultaneously in a collaborative way. Each subproblem is associated
with a decomposition function by using a weight vector 𝜆i. In the
decomposition-based selection approach, an individual is selected for
survival into next generation based on the value of the decomposition
function.

There are three popular decomposition approaches, including
weighted sum [25], Tchebycheff [25] and boundary intersection
approaches [26]. In this paper, we adopt the Tchebycheff decompo-
sition method, with the detailed definition given as follows.

gte(x, 𝜆i, z∗) = max
j=1,…,m

1
𝜆i

j
(|fj(x) − z∗j |) (7)

where 𝜆i is a weight vector, and
∑

j=1,…,m𝜆
i
j = 1, 𝜆i

j ≥ 0. z∗ is the ideal
point, and z∗j = mink=1,…,N fj(xk).

In the push search stage, a newly generated solution x is retained
into the next generation based on the value of gte as described in
Algorithm 1.

3.2. The pull search

In this process, infeasible solutions are pulled to the feasible
and non-dominated regions. To achieve this, a constraint-handling
mechanism is adopted to punish the infeasible solutions in the
pull search stage. An improved epsilon constraint-handling to deal
with constraints is proposed, with the detailed formulation given as
follows.

𝜀(k) =
⎧⎪⎨⎪⎩
(1 − 𝜏)𝜀(k − 1), if rfk < 𝛼

𝜀(0)(1 − k
Tc

)cp, if rfk ≥ 𝛼
(8)

where rfk is the ratio of feasible to infeasible solutions in the k-th
generation. 𝜏 is the parameter to control the speed of reducing the
relaxation of constraints in the case of rfk < 𝛼, and 𝜏 ∈ [0,1]. 𝛼 is
to control the searching preference between the feasible and infea-
sible regions, and 𝛼 ∈ [0,1]. cp is to control the speed of reduc-
ing relaxation of constraints in the case of rfk ≥ 𝛼. 𝜀(k) is updated
until the generation counter k reaches the control generation Tc.
𝜀(0) is set to the maximum overall constraint violation of the work-
ing population at the end of the push search. Compared with the 𝜀

setting in Ref. [27], the proposed method in Eq. (8) has an expo-
nential decreasing speed to set 𝜀(k) in the case of rfk < 𝛼, which
can help to find feasible solutions more quickly and efficiently. In
the case of rfk ≥ 𝛼, the Eq. (8) is the same as the 𝜀 setting in
Ref. [27].

In the pull stage, a newly generated solution x is selected for survival
into the next generation based on the value of gte, the overall constraint
violation 𝜙(x) and the value of 𝜀(k), as illustrated by Algorithm 2. In
the case of 𝜀(k) = 0, it is the same as the constraint-handling method
proposed for MOEA/D in Ref. [28].

3.3. PPS embedded in MOEA/D

Algorithm 3 outlines the pseudocode of PPS-MOEA/D. A CMOP
is decomposed into N single-objective subproblems, and these sub-
problems are initialized at line 1. The ideal point z∗ and the gener-
ation counter k are also initialized at line 1. At line 2, rk, which is
the maximum rate of change of ideal and nadir points, is initialized
to 1.0, the flag of search stage is set to push (PushStage= true), and
the maximum overall constraint violation found so far is initialized
to −1 (maxViolation=−1). The ideal and nadir points at k-th gener-
ation are set at line 3, and the details can be found in Algorithm 4.
maxViolation is updated at line 3, and the details can be found in
Algorithm 5.

669

Z. Fan et al. Swarm and Evolutionary Computation 44 (2019) 665–679

Algorithm 3 PPS-MOEA/D.

Algorithm 4 Set Ideal and Nadir Points at k-th Generation.

Algorithm 5 Update the Maximum Constraint Violation.

Algorithm 6 Calculate the Maximum Rate of Change
of Ideal and Nadir Points rk.

670

Z. Fan et al. Swarm and Evolutionary Computation 44 (2019) 665–679

Algorithm 7 Update the Ideal Point.

Algorithm 8 Select Feasible and Nondominated Solutions.

Then, the algorithm repeats lines 4–38 until Tmax generations have
been reached. The value of 𝜀(k) and the search strategy are set at lines
5–16 based on Eq. (4) and Eq. (8). At line 5, the maximum rate of
change of ideal and nadir points rk is calculated, and the details can
be found in Algorithm 6. 𝜀(k) and 𝜀(0) are initialized at line 9. Lines
18–34 show the process of updating subproblems. At line 18, S rep-
resents the neighbor indexes of solution xi. Lines 19–20 perform a DE
operator to generate a new solution y. Line 21 takes a polynomial muta-
tion [29] on y, and generates a new solution yi. Then the new solution
yi is repaired as follows: If an element of yi is less than its lower bound-
ary, it is reset to its lower boundary. If an element of yi is great than
its upper boundary, it is reset to its upper boundary. The ideal point
z∗ is updated at line 22, and the details can be found in Algorithm 7.
At line 23, the maximum overall constraint violation—maxViolation is
updated.

From line 27 to 31, it can be seen that different search strategies are
used to update subproblems. When PushStage= true, the push search is
adopted (line 28); otherwise, the pull search is used (line 30). At line
36, the generation counter k is updated. The ideal and nadir points at
k-the generation are also set at this line, and the setting method can be
found in Algorithm 4. Finally, the set of feasible and non-dominated
solutions NS is updated according to the non-dominated ranking as
given in NSGA-II [10] at line 37. The updating method can be found
in Algorithm 8.

Algorithm 4 shows the process to set ideal and nadir points at k-th
generation. At lines 2–5, the ideal and nadir points zk, nk are initialized.
Lines 9–11 update each element of the ideal point zk, and lines 12–14
update each element of the nadir point nk.

Algorithm 5 shows the process to update the maximum overall con-
straint violation found so far. The updating process is performed at lines
2–4. If the newly generated solution yi has a larger overall constraint
violation (𝜙(yi)) than maxViolation, maxViolation is set to 𝜙(yi).

Algorithm 6 shows the pseudocode of calculating the maximum rate
of change of ideal and nadir points rk. At lines 2–3, rzk and rnk are
calculated according to Eq. (5) and Eq. (6) respectively. At lines 4, rk is
calculated according to Eq. (4).

Algorithm 7 shows the pseudocode of updating the ideal point z∗ . If
the j-th objective of the newly generated solution yi has a smaller value
(fj(yi)) than z∗j , then z∗j is set to fj(yi).

Algorithm 8 shows the pseudocode of selecting feasible and non-
dominated solutions. At lines 2–3, the number of feasible solutions (Nfs)
and the set of feasible solutions (Pfs) are calculated. If Nfs is smaller
than the population size (N), the result is set to Pfs, as shown at lines
4–5. Line 7 performs non-dominated ranking on Pfs, and solutions in Pfs
are classified into q different fronts. Lines 9-12 add the first k − 1 fronts
to the result until the size of result is greater than (N − Pfs[k].size()).
Lines 13–16 select the N − result.size() solutions front k-th front (Pfs[k])
according to the crowding distance. The more details can be found in
Ref. [10].

Remark: The proposed PPS is a general framework for solving
CMOPs. Even though only PPS-MOEA/D is realized in this paper, it can
be instantiated in many different MOEAs. At each search stage, a large
variety of information can be gathered to extract useful knowledge that
can be used to guide both search stages. In fact, knowledge discovery
can be a critical step in the PPS framework. In this paper, we only
utilize some statistical information. For example, the maximum over-
all constraint violation at the end of the push search stage is adopted
to set the value of 𝜀(0). The ratio of feasible to infeasible solutions at
the pull search stage is used to control the value of 𝜀(k). But in fact,
many data mining methods and machine learning approaches can be
integrated into the PPS framework for solving CMOPs more effectively
and efficiently.

4. Experimental study

4.1. Experimental settings

To evaluate the performance of the proposed PPS method, six other
CMOEAs, including MOEA/D-IEpsilon [21], MOEA/D-Epsilon [22],
MOEA/D-SR [23], MOEA/D-CDP [23], C-MOEA/D [24] and NSGA-II-
CDP [10], are tested on LIR-CMOP1-14 [21], which have large infeasi-

671

Z. Fan et al. Swarm and Evolutionary Computation 44 (2019) 665–679

ble regions in the search space. The detailed parameters in each algo-
rithm are listed as follows:

1. The mutation probability Pm = 1∕n (n denotes the dimension of a
decision vector). The distribution index in the polynomial mutation
is set to 20.

2. DE parameters: CR = 1.0, f = 0.5.
3. Population size: N = 300. Neighborhood size: T = 30.
4. Halting condition: each algorithm runs for 30 times independently,

and stops when 300,000 function evaluations are reached.
5. Probability of selecting individuals from its neighborhood: 𝛿 = 0.9.
6. The max number of solutions updated by a child: nr = 2.
7. Parameter setting in PPS-MOEA/D: Tc = 800, 𝛼 = 0.95, 𝜏 = 0.1,

cp = 2, l = 20.
8. Parameter setting in MOEA/D-IEpsilon: Tc = 800,

𝛼 = 0.95, 𝜏 = 0.1, and 𝜃 = 0.05 N.
9. Parameter setting in MOEA/D-Epsilon: Tc = 800, cp = 2, and

𝜃 = 0.05 N.
10. Parameter setting in MOEA/D-SR: Sr = 0.05.

4.2. Performance metric

To measure the performance of PPS-MOEA/D, MOEA/D-IEpsilon
[21], MOEA/D-Epsilon [22], MOEA/D-SR [23], MOEA/D-CDP [23],
C-MOEA/D [24] and NSGA-II-CDP [10], two popular metrics—the
inverted generation distance (IGD) [30] and the hypervolume [31] are
adopted.

• Inverted Generational Distance (IGD):

The IGD metric reflects the performance regarding convergence and
diversity simultaneously. The detailed definition is given as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

IGD(P∗,A) =

∑
y∗∈P∗

d(y∗,A)

|P∗|

d(y∗,A) = min
y∈A

{

√√√√ m∑
i=1

(y∗i − yi)2}

(9)

where P∗ denotes a set of representative solutions in the true PF, and
A is an approximate PF achieved by a CMOEA. m denotes the num-
ber of objectives. For two-objective LIR-CMOPs with continuous PFs,
1000 points are sampled uniformly from the true PF to construct P∗ .
For LIR-CMOPs with three objectives, 10,000 points are sampled uni-
formly from the true PF to constitute P∗ . It is worth noting that a smaller
value of IGD may indicate better performance with regards to diversity
and/or convergence. (Note that this measure cannot be used if the true
PF is unknown, so it is used primarily for benchmarking purposes.)

• Hypervolume (HV):

HVreflects the closeness of the set of non-dominated solutions
achieved by a CMOEA to the true PF. The larger HVmeans that the
corresponding non-dominated set is closer to the true PF.

HV(S) = VOL(
⋃
x∈S

[f1(x), zr
1] ×…[fm(x), zr

m]) (10)

where V OL(·) is the Lebesgue measure, m denotes the number of objec-
tives, zr = (zr

1,… , zr
m)T is a user-defined reference point in the objective

space. For each LIR-CMOP, the reference point is placed at 1.2 times the
distance to the nadir point of the true PF (Note that this particular place-
ment of the reference point also requires knowledge of the true PF). A
larger value of HVmay indicate better performance regarding diversity
and/or convergence.

Table 1
IGD results of PPS and the other six CMOEAs on LIR-CMOP1-14. To facilitate the display of this table, PPS, IEpsilon, Epsilon, CDP, and SR are short
for MOEA/D-PPS, MOEA/D-IEpsilon, MOEA/D-Epsilon, MOEA/D-CDP, and MOEA/D-SR respectively. Wilcoxon’s rank sum test at a 0.05
significance level is performed between PPS-MOEA/D and each of the other six CMOEAs. † and ‡ denote that the performance of the corresponding
algorithm is significantly worse than or better than that of PPS-MOEA/D, respectively. ‘S-D-I’ indicates PPS-MOEA/D is superior to, not significantly
different from or inferior to the corresponding compared CMOEAs.

Test Instance PPS IEpsilon Epsilon CDP SR C-MOEA/D NSGA-II-CDP

LIRCMOP1 mean 6.41E-03 7.97E-03 5.74E-02 † 1.11E-01† 1.81E-02† 1.26E-01† 3.23E-01†
std 1.94E-03 3.55E-03 2.89E-02 5.04E-02 1.66E-02 7.03E-02 7.33E-02

LIRCMOP2 mean 4.67E-03 5.23E-03† 5.39E-02† 1.43E-01† 9.63E-03† 1.40E-01† 3.03E-01†
std 7.84E-04 1.01E-03 2.13E-02 5.55E-02 7.23E-03 5.44E-02 7.24E-02

LIRCMOP3 mean 8.55E-03 1.13E-02† 8.81E-02† 2.61E-01† 1.78E-01† 2.80E-01† 4.08E-01†
std 5.18E-03 6.42E-03 4.36E-02 4.33E-02 7.20E-02 4.21E-02 1.15E-01

LIRCMOP4 mean 4.68E-03 4.85E-03 6.51E-02† 2.53E-01† 1.95E-01† 2.59E-01† 3.85E-01†
std 1.12E-03 2.05E-03 3.01E-02 4.34E-02 6.40E-02 3.51E-02 1.35E-01

LIRCMOP5 mean 1.84E-03 2.13E-03† 1.15E+00† 1.05E+00† 1.04E+00† 1.10E+00† 5.53E-01†
std 9.26E-05 3.79E-04 1.98E-01 3.63E-01 3.66E-01 2.99E-01 6.88E-01

LIRCMOP6 mean 2.49E-03 2.33E-01† 1.27E+00† 1.09E+00† 9.43E-01† 1.31E+00† 5.74E-01†
std 3.40E-04 5.06E-01 2.95E-01 5.20E-01 5.90E-01 2.08E-01 4.21E-01

LIRCMOP7 mean 2.80E-03 3.73E-02† 1.51E+00† 1.46E+00† 1.08E+00† 1.56E+00† 2.38E-01†
std 9.85E-05 5.41E-02 5.09E-01 5.58E-01 7.58E-01 4.24E-01 4.06E-01

LIRCMOP8 mean 2.78E-03 2.75E-02† 1.62E+00† 1.38E+00† 1.01E+00† 1.58E+00† 6.02E-01†
std 7.56E-05 5.92E-02 3.05E-01 6.15E-01 7.24E-01 3.71E-01 7.39E-01

LIRCMOP9 mean 9.94E-02 4.98E-03 4.90E-01† 4.81E-01† 4.85E-01† 4.81E-01† 6.44E-01†
std 1.52E-01 1.37E-02 4.22E-02 5.24E-02 4.78E-02 5.24E-02 1.60E-02

LIRCMOP10 mean 2.11E-03 2.11E-03 2.13E-01† 2.16E-01† 1.92E-01† 2.13E-01† 5.97E-01†
std 7.75E-05 7.11E-05 5.32E-02 6.81E-02 6.81E-02 4.63E-02 3.20E-02

LIRCMOP11 mean 2.83E-03 5.81E-02† 3.47E-01† 3.42E-01† 3.16E-01† 3.81E-01† 4.87E-01†
std 1.36E-03 5.79E-02 9.28E-02 9.22E-02 7.49E-02 8.95E-02 1.05E-02

LIRCMOP12 mean 2.70E-02 3.36E-02† 2.52E-01† 2.69E-01† 2.06E-01† 2.50E-01† 5.80E-01†
std 5.00E-02 5.18E-02 8.98E-02 9.06E-02 5.61E-02 9.63E-02 1.17E-01

LIRCMOP13 mean 6.46E-02 6.46E-02 1.20E+00† 1.21E+00† 8.86E-01† 1.18E+00† 1.39E+01†
std 2.18E-03 1.64E-03 3.06E-01 3.17E-01 5.76E-01 3.78E-01 2.26E+00

LIRCMOP14 mean 6.42E-02 6.54E-02† 1.02E+00† 1.11E+00† 1.03E+00† 1.25E+00† 1.36E+01†
std 1.69E-03 2.04E-03 4.86E-01 3.98E-01 4.70E-01 5.30E-02 2.17E+00

Wilcoxon-Test (S-D-I) – 9-5-0 14-0-0 14-0-0 14-0-0 14-0-0 14-0-0

672

Z. Fan et al. Swarm and Evolutionary Computation 44 (2019) 665–679

Table 2
HV results of PPS-MOEA/D and the other six CMOEAs on LIR-CMOP1-14. To facilitate the display of this table, PPS, IEpsilon, Epsilon, CDP, and SR in
this table are short for MOEA/D-PPS, MOEA/D-IEpsilon, MOEA/D-Epsilon, MOEA/D-CDP, and MOEA/D-SR respectively. Wilcoxon’s rank sum test at
a 0.05 significance level is performed between PPS-MOEA/D and each of the other six CMOEAs. † and ‡ denote that the performance of the
corresponding algorithm is significantly worse than or better than that of PPS-MOEA/D, respectively. ‘S-D-I’ indicates PPS-MOEA/D is superior to, not
significantly different from or inferior to the corresponding compared CMOEAs.

Test Instance PPS IEpsilon Epsilon CDP SR C-MOEA/D NSGA-II-CDP

LIRCMOP1 mean 1.02E+00 1.01E+00† 9.59E-01† 7.54E-01† 9.96E-01† 7.41E-01† 5.16E-01†
std 1.58E-03 2.43E-03 3.28E-02 8.95E-02 2.91E-02 1.22E-01 5.57E-02

LIRCMOP2 mean 1.35E+00 1.35E+00† 1.28E+00† 1.06E+00† 1.34E+00† 1.07E+00† 8.24E-01†
std 1.01E-03 1.32E-03 2.88E-02 1.08E-01 1.47E-02 9.10E-02 1.15E-01

LIRCMOP3 mean 8.70E-01 8.68E-01† 7.98E-01† 4.86E-01† 5.91E-01† 4.71E-01† 4.08E-01†
std 2.65E-03 3.92E-03 3.93E-02 4.31E-02 1.07E-01 4.09E-02 2.88E-02

LIRCMOP4 mean 1.09E+00 1.09E+00 1.02E+00 7.35E-01† 8.15E-01† 7.31E-01† 6.17E-01†
std 2.47E-03 2.46E-03 4.19E-02 5.44E-02 8.70E-02 5.16E-02 1.06E-01

LIRCMOP5 mean 1.46E+00 1.46E+00† 4.30E-02† 1.63E-01† 1.82E-01† 9.72E-02† 9.39E-01†
std 2.92E-04 1.33E-03 2.35E-01 4.43E-01 4.39E-01 3.70E-01 3.21E-01

LIRCMOP6 mean 1.13E+00 9.26E-01† 5.40E-02† 1.88E-01† 3.02E-01† 2.33E-02† 4.13E-01†
std 1.77E-04 4.23E-01 2.21E-01 3.87E-01 4.62E-01 1.28E-01 1.89E-01

LIRCMOP7 mean 3.02E+00 2.86E+00† 3.03E-01† 3.74E-01† 9.88E-01† 2.04E-01† 2.40E+00†
std 2.66E-03 1.96E-01 9.07E-01 9.58E-01 1.27E+00 7.52E-01 6.52E-01

LIRCMOP8 mean 3.02E+00 2.94E+00† 1.06E-01† 5.17E-01† 1.10E+00† 1.66E-01† 1.90E+00†
std 1.14E-03 1.86E-01 5.49E-01 1.05E+00 1.20E+00 6.11E-01 7.56E-01

LIRCMOP9 mean 3.57E+00 3.71E+00 2.74E+00† 2.77E+00† 2.75E+00† 2.77E+00† 2.06E+00†
std 2.24E-01 1.88E-02 1.48E-01 1.84E-01 1.64E-01 1.84E-01 1.08E-02

LIRCMOP10 mean 3.24E+00 3.24E+00 2.89E+00† 2.88E+00† 2.93E+00† 2.89E+00† 2.04E+00†
std 3.08E-04 2.48E-04 1.02E-01 1.36E-01 1.35E-01 9.77E-02 4.45E-02

LIRCMOP11 mean 4.39E+00 4.23E+00† 3.34E+00† 3.35E+00† 3.38E+00† 3.24E+00† 3.11E+00†
std 2.22E-04 1.84E-01 2.57E-01 2.57E-01 2.90E-01 2.55E-01 1.54E-02

LIRCMOP12 mean 5.61E+00 5.59E+00† 4.88E+00† 4.83E+00† 5.03E+00† 4.89E+00† 3.28E+00†
std 1.53E-01 1.58E-01 3.17E-01 3.28E-01 1.75E-01 3.45E-01 3.61E-01

LIRCMOP13 mean 5.71E+00 5.71E+00 4.55E-01† 4.63E-01† 1.89E+00† 6.29E-01† 0.00E+00†
std 1.27E-02 1.30E-02 1.30E+00 1.42E+00 2.57E+00 1.71E+00 0.00E+00

LIRCMOP14 mean 6.19E+00 6.18E+00† 1.33E+00† 8.81E-01† 1.27E+00† 1.80E-01† 0.00E+00†
std 1.31E-02 1.09E-02 2.45E+00 1.97E+00 2.29E+00 2.60E-01 0.00E+00

Wilcoxon-Test (S-D-I) – 10-4-0 14-0-0 14-0-0 14-0-0 14-0-0 14-0-0

4.3. Discussion of experiments

4.3.1. Comparisons among PPS-MOEA/D and the other six CMOEAs
The statistical results of the IGD values on LIR-CMOP1-14 achieved

by PPS-MOEA/D and the other six CMOEAs in 30 independent runs
are listed in Table 1. According to the Wilcoxon-Test in this table, it
is clear that PPS-MOEA/D is significantly better than MOEA/D-Epsilon,
MOEA/D-CDP, MOEA/D-SR, C-MOEA/D and NSGA-II-CDP on all of the
fourteen tested problems in terms of the IGD metric. For LIR-CMOP1,
LIR-CMOP4, LIR-CMOP9-10, and LIR-CMOP13, there are no statistically
significant differences between PPS-MOEA/D and MOEA/D-IEpsilon.
For the rest of nine test problems, PPS-MOEA/D is significantly better
than MOEA/D-IEpsilon.

The statistical results of the HV values on LIR-CMOP1-14 achieved
by PPS-MOEA/D and the other six CMOEAs in 30 independent runs are

listed in Table 2. It can be observed that PPS-MOEA/D is significantly
better than MOEA/D-Epsilon, MOEA/D-CDP, MOEA/D-SR, C-MOEA/D
and NSGA-II-CDP on all the test instances in terms of the HV metric.
For LIR-CMOP4, LIR-CMOP9-10, and LIR-CMOP13, there are no sta-
tistically significant differences between PPS-MOEA/D and MOEA/D-
IEpsilon. For the rest of ten test instances, PPS-MOEA/D performs signif-
icantly better than MOEA/D-IEpsilon on these test problems. From the
above observations, it is clear that the proposed PPS-MOEA/D achieves
significantly better performance than the other six CMOEAs on most of
the test problems.

To further discuss the advantages of the proposed PPS-MOEA/D,
the populations achieved by each tested CMOEAs on LIR-CMOP6, LIR-
CMOP7, and LIR-CMOP11 during the 30 independent runs with the
median HV values are plotted in Figs. 5–7, respectively. LIR-CMOP6,
LIR-CMOP7 and LIR-CMOP11 are selected because they represent the

Fig. 4. Illustrations of the feasible and infeasible regions of LIR-CMOP6, LIR-CMOP7 and LIR-CMOP11, corresponding to the three typical situations of infeasible
regions influencing PFs as discussed in Section 2.

673

Z. Fan et al. Swarm and Evolutionary Computation 44 (2019) 665–679

Fig. 5. The non-dominated solutions achieved by each algorithm on LIR-CMOP6 with the median HV values.

three typical situations of infeasible regions influencing PFs as discussed
in Figs. 1–3, which are discussed in detail in the Section 2.

In particular, for LIR-CMOP6, there are two large infeasible regions
in front of the PF, and the unconstrained PF is the same as the con-
strained PF, as illustrated by Fig. 4(a). In Fig. 5(a)-(b), we can observe
that PPS-MOEA/D and MOEA/D-IEpsilon can get across the large infea-
sible regions, while the rest of CMOEAs, including MOEA/D-Epsilon,
MOEA/D-CDP, MOEA/D-SR, C-MOEA/D and NSGA-II-CDP are trapped
in the boundary of infeasible regions as shown in Fig. 5(c)–(g). The
reason is constraints are ignored in PPS-MOEA/D at the push stage,
and MOEA/D-IEpsilon uses the improved epsilon constraint-handling
method to cross the infeasible regions (by dynamically adjusting the
epsilon level to allow infeasible solutions to enter the population). As

a result, the two large infeasible regions can not block the populations
of PPS-MOEA/D and MOEA/D-IEpsilon to converge. However, the rest
of five CMOEAs have no special mechanisms to cross large infeasible
regions as illustrated in Fig. 4(a). As a result, the two large infeasi-
ble regions hinder their populations to converge. Therefore, they are
trapped in the boundary of infeasible regions, which can be clearly
observed in Fig. 5(c)–(g).

For LIR-CMOP7, there are three large infeasible regions, and the
unconstrained PF is covered by infeasible regions and becomes no more
feasible, as illustrated by Fig. 4(b). In Fig. 6(a) and (b), we can observe
that PPS-MOEA/D and MOEA/D-IEpsilon can converge to the true PF,
while the rest of five CMOEAs cannot converge to the true PF as shown
in Fig. 6(c)–(g). The reason is that the three large infeasible regions

Fig. 6. The non-dominated solutions achieved by each algorithm on LIR-CMOP7 with the median HV values.

674

Z. Fan et al. Swarm and Evolutionary Computation 44 (2019) 665–679

Fig. 7. The non-dominated solutions achieved by each algorithm on LIR-CMOP11 with the median HV values.

can not hinder the populations of PPS-MOEA/D and MOEA/D-IEpsilon
to converge. For PPS-MOEA/D, the unconstrained PF is first achieved
at the push stage. Then, the population is pulled to the constrained
PF by crossing only one infeasible region. Furthermore, the landscape
of constraints has already been explored at the push process of PPS-
MOEA/D. The maximum overall constraint violation can be calculated
and applied to guide the 𝜀 parameter setting of the constraint-handling
method in the pull stage of the PPS-MOEA/D properly, as defined in
Eq. (8). Although MOEA/D-IEpsilon can get across the two large infea-
sible regions occasionally, in many cases, some individuals in MOEA/D-
IEpsilon can not converge to the true PF, as shown in Fig. 6(b). The rea-
son is that MOEA/D-IEpsilon has no mechanisms to explore the land-
scape of constraints in advance, thus lacking the potential of setting
the 𝜀 parameter properly, as what can be done in PPS-MOEA/D. For
the other five CMOEAs, they have no special mechanisms to cross the
large infeasible regions as illustrated in Fig. 4(b). As a result, the two
large infeasible regions in front of the constrained PF hinder their pop-
ulations to converge. Therefore, the proposed PPS-MOEA/D can find
the true PF of LIR-CMOP7 reliably, and MOEA/D-IEpsilon can find the
true PF of LIR-CMOP7 occasionally. However, the rest of five CMOEAs
are trapped in the boundary of infeasible regions, which can be clearly
observed in Fig. 6(c)–(g).

For LIR-CMOP11, infeasible regions make the original uncon-
strained PF partially feasible, as illustrated by Fig. 4(c). The PF of LIR-
CMOP11 is disconnected and has seven Pareto optimal solutions, among
which two of them are located on the unconstrained PF, and five are
not. PPS-MOEA/D can find all the Pareto optimal solutions as shown
in Fig. 7(a), while the other six CMOEAs can not find all the seven
Pareto optimal solutions, as shown in Fig. 7(b)–(g). The reason is that
at the push stage the infeasible regions present no barriers for the pop-
ulation of PPS-MOEA/D, and the unconstrained PF of LIR-CMOP11 can
be obtained at the push stage. Since two Pareto optimal solutions are
situated at the unconstraint PF, PPS-MOEA/D can find these two Pareto
optimal solutions at the push stage instantly. Moreover, the landscape
of constraints has already been explored at the push stage, which can
help the searching of PPS-MOEA/D at the pull stage. The population
of PPS-MOEA/D only needs to get cross one single infeasible region
to find the other five Pareto optimal solutions at the pull stage. How-
ever, for the other six CMOEAs, they need to get cross several infeasible

and overlapping regions to find the Pareto optimal solutions. Besides,
the landscape of constraints are not well explored in advance during
the search, which makes it difficult for the other six CMOEAs to set
constraint-handling parameters properly. As a result, the proposed PPS-

Table 3
IGD results of PPS-MOEA/D and PPS-MOEA/D1 on LIR-CMOP1-14.
Wilcoxon’s rank sum test at a 0.05 significance level is performed
between PPS-MOEA/D and PPS-MOEA/D1. † and ‡ denote that the
performance of MOEA/D1 is significantly worse than or better than
that of PPS-MOEA/D, respectively. ‘S-D-I’ indicates PPS-MOEA/D is
superior to, not significantly different from or inferior to
PPS-MOEA/D1.

Test Instance PPS-MOEA/D PPS-MOEA/D1

LIRCMOP1 mean 6.4134E-03 1.8636E-02†
std 1.9376E-03 8.1958E-03

LIRCMOP2 mean 4.6730E-03 1.2806E-02†
std 7.8443E-04 5.2752E-03

LIRCMOP3 mean 8.5450E-03 4.8558E-02†
std 5.1844E-03 1.5944E-02

LIRCMOP4 mean 4.6773E-03 2.9016E-02†
std 1.1162E-03 9.3604E-03

LIRCMOP5 mean 1.8366E-03 1.4714E-03‡
std 9.2633E-05 4.7991E-05

LIRCMOP6 mean 2.4895E-03 1.4055E-03‡
std 3.3988E-04 3.0117E-05

LIRCMOP7 mean 2.7972E-03 2.9488E-03†
std 9.8535E-05 1.1190E-04

LIRCMOP8 mean 2.7778E-03 2.8915E-03†
std 7.5578E-05 5.3768E-05

LIRCMOP9 mean 9.9401E-02 1.7489E-03‡
std 1.5187E-01 6.3562E-05

LIRCMOP10 mean 2.1081E-03 1.8916E-03‡
std 7.7537E-05 6.8443E-05

LIRCMOP11 mean 2.8318E-03 4.3374E-03
std 1.3587E-03 4.5296E-03

LIRCMOP12 mean 2.7035E-02 2.4070E-03
std 5.0015E-02 4.5167E-04

LIRCMOP13 mean 6.4552E-02 6.2769E-02‡
std 2.1770E-03 1.6426E-03

LIRCMOP14 mean 6.4186E-02 6.3256E-02
std 1.6896E-03 1.2518E-03

Wilcoxon-Test (S-D-I) – 6-3-5

675

Z. Fan et al. Swarm and Evolutionary Computation 44 (2019) 665–679

MOEA/D can find all the seven discrete Pareto optimal solutions reli-
ably, while the other six CMOEAs can only find some Pareto optimal
solutions occasionally.

According to the above observations and analysis, we can conclude
that the proposed PPS-MOEA/D performs significantly better than the
other six CMOEAs on most test cases. The experimental results demon-
strate that the proposed PPS-MOEA/D can solve CMOPs well by taking
advantage of both the push and pull strategies.

4.3.2. A comparison between PPS-MOEA/D and its variant
By replacing the Eq. (8) with that of Takahama’s article [27] for

PPS-MOEA/D, another version of PPS-MOEA/D is obtained, denoted as
PPS-MOEA/D1. The same experimental parameters are adopted to test
the performance of PPS-MOEA/D1.

The statistical results of the IGD values on LIR-CMOP1-14 achieved
by PPS-MOEA/D1 and PPS-MOEA/D in 30 independent runs are shown
in Table 3. According to the Wilcoxon-Test in this table, it is clear
that PPS-MOEA/D is significantly better than PPS-MOEA/D1 on LIR-
CMOP1-4 and LIR-CMOP7-8. PPS-MOEA/D1 is significantly better than
PPS-MOEA/D on LIR-CMOP5-6, LIR-CMOP9-10, and LIR-CMOP13. For
LIR-CMOP11-12 and LIR-CMOP14, there are not significant differences
between PPS-MOEA/D and PPS-MOEA/D1.

The statistical results of the HV values on LIR-CMOP1-14 achieved
by PPS-MOEA/D1 and PPS-MOEA/D in 30 independent runs are listed
in Table 4. It can be observed that PPS-MOEA/D is significantly bet-
ter than PPS-MOEA/D1 on LIR-CMOP1-4, LIR-CMOP8, LIR-CMOP13-
14, and it is significantly worse than PPS-MOEA/D1 on LIR-CMOP5-
6, LIR-CMOP9-10 and LIR-CMOP12. For the rest of test instances,
there are not significant differences between PPS-MOEA/D and
PPS-MOEA/D1.

Table 4
HV results of PPS-MOEA/D and PPS-MOEA/D1 on LIR-CMOP1-14.
Wilcoxon’s rank sum test at a 0.05 significance level is performed
between PPS-MOEA/D and PPS-MOEA/D1. † and ‡ denote that the
performance of MOEA/D1 is significantly worse than or better than
that of PPS-MOEA/D, respectively. ‘S-D-I’ indicates PPS-MOEA/D is
superior to, not significantly different from or inferior to
PPS-MOEA/D1.

Test Instance PPS-MOEA/D PPS-MOEA/D1

LIRCMOP1 mean 1.0157E+00 1.0035E+00†
std 1.5800E-03 7.1734E-03

LIRCMOP2 mean 1.3492E+00 1.3383E+00†
std 1.0095E-03 6.0801E-03

LIRCMOP3 mean 8.7030E-01 8.3638E-01†
std 2.6504E-03 1.5086E-02

LIRCMOP4 mean 1.0927E+00 1.0653E+00†
std 2.4669E-03 1.1221E-02

LIRCMOP5 mean 1.4616E+00 1.4624E+00‡
std 2.9194E-04 3.0454E-04

LIRCMOP6 mean 1.1286E+00 1.1295E+00‡
std 1.7710E-04 1.1887E-04

LIRCMOP7 mean 3.0151E+00 3.0148E+00
std 2.6625E-03 3.6326E-03

LIRCMOP8 mean 3.0166E+00 3.0160E+00†
std 1.1394E-03 8.2996E-04

LIRCMOP9 mean 3.5696E+00 3.7140E+00 ‡
std 2.2415E-01 2.3984E-04

LIRCMOP10 mean 3.2410E+00 3.2417E+00 ‡
std 3.0767E-04 2.6240E-04

LIRCMOP11 mean 4.3897E+00 4.3896E+00
std 2.2165E-04 2.3477E-04

LIRCMOP12 mean 5.6135E+00 5.6884E+00 ‡
std 1.5251E-01 8.4283E-05

LIRCMOP13 mean 5.7100E+00 5.6993E+00†
std 1.2748E-02 1.0445E-02

LIRCMOP14 mean 6.1930E+00 6.1778E+00†
std 1.3097E-02 1.1285E-02

Wilcoxon-Test (S-D-I) – 7-2-5

For LIR-CMOP1-4, PPS-MOEA/D is significantly better than PPS-
MOEA/D1 in terms of both IGD and HV metrics. A common feature
of these problems is that they have narrow feasible regions, and
their constrained PFs are far away from their unconstrained PFs.
At the push stage, PPS-MOEA/D and PPS-MOEA/D1 both can find
the unconstrained PFs. At the pull stage, since all the solutions are
infeasible, PPS-MOEA/D adopts the first rule in Eq. (8) to decrease
the epsilon value dramatically. Thus, PPS-MOEA/D can quickly get
across infeasible regions and find feasible solutions efficiently. In
contrast, PPS-MOEA/D1 decreases the epsilon value much more slowly
as compared with PPS-MOEA/D, which may slow down the process
to get across infeasible regions to a large extent. When PPS-MOEA/D
find enough feasible solutions, it adopts the second rule in Eq. (8) to
decrease the epsilon value slowly, which leads to a more thorough
searching for feasible solutions. Therefore, PPS-MOEA/D performs
significantly better than PPS-MOEA/D1 on LIR-CMOP1-4.

For LIR-CMOP5-6 and LIR-CMOP9-10, PPS-MOEA/D1 performs sig-
nificantly better than PPS-MOEA/D. A common feature of LIR-CMOP5-6
and LIR-CMOP9-10 is that their constrained PFs are the same as their
unconstrained counterparts, and located right on top of their uncon-
strained PFs. At the push stage, PPS-MOEA/D and PPS-MOEA/D1 can
both find the unconstrained PFs. At the pull stage, PPS-MOEA/D1
decreases the epsilon value much more slowly as compared with
PPS-MOEA/D, which lead to a more thorough searching for feasible
solutions by using PPS-MOEA/D1. Therefore, for LIR-CMOP5-6 and
LIR-CMOP9-10, PPS-MOEA/D1 performs significantly better than PPS-
MOEA/D.

From the above observations and analysis, it is clear that the pro-
posed PPS-MOEA/D performs better than PPS-MOEA/D1 in more cases.
PPS-MOEA/D is more suitable for solving CMOPs with constrained PFs
located far away from their unconstrained PFs as illustrated in Fig. 2(a),
while PPS-MOEA/D1 is more suitable for solving CMOPs whose con-
strained PFs are located right on top of their unconstrained PFs as illus-
trated in Fig. 1(a).

4.3.3. The weakness of PPS-MOEA/D
As illustrated in Section 3, PPS-MOEA/D can be classified into two

different search stages, including the push search and pull search.
If the population of PPS-MOEA/D is converged to the unconstrained
PF with only one point, it is difficult to pull the population to the
constrained PF. Base on the above hypothesis, we design a CMOP
named TNK-v1 which is based on TNK [32], whose unconstrained
PF only has one point. The detail definition of TNK-v1 is given as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = x1 + g1(x)
f2(x) = x2 + g2(x)
g1(x) =

∑
j∈J1

(xj − sin(0.5x2))2

g2(x) =
∑
j∈J2

(xj − cos(0.5x1))2

J1 = {3,5,… ,29}, J2 = {4,6,… ,30}
c1(x) = x2

1 + x2
2 − 1.0 − 0.1 cos(16.0 arctan x1

x2
) ≥ 0

c2(x) = 0.5 − (x1 − 0.5)2 − (x2 − 0.5)2 ≥ 0
x1, x2 ∈ [1e − 4, 𝜋] and x3, x4,… , x30 ∈ [0,1]

(11)

We use the same experimental parameters in Section 4.1 to test the
seven CMOEAs on TNK-v1. The statistical results of the IGD and HV val-
ues on TNK-v1 achieved by each CMOEA are shown in Table 5. From
this table, we can observe that PPS-MOEA/D is significantly worse than
the other six CMOEAs on TNK-v1. In Fig. 8, we can observe that PPS-
MOEA/D only find a part of the true PF. One possible reason is that,
at the end of the push stage, the population of PPS-MOEA/D is con-
verged to a single unconstrained Pareto optimal point. The diversity
of the population in PPS-MOEA/D is lost, and it is difficult to pull the

676

Z. Fan et al. Swarm and Evolutionary Computation 44 (2019) 665–679

Table 5
IGD and HV results of PPS and the other six CMOEAs on TNK-v1. To facilitate the display of this table, PPS, IEpsilon, Epsilon, CDP, and
SR are short for MOEA/D-PPS, MOEA/D-IEpsilon, MOEA/D-Epsilon, MOEA/D-CDP, and MOEA/D-SR respectively. Wilcoxon’s rank sum
test at a 0.05 significance level is performed between PPS-MOEA/D and each of the other six CMOEAs. † and ‡ denote that the
performance of the corresponding algorithm is significantly worse than or better than that of PPS-MOEA/D, respectively.

Test problem: TNK-v1 PPS IEpsilon Epsilon SR CDP C-MOEA/D NSGA-II-CDP

IGD mean 2.69E-01 5.20E-02‡ 1.33E-01‡ 4.13E-03‡ 1.28E-02‡ 4.03E-03‡ 1.89E-01‡
std 8.28E-02 1.02E-01 1.44E-01 4.53E-04 2.98E-03 5.30E-04 8.11E-02

HV mean 4.03E-01 7.00E-01‡ 5.88E-01‡ 7.57E-01‡ 7.52E-01‡ 7.57E-01‡ 4.52E-01
std 9.69E-02 1.31E-01 1.91E-01 5.49E-04 5.60E-04 5.49E-04 9.86E-02

Fig. 8. The non-dominated solutions achieved by each algorithm on TNK-v1 with the median HV values.

population to the whole true PF. From the experimental results, we can
find that PPS-MOEA/D is not suitable for solving CMOPs which have
unconstrained PFs with only one point.

5. Robot gripper optimization

In this section, a real-world optimization problem—the robot grip-
per optimization problem is formulated. Then, the proposed PPS-
MOEA/D and the other six CMOEAs are tested on this optimization
problem.

5.1. The formulation of the robot gripper optimization

The robot gripper optimization problem has two objectives and eight
constraints, which is taken from Ref. [33]. The second and the fourth
objectives of the original problem are used to formulate the robot grip-
per optimization problem in this work, while the constraints and the
ranges of decision variables are kept the same to those in Ref. [33].
In this paper, the first objective f1(x) represents a force transmission
ratio between the actuating force and the minimum gripping force. We
prefer to transform more actuating force into the gripper force. Thus,
this objective should be minimized. The second objective f2(x) is the
sum of all elements of the robot gripper. It is relevant to the weight
of the robot gripper, and minimizing f2(x) can lead to a lightweight
design.

To study the characteristics of the robot gripper optimization prob-
lem, 3,000,000 solutions are generated as shown in Fig. 9, where

Fig. 9. The distribution of solutions of the robot gripper optimization problem
in the objective space.

1,500,000 solutions are generated randomly, and the other 1,500,000
solutions are generated by MOEA/D-IEpsilon. We can observe that the
two objectives are in conflict with each other.

677

Z. Fan et al. Swarm and Evolutionary Computation 44 (2019) 665–679

Table 6
HV results of PPS-MOEA/D and the other six CMOEAs on the gripper optimization problem. To facilitate the display of this table, PPS, IEpsilon,
Epsilon, CDP, and SR in this table are short for MOEA/D-PPS, MOEA/D-IEpsilon, MOEA/D-Epsilon, MOEA/D-CDP, and MOEA/D-SR respectively.
Wilcoxon’s rank sum test at a 0.05 significance level is performed between PPS-MOEA/D and each of the other six CMOEAs. † and ‡ denote that the
performance of the corresponding algorithm is significantly worse than or better than that of PPS-MOEA/D, respectively. The best mean is highlighted
in boldface.

Gripper optimization PPS IEpsilon Epsilon SR CDP C-MOEA/D NSGA-II-CDP

mean 1.895E+03 1.893E+03 1.885E+03† 1.864E+03† 1.888E+03† 1.865E+03† 1.742E+03†

std 1.046E+01 4.845E+00 1.342E+01 1.134E+01 8.070E+00 9.435E+00 6.055E+01

Fig. 10. The non-dominated solutions achieved by each algorithm on the robot gripper optimization problem with the median HV values are plotted in (a)–(g). The
reference PF consists of the non-dominated solutions achieved by each algorithm.

5.2. Experimental study

5.2.1. Experimental settings
Five CMOEAs, including PPS-MOEA/D, MOEA/D-IEpsilon [21],

MOEA/D-Epsilon [22], MOEA/D-SR [23], MOEA/D-CDP [23], C-
MOEA/D [24] and NSGA-II-CDP [10], are tested on the robot grip-
per optimization problem. The parameters of these five CMOEAs are
the same as listed in Section 4.1 except for the termination condi-
tions. In the robot gripper optimization problem, each CMOEA stops
when 600,000 function evaluations are reached. Since the true PF of
the robot gripper optimization problem is unknown, We use the hyper-
volume metric [31] to measure the performance of these five CMOEAs,
and the reference point is set to [5800]T .

5.2.2. Analysis of experiments
The statistical results of HVvalues achieved by PPS-MOEA/D and

the other six CMOEAs are shown in Table 6. We can observe that PPS-
MOEA/D is better or significantly better than the other six CMOEAs.
The non-dominated solutions achieved by each CMOEA with the
median HV values during the 30 independent runs are plotted in
Fig. 10(a)–(g). It is clear that PPS-MOEA/D has better or significantly
better performance than the other six CMOEAs.

Three representative individuals (A, B and C) are selected from
the non-dominated solutions achieved by PPS-MOEA/D with the best
HVvalue in the 30 independent runs. The configurations of the robot
gripper mechanism at each point are plotted in Fig. 11. We can observe
that f1(x) is increasing with the decreasing of f2(x) from A to C, and

each individual has a different geometrical structure.
The non-dominated solutions achieved by each algorithm on TNK-

v1 with the median HV values.

Fig. 11. The non-dominated solutions achieved by PPS-MOEA/D with the best
HVvalue in the 30 independent runs.

678

Z. Fan et al. Swarm and Evolutionary Computation 44 (2019) 665–679

6. Conclusion

This paper proposes a general PPS framework to deal with CMOPs.
More specifically, the search process of PPS is divided into two
stages—namely, push and pull search processes. At the push stage,
constraints are ignored, which can help PPS to cross infeasible regions
in front of the unconstrained PF. Moreover, the landscape affected by
constraints can be estimated during the push stage, and this informa-
tion, such as the ratio of feasible to infeasible solutions and the max-
imum overall constraint violation, can be applied to conduct the set-
tings of parameters coming from the constraint-handling mechanisms
in the pull stage. When the max rate of change between ideal and nadir
points is less or equal than a predefined threshold, PPS is switched to
the pull search process. The infeasible solutions achieved in the push
stage are pulled to the feasible and non-dominated area by adopt-
ing an improved epsilon constraint-handling technique. The value of
epsilon level can be set properly according to the maximum overall
constraint violation obtained at the end of the push search stage. The
comprehensive experiments indicate that the proposed PPS-MOEA/D
achieves significantly better results than the other six CMOEAs on
most of the benchmark problems and the robot gripper optimization
problem.

It is also worthwhile to point out that there has been very lit-
tle work regarding using information of landscape affected by con-
straints to solve CMOPs. In this context, the proposed PPS provides
a viable framework. Obviously, a lot of work need to be done to
improve the performance of PPS, such as, the strategy of searching
around the borders between infeasible and feasible regions, the aug-
mented constraint-handling mechanisms in the pull stage, the enhanced
strategies to switch the search behavior, and the data mining methods
and machine learning approaches integrated in the PPS framework. For
another future work, the proposed PPS will be implemented in the non-
dominated framework, such as NSGA-II, to further verify the effect of
PPS. More other CMOPs and real-world optimization problems will also
be used to test the performance of the PPS embedded in different MOEA
frameworks.

Acknowledgement

This research work was supported by Guangdong Key Laboratory
of Digital Signal and Image Processing, the National Natural Science
Foundation of China under Grant (61175073, 61300159, 61332002,
51375287), the Natural Science Foundation of Jiangsu Province of
China under grant SBK2018022017, China Postdoctoral Science Foun-
dation under grant 2015M571751, the Project of International, as
well as Hongkong, Macao\&Taiwan Science and Technology Coop-
eration Innovation Platform in Universities in Guangdong Province
(2015KGJH2014), and the National Defense Technology Innovation
Special Zone Projects (18-163-11-ZT-003-008-01, 18-163-11-ZT-003-
008-02).

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://
doi.org/10.1016/j.swevo.2018.08.017.

References

[1] K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, vol. 16, John
Wiley & Sons, 2001.

[2] C.A.C. Coello, Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art, Comput. Meth. Appl.
Mech. Eng. 191 (11–12) (2002) 1245–1287.

[3] T. BDack, F. Hoffmeister, H. Schwefel, A survey of evolution strategies, in:
Proceedings of the 4th International Conference on Genetic Algorithms, 1991, pp.
2–9.

[4] A. Homaifar, C.X. Qi, S.H. Lai, Constrained optimization via genetic algorithms,
Simulation 62 (4) (1994) 242–253.

[5] J.A. Joines, C.R. Houck, On the use of non-stationary penalty functions to solve
nonlinear constrained optimization problems with ga’s, in: Evolutionary
Computation, 1994. IEEE World Congress on Computational Intelligence.,
Proceedings of the First IEEE Conference on, IEEE, 1994, pp. 579–584.

[6] J.C. Bean, A. ben Hadj-Alouane, A Dual Genetic Algorithm for Bounded Integer
Programs, 1993.

[7] D.W. Coit, A.E. Smith, D.M. Tate, Adaptive penalty methods for genetic
optimization of constrained combinatorial problems, Inf. J. Comput. 8 (2) (1996)
173–182.

[8] A. Ben Hadj-Alouane, J.C. Bean, A genetic algorithm for the multiple-choice
integer program, Oper. Res. 45 (1) (1997) 92–101.

[9] Y.G. Woldesenbet, G.G. Yen, B.G. Tessema, Constraint handling in multiobjective
evolutionary optimization, IEEE Trans. Evol. Comput. 13 (3) (2009) 514–525,
https://doi.org/10.1109/TEVC.2008.2009032.

[10] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197,
https://doi.org/10.1109/4235.996017.

[11] T. Takahama, S. Sakai, Constrained optimization by 𝜀 constrained particle swarm
optimizer with 𝜀-level control, in: Soft Computing as Transdisciplinary Science and
Technology, Springer, 2005, pp. 1019–1029.

[12] T.P. Runarsson, X. Yao, Stochastic ranking for constrained evolutionary
optimization, IEEE Trans. Evol. Comput. 4 (3) (2000) 284–294.

[13] Z. Fan, W. Li, X. Cai, K. Hu, H. Lin, H. Li, Angle-based constrained dominance
principle in moea/d for constrained multi-objective optimization problems, in:
IEEE Congress on Evolutionary Computation, 2016, pp. 460–467.

[14] B. Li, J. Li, K. Tang, X. Yao, Many-objective evolutionary algorithms: a survey,
ACM Comput. Surv. 48 (1) (2015) 13.

[15] E. Mezura-Montes, C.A. Coello Coello, Constraint-handling in nature-inspired
numerical optimization: past, present and future, Swarm Evol. Comput. 1 (4)
(2011) 173–194.

[16] Z. Cai, Y. Wang, A multiobjective optimization-based evolutionary algorithm for
constrained optimization, Evol. Comput. IEEE Trans. 10 (6) (2006) 658–675.

[17] T. Ray, H.K. Singh, A. Isaacs, W. Smith, Infeasibility driven evolutionary algorithm
for constrained optimization, in: Constraint-handling in Evolutionary
Optimization, Springer, 2009, pp. 145–165.

[18] Y. Wang, Z. Cai, Y. Zhou, W. Zeng, An adaptive tradeoff model for constrained
evolutionary optimization, IEEE Trans. Evol. Comput. 12 (1) (2008) 80–92.

[19] B.Y. Qu, P.N. Suganthan, Constrained multi-objective optimization algorithm with
an ensemble of constraint handling methods, Eng. Optim. 43 (4) (2011) 403–416.

[20] K. Deb, An efficient constraint handling method for genetic algorithms, Comput.
Meth. Appl. Mech. Eng. 186 (2) (2000) 311–338.

[21] Z. Fan, W. Li, X. Cai, H. Huang, Y. Fang, Y. You, J. Mo, C. Wei, E. D. Goodman, An
Improved Epsilon Constraint-handling Method in MOEA/D for Cmops with Large
Infeasible Regions, arXiv preprint arXiv:1707.08767.

[22] Z. Yang, X. Cai, Z. Fan, Epsilon Constrained Method for Constrained Multiobjective
Optimization Problems - Some Preliminary Results., GECCO.

[23] M.A. Jan, R.A. Khanum, A study of two penalty-parameterless constraint handling
techniques in the framework of MOEA/D, Appl. Soft Comput. 13 (1) (2013)
128–148.

[24] M. Asafuddoula, T. Ray, R. Sarker, K. Alam, An adaptive constraint handling
approach embedded MOEA/D, in: 2012 IEEE Congress on Evolutionary
Computation, IEEE, 2012, pp. 1–8.

[25] K. Miettinen, Nonlinear Multiobjective Optimization, vol. 12, Springer Science &
Business Media, 1999.

[26] Q. Zhang, H. Li, MOEA/D: a multiobjective evolutionary algorithm based on
decomposition, IEEE Trans. Evol. Comput. 11 (6) (2007) 712–731.

[27] T. Takahama, S. Sakai, Constrained optimization by the 𝜀 constrained differential
evolution with gradient-based mutation and feasible elites, in: 2006 IEEE
International Conference on Evolutionary Computation, 2006, pp. 1–8, https://
doi.org/10.1109/CEC.2006.1688283.

[28] H. Jain, K. Deb, An evolutionary many-objective optimization algorithm using
reference-point based nondominated sorting approach, Part II - handling
constraints and extending to an adaptive approach, IEEE Trans. Evol. Comput. 18
(4) (2014) 602–622.

[29] K. Deb, An efficient constraint handling method for genetic algorithms, Comput.
Meth. Appl. Mech. Eng. 186 (2) (2000) 311–338, https://doi.org/10.1016/S0045-
7825(99)00389-8.

[30] P.A. Bosman, D. Thierens, The balance between proximity and diversity in
multiobjective evolutionary algorithms, Evol. Comput. IEEE Trans. 7 (2) (2003)
174–188.

[31] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach, IEEE Trans. Evol. Comput. 3 (4) (1999)
257–271.

[32] M. Tanaka, H. Watanabe, Y. Furukawa, T. Tanino, Ga-based decision support
system for multicriteria optimization, in: 1995 IEEE International Conference on
Systems, Man and Cybernetics. Intelligent Systems for the 21st Century, vol. 2,
1995, pp. 1556–1561, https://doi.org/10.1109/ICSMC.1995.537993. vol. 2.

[33] R. Saravanan, S. Ramabalan, N.G.R. Ebenezer, C. Dharmaraja, Evolutionary multi
criteria design optimization of robot grippers, Appl. Soft Comput. 9 (1) (2009)
159–172.

679

https://doi.org/10.1016/j.swevo.2018.08.017
https://doi.org/10.1016/j.swevo.2018.08.017
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref1
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref2
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref3
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref4
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref5
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref6
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref7
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref8
https://doi.org/10.1109/TEVC.2008.2009032
https://doi.org/10.1109/4235.996017
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref11
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref12
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref13
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref14
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref15
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref16
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref17
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref18
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref19
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref20
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref23
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref24
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref25
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref26
https://doi.org/10.1109/CEC.2006.1688283
https://doi.org/10.1109/CEC.2006.1688283
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref28
https://doi.org/10.1016/S0045-7825(99)00389-8
https://doi.org/10.1016/S0045-7825(99)00389-8
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref30
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref31
https://doi.org/10.1109/ICSMC.1995.537993
http://refhub.elsevier.com/S2210-6502(18)30023-3/sref33

	Push and pull search for solving constrained multi-objective optimization problems
	1. Introduction
	Acknowledgement
	References

