An M/G/1 Queue with Second Optional Service and General Randomized Vacation Policy

Conference Paper in Advances in Intelligent Systems and Computing - September 2018
DOI: 10.1007/978-3-319-66514-6_30

CITATIONS
0
READS
67

4 authors, including:

Caimin Wei
Shantou University
43 PUBLICATIONS 277 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

- stochastic partial differential equation View project
- retrial queue View project
Contents

Part I: Mathematics and Fuzziness

Bipolar Fuzzy BRK-ideals in BRK-algebras 3
Khizar Hayat, Xiao-Chu Liu, and Bing-Yuan Cao

A New Approach for Solving Fuzzy Supplier Selection Problems
Under Volume Discount .. 16
S.H. Nasseri and S. Chitgar

The Lattice of L-fuzzy Filters in a Given R₀-algebra 26
Chun-hui Liu

Intuitionistic Fuzzy Rough Set Based on the Cut Sets
of Intuitionistic Fuzzy Set ... 37
Le-tao Wu and Xue-hai Yuan

Applications and Mathematical Modeling in Operations Research 46
Peter Lohmander

Covering Topology Countability Based on a Subbasis 54
Yi-chun Huang, Zhi-wen Mo, and Xian-yong Zhang

A New Type of Soft Subincline of Incline 64
Liu-hong Chen, Zu-hua Liao, Zhen-yu Liao, Yong Li, Xiao-ying Zhu,
and Wei Song

Bidirectional Quantum Teleportation with 5-Qubit States 74
Jinwei Wang and Jing Jiang

Infinitely Small Quantity and Infinitely Large Quantity of Fuzzy
Valued Functions for Linear Generation of Structural Elements 82
Tian-jun Shu and Zhi-wen Mo
Part II: Decision and Fuzziness

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hesitant Fuzzy Group Decision Making Under Incomplete Information</td>
<td>91</td>
</tr>
<tr>
<td>Jin-hui Lv and Si-zong Guo</td>
<td></td>
</tr>
<tr>
<td>Signed Total Domination and Mycielski Structure in Graphs</td>
<td>102</td>
</tr>
<tr>
<td>Arezoo. N. Ghamashlou and Athena Shaminezhad</td>
<td></td>
</tr>
<tr>
<td>An Arbitrated Quantum Signature Scheme Based on W States</td>
<td>107</td>
</tr>
<tr>
<td>Yu-ting Jiang and Zhi-wen Mo</td>
<td></td>
</tr>
<tr>
<td>Optimal Stochastic Dynamic Control of Spatially Distributed Interdependent Production Units</td>
<td>115</td>
</tr>
<tr>
<td>Peter Lohmander</td>
<td></td>
</tr>
<tr>
<td>Analysis for the Presence of Quantum Noise on the Teleportation</td>
<td>123</td>
</tr>
<tr>
<td>Yun-chao Li, Zhi-wen Mo, and Shu-qin Sun</td>
<td></td>
</tr>
<tr>
<td>Design of An Active Control Method for Complete Stabilization of Unknown Fractional-Order Non-autonomous Systems</td>
<td>131</td>
</tr>
<tr>
<td>Majid Roohi, Hamidreza Hadian, Mohammad Pourmahmood Aghababa, and Seyyedeh Maedeh Mirmohseni Amiri</td>
<td></td>
</tr>
<tr>
<td>Three Uncertainty Measures in Neighborhood Systems</td>
<td>143</td>
</tr>
<tr>
<td>Yan-hong Zhou, Zhi-wen Mo, and Xian-yong Zhang</td>
<td></td>
</tr>
<tr>
<td>An Approach in Solving Data Envelopment Analysis with Stochastic Data</td>
<td>154</td>
</tr>
<tr>
<td>Amir Hossein Nafei, Seyed Mohammad Esmaeil Pourmohammad Azizi, and Rajab Ali Ghasempour</td>
<td></td>
</tr>
<tr>
<td>Why Do Young People Hate on the Internet?</td>
<td>163</td>
</tr>
<tr>
<td>Marta R. Jablonska and Zdzislaw Polkowski</td>
<td></td>
</tr>
</tbody>
</table>

Part III: Fuzzy Geometric Programming and Optimization

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties of Fuzzy Relation Inequalities with Addition-Min Composition</td>
<td>177</td>
</tr>
<tr>
<td>Bing-Yuan Cao, Xiao-Peng Yang, and Xue-Gang Zhou</td>
<td></td>
</tr>
<tr>
<td>Geometric Programming with Intuitionistic Fuzzy Coefficient</td>
<td>186</td>
</tr>
<tr>
<td>Ji-hui Yang, Xue-gang Zhou, and Pei-hua Wang</td>
<td></td>
</tr>
<tr>
<td>A New Method for Solving Fully Fuzzy Monomial Geometric Programming with Trapezoidal Fuzzy Parameters</td>
<td>196</td>
</tr>
<tr>
<td>Armita Khorsandi, Xiao-Chu Liu, and Bing-Yuan Cao</td>
<td></td>
</tr>
<tr>
<td>Note on Max-Lukasiewicz Bipolar Fuzzy Relation Equation</td>
<td>210</td>
</tr>
<tr>
<td>Xiao-Peng Yang, Khizar Hayat, Pei-hua Wang, and Xue-Gang Zhou</td>
<td></td>
</tr>
</tbody>
</table>
Multi-level Linear Programming Subject to Max-product Fuzzy Relation Equalities
Ze-jian Qin, Xiao-cou Liu, and Bingyuan Cao 220

Quadratic Programming with Max-product Fuzzy Relation Inequality Constraints
Xue-Gang Zhou, Xiao-Peng Yang, and Pei-Hua Wang 227

A New Algorithm to Shortest Path Problem with Fuzzy Arc Lengths
Armita Khorsandi, Xiao-Chu Liu, and Bing-Yuan Cao 244

Application Research of Improved Classification Recognition Algorithm Based on Causality Analysis
Yu-bin Zhong, Zi-feng Lyu, and Xiu-ting Kuang 250

On Intuitionistic Fuzzy Filters of Filteristic Soft BE-algebras
Khizar Hayat, Xiao-Chu Liu, and Bing-Yuan Cao 260

Part IV: Fuzzy Systems and Operations Research and Management

Extremal Graphs of Chemical Trees with Minimal Atom-Bond Connectivity Index
Fu-yi Wei, Zi-yang Xie, Qu-Wei, Guo-bin Zhang, Wei-peng Ye, and Yan-li Zhu 269

A Soft Approach to Evaluate the Customer Satisfaction in E-retailing
Chuan Yue and Zhongliang Yue 282

An M/G/1 Queue with Second Optional Service and General Randomized Vacation Policy
Yan Chen, Xian-Wei Lin, Cai-Min Wei, and Zhun Fan 297

The Matrix Representation of Fuzzy Error Logic Conjunction and Applied Research
Guo Qiwei, Zeng Liting, and Du Juan 308

Variational Iteration Method for Solving an Inverse Parabolic Problem
De-jian Huang and Yan-qing Li 321

Using Coloring Function to Partition Vertices in a Fuzzy Graph
Yan-cai Zhao, Xiao-xuan Liu, and Zu-hua Liao 328

A New Approach in Geometric Brownian Motion Model
Seyed Mohammad Esmaeil Pour Mohammad Azizi and Abdolsadeh Neisy 336

A Study on Comprehensive Traffic Capacity of Urban Roads
Duan Yuan, Zhang Geng, and Yi-cen Mao 343
Solving First Order Fuzzy Initial Value Problem by Fourth Order Runge-Kutta Method Based on Different Means. 356
Maryam Asghari Hemmat Abadi and Bing Yuan Cao

Part V: Others

Non-traveling Wave Exact Solutions of (3+1)-Dimensional Yu-Toda-Sasa-Fukuyama Equation .. 373
Najva Aminakbari, Guo-qiang Dang, Yong-yi Gu, and Wen-jun Yuan

Research of Solvability and Application of Fuzzy Errors Set Matrix I Equation of Type II ... 385
Guo Qiwei and Xiaobing Zhang

The Relation Between Mathematical Constant and Stock Market Crash ... 396
Qing-can Xiao and Xiao-wen Zhou

The Impact of Online Information to the Internet Reservations of Hotels in Guangzhou ... 404
Li Xiang and Wu Nan

Optimization of the Modified T Vacation Policy for a Discrete-Time Geom[X]/G/1 Queueing System with Startup 414
Xian-Wei Lin, Yan Chen, Cai-Min Wei, and Zhun Fan

Application of Fuzzy Comprehensive Evaluation Model in Mentality Adaptive Research of College Freshmen 425
Yu-bin Zhong, Yue-peng Liu, Ming-shuo Xu, Jia-xi Wu, and Long-zhang Lin

Assessing Holistic Tourism Resources Based on Fuzzy Evaluation Method: A Case Study of Hainan Tourism Island 434
Jing Ma, Gen-nian Sun, and Sheng-quan Ma

Analysis of Flight Delays .. 447
Zhang Geng and Duan Yuan

Author Index ... 457

cylxq331@126.com
An M/G/1 Queue with Second Optional Service and General Randomized Vacation Policy

Yan Chen¹, Xian-Wei Lin², Cai-Min Wei²,³, and Zhun Fan³

¹ Department of Natural Sciences, Shantou Polytechnic, Shantou 515078, People’s Republic of China
cylxq331@126.com
² Department of Mathematics, Shantou University, Shantou 515063, People’s Republic of China
15xwlin1@stu.edu.cn, cmwei@stu.cn
³ Guangdong Provincial Key Laboratory of Digital Signal and Image Processing Techniques, Shantou University, Shantou 515063, People’s Republic of China
zfan@stu.edu.cn

Abstract. This paper studies a continuous time queue system with second optional service where all the arriving customers demand the first “essential” service while only some of them demand the second “optional” service with probability \(\alpha \). The service time of the first essential service and the second optional service both are independent and arbitrarily random variables. Whenever a busy period is completed, the server takes a vacation. If there is at least one customer waiting at a vacation, the server immediately serves the customer. Otherwise, the server takes another vacation with probability \(p \), or remains idle with probability \(1 - p \). We give some performances analysis of this model. Finally, it gives some numerical examples to illustrate the effect of the probabilities \(\lambda \) and \(p \) on the mean system size, waiting time, the probabilities when the server is idle and is on a vacation.

Keywords: Continuous time queue · Second optional service · General randomized vacation policy · Supplementary variable method

1 Introduction

As soon as the first essential service of a customer is completed, he or she immediately leaves the system with probability \(\alpha \) or accepts the second optional service with probability \(1 - \alpha \). This service policy is called second optional service policy and was firstly studied by Madan [1]. The literature discussed an M/G/1 queue with the second optional service in which the first essential service time follows a general distribution, but the second optional service is assumed to be exponentially distributed. Medhi [2] extended Madan’s model by considering that the second optional service follows a general distribution. Wang [3] examined an M/G/1 queue with second optional service and breakdowns in which the first
essential service time follows a general distribution, but the second optional service is assumed to be an exponential distribution. In addition, there are many other queue models concerned second optional service which have been studied in recent years, details of which may be seen [4–18].

When a busy period is completed, the server immediately takes a vacation. The server will serve the customers if there are customers waiting in the queue at the end of a vacation. Otherwise, the server either remains idle with probability \(p \) or takes another vacation with probability \(1 - p \). This pattern continues until the server has taken \(J \) vacations. The server keeps idle, if there are not customers in the system at \(J^{th} \) vacation. This vacation policy is called randomize vacation policy and was studied by Ke [10]. However, some more complex queue systems with this policy are hard to analysis, as in a queue system with working vacations. Therefore, we cancel the limit of randomized vacation policy, namely the server remains idle with probability \(p \) or takes another vacation with probability \(1 - p \) if no customers are waiting for service at the end of any vacation, and then let the pattern continue forever. Here we define this vacation policy as general randomized vacation policy. The policy eliminates a parameter \(J \) so that it is easy to be widely applied to some more complex queue systems. Moreover it is not a stand alone vacation policy but also summarizes multiple and single vacation policy. That is our motivation to put forward the general randomized vacation policy.

The remainder of this paper is organized as follows. A full description of the model and analysis of the system embedded with the Markov chain are given in Sect. 2. In Sect. 3, some important measures performance of the system are obtained. In Sect. 4, we give two special cases of the model. Finally in Sect. 5, we present some numerical results to illustrate the effect of \(\alpha \) and \(p \) on the performance of the system. Section 6 concludes the paper.

2 Description and Analysis of Model

In the section, we describe our model with following assumptions. Customers arrive the system according to a Poisson process with rate \(\lambda \). When the first “essential” service of a customer is completed by the server, he or she will demand the second “optional” service with probability \(\alpha \). We assume that the first “essential” service and the second “optional” service both follow general distributions, with probability distribution functions \(G_1(x) \) and \(G_2(x) \), respectively. In addition, let \(g_k(x), \frac{1}{u_k}, \) and \(u_k(x)dx = \frac{dG_k(x)}{1-G_k(x)}, k = 1, 2, \) denote the corresponding probability density functions, means and hazard rate functions. When an busy period is completed, the server immediately takes a vacation with general distribution \(V(x) \). Let \(v(x), v \) and \(w(x)dx = \frac{dV(x)}{V(x)} \) be the corresponding probability density function, mean and hazard rate function. If there is at least one customer in the system at the end of the vacation, the server will immediately serve the customer. Otherwise, the server will either take another vacation with probability \(p \) or remain idle waiting for the arrival of customers with probability \(1 - p \). Obviously, if \(p = 1 \), our model can be simplified to the
M/G/1 queue with second optional service and multiple vacations; if \(p = 0 \), the model can be also simplified to the M/G/1 queue with second optional service and single vacation.

We assume, throughout this paper, that various stochastic processes involved in the system are mutual independence and obey first-come first-served (FCFS) service discipline. For a given function \(F(x) \), its Laplace-Stieltjes transform (LST) denotes by \(F^*(s) = \int_0^{\infty} e^{-sx}dF(x) \). And then, we define \(\rho = \frac{\lambda}{\mu_1} + \alpha \frac{\mu_2}{\mu_1} \). Obviously, \(\rho < 1 \) is the necessary and sufficient condition when a steady state solution exists.

Let \(N(t) \) be the system size including the one being served (if any) at time \(t \), and denote by \(G_1^*(x), G_2^*(x) \) and \(V^{-}(x) \) the elapsed first “essential” service, elapsed second “optional” service and elapsed vacation at time \(t \), respectively. In addition, we introduce the following random variable

\[
J(t) = \begin{cases}
0, & \text{if the server is idle at time } t, \\
1, & \text{if the server is busy providing a essential service at time } t, \\
2, & \text{if the server is busy providing a second optional service at time } t, \\
3, & \text{if the server is taking a vacation at time } t
\end{cases}
\]

At time \(t \), the system can be described by the process \((N(t), c(t)) \) where \(c(t) = 0 \) if \(J(t) = 0 \); \(c(t) = G_1^*(x) \) if \(J(t) = 1 \); \(c(t) = G_2^*(x) \) if \(J(t) = 2 \) and \(c(t) = V^{-}(x) \) if \(J(t) = 3 \). For further studying the model, we define the following limiting probabilities:

\[
\begin{align*}
p_{0,0} &= \lim_{t \to \infty} p(N(t) = 0, c(t) = 0), \\
p_{1,n} &= \lim_{t \to \infty} p(N(t) = n, c(t) = G_1^*(x); x \leq G_1^*(x) \leq x + dx), n \geq 1, x \geq 0, \\
p_{2,n} &= \lim_{t \to \infty} p(N(t) = n, c(t) = G_2^*(x); x \leq G_2^*(x) \leq x + dx), n \geq 1, x \geq 0, \\
p_{3,n} &= \lim_{t \to \infty} p(N(t) = n, c(t) = V^{-}(x); x \leq V^{-}(x) \leq x + dx), n \geq 0, x \geq 0
\end{align*}
\]

Then in steady-state condition, the Kolmogorov forward equations to govern the model can be written as follows:

\[
\begin{align*}
\lambda p_{0,0} &= (1 - p) \int_0^\infty p_{1,0}(x)w(x)dx \\
\frac{dp_{1,1}(x)}{dx} + [\lambda + u_1(x)]p_{1,1}(x) &= 0 \\
\frac{dp_{1,n}(x)}{dx} + [\lambda + u_1(x)]p_{1,n}(x) &= \lambda p_{1,n-1}(x), n \geq 2 \\
\frac{dp_{2,1}(x)}{dx} + [\lambda + u_2(x)]p_{2,1}(x) &= 0 \\
\frac{dp_{2,n}(x)}{dx} + [\lambda + u_2(x)]p_{2,n}(x) &= \lambda p_{2,n-1}(x), n \geq 2 \\
\frac{dp_{3,0}(x)}{dx} + [\lambda + w(x)]p_{3,0}(x) &= 0
\end{align*}
\]
Equations (1)–(7) will be solved under the following boundary conditions at time \(x = 0 \):

\[
p_{1,0}(0) = \lambda_0 + (1 - \alpha) \int_0^\infty p_{1,1}u_1(x)dx + \int_0^\infty p_{2,2}u_2(x)dx + \int_0^\infty p_{3,1}w(x)dx = \lambda_{10}(1 - z)
\]

\[
p_{1,n}(0) = (1 - \alpha) \int_0^\infty p_{1,n+1}u_1(x)dx + \int_0^\infty p_{2,n+1}u_2(x)dx + \int_0^\infty p_{3,n}w(x)dx, \quad n \geq 2
\]

In order to solve the above Equations, we define some probability generating functions as follows:

\[
P_1(x, z) = \sum_{n=1}^\infty p_{1,n}(x)z^n, \quad P_3(x, z) = \sum_{n=0}^\infty p_{3,n}(x)z^n, \quad P_1(x) = \int_0^\infty P_k(x, z)dx
\]

where \(i = 1, 2, k = 1, 2, 3 \).

Multiplying both sides of Eqs. (2) and (3) by \(z^n \) \((n = 1, 2, \cdots)\) and summing over \(n \), we have

\[
P_1(x, z) = P_1(0, z)[1 - G_1(x)]e^{-\lambda(1-z)x}
\]

and

\[
P_3(x, z) = P_3(0, z)[1 - V(x)]e^{-\lambda(1-z)x}
\]

In the same way, we can get the following equation from Eqs. (8) and (9)

\[
P_1(0, z) = \lambda_0, 0(z - 1) - p_{3,0}(0) + \frac{1 - \alpha}{\lambda} P_1(0, z)G_1^{-1}(\lambda(1-z)) + \frac{1}{2} p_{2,0}(0, z)G_2^{-1}(\lambda(1-z)) + \frac{1}{2} P_3(0, z)V^*(\lambda(1-z))
\]

For convenience, let \(r(z) = \lambda(1-z) \). From Eq.(15), we have

\[
P_1(0, z) = \lambda_0, 0(z - 1) - p_{3,0}(0) + \frac{1 - \alpha}{\lambda} P_1(0, z)G_1^{-1}(r(z)) + \frac{1}{2} p_{2,0}(0, z)G_2^{-1}(r(z)) + \frac{1}{2} P_3(0, z)V^*(r(z))
\]

Solving the differential Eq.(6) yields

\[
p_{3,0}(x) = p_{3,0}(0)(1 - V(x))e^{-\lambda x}
\]
Then multiplying both sides of Eq. (16) by $w(x)$ and integrating with x from 0 to ∞, together with Eq. (1), we have

$$p_{3,0} = \frac{\lambda p_{0,0}}{(1 - p)V^*(\lambda)}$$ \hspace{1cm} (17)

Substituting Eq. (17) into Eq. (15), we obtain

$$P_1(0, z) = \lambda p_{0,0} (z - 1) - \frac{\lambda p_{0,0}}{(1 - p)V^*(\lambda)} + \frac{1 - \alpha}{z} P_1(0, z) G_1^*(r(z))$$

$$+ \frac{1}{z} P_2(0, z) G_2^*(r(z)) + P_3(0, z) V^*(r(z))$$ \hspace{1cm} (18)

Since $P_3(0, z) = p_{3,0}(0)$, Eq. (18) can be written as follows:

$$P_1(0, z) = \lambda p_{0,0} (z - 1) - \frac{\lambda p_{0,0}}{(1 - p)V^*(\lambda)} + \frac{1 - \alpha}{z} P_1(0, z) G_1^*(r(z))$$

$$+ \frac{1}{z} P_2(0, z) G_2^*(r(z)) + \frac{\lambda p_{0,0}}{(1 - p)V^*(\lambda)} V^*(r(z))$$ \hspace{1cm} (19)

Multiplying both sides of Eq. (10) by z^n ($n = 1, 2, \cdots$) and summing over n, then we have

$$P_2(0, z) = \alpha P_1(0, z) G_1(r(z)).$$ \hspace{1cm} (20)

Substituting Eq. (20) into Eq. (19), we obtain

$$P_1(0, z) = \frac{\lambda z p_{0,0} [1 + (1 - p)V^*(\lambda)(1 - z) - V^*(r(z))]}{(1 - p)V^*(\lambda)[(1 - \alpha)G_1^*(r(z)) + \alpha G_1^*(r(z)) G_2^*(r(z)) - z]}$$ \hspace{1cm} (21)

Integrating both sides of Eq. (12) with x from 0 to ∞, then we get

$$P_1(z) = P_1(0, z) \frac{1 - G_1^*(r(z))}{\lambda (1 - z)}$$ \hspace{1cm} (22)

Substituting Eq. (21) into Eq. (22), we have

$$P_1(z) = \frac{z p_{0,0} [1 - G_1^*(r(z))][1 + (1 - p)V^*(\lambda)(1 - z) - V^*(r(z))]}{(1 - p)V^*(\lambda)(1 - z)[(1 - \alpha)G_1^*(r(z)) + \alpha G_1^*(r(z)) G_2^*(r(z)) - z]}$$ \hspace{1cm} (23)

Performing similar operations on Eqs. (13) and (14), then we get

$$P_2(z) = P_2(0, z) \frac{1 - G_2^*(r(z))}{\lambda (1 - z)}$$ \hspace{1cm} (24)

and

$$P_3(z) = P_3(0, z) \frac{1 - V^*(\lambda(1 - z))}{\lambda (1 - z)}$$ \hspace{1cm} (25)

Then, substituting Eqs. (20) and (17) into (24) and (25), respectively, we have

$$P_2(z) = \frac{p_{0,0} \alpha G_1^*(r(z)) [1 - G_2^*(r(z))][1 + (1 - p)V^*(\lambda)(1 - z) - V^*(r(z))]}{(1 - p)V^*(\lambda)(1 - z)[(1 - \alpha)G_1^*(r(z)) + \alpha G_1^*(r(z)) G_2^*(r(z)) - z]}$$ \hspace{1cm} (26)
3 Performance Analysis

In the section, we will obtain the probability generating function of the steady state system size at a departure epoch, and the mean values for the steady state system size, waiting time, sojourn time. In addition, we will obtain the probability generating function of the steady state system in the next section.

Using the normalization condition \(P_1(z) + P_2(z) + P_3(z) + p_{0,0} = 1 \), thus we have

\[
p_{0,0} = \frac{(1 - \rho)(1 - p)V^*(\lambda)}{\lambda v + (1 - p)V^*(\lambda)} \tag{29}
\]

Substituting \(p_{0,0} \) into Eq. (28), it is given as

\[
P(z) = \frac{(1 - \rho)(1 + (1 - p)V^*(\lambda) - V^*(r(z)))G_1^*(r(z))[1 - \alpha + \alpha G_2^*(r(z))]}{[\lambda v + (1 - p)V^*(\lambda)][(1 - \alpha)G_1^*(r(z)) + \alpha G_1^*(r(z))G_2^*(r(z)) - z]} \tag{28}
\]

Based on the above analysis, we will give some performance analysis for the system in the next section.
by utilizing the normalizing condition \(H(1) = 1 \), from Eq. (30), we have

\[
M = \frac{(1 - \rho)(1 - p)V^*(\lambda)}{\lambda p_{0.0}[\lambda v + (1 - p)V^*(\lambda)]}
\]

Substituting Eq. (31) into Eq. (30), we obtain

\[
H(z) = \frac{(1 - \rho)[1 + (1 - p)V^*(\lambda)(1 - z) - V^*(r(z))]G_1^*(r(z))[1 - \alpha + \alpha G_2^*(r(z))]}{[\lambda v + (1 - p)V^*(\lambda)][(1 - \alpha)G_1^*(r(z)) + \alpha G_2^*(r(z))]} - z
\]

Thus, the probability generating function of the steady state system size at a departure epoch is same as the one of the system size at a random epoch. From the Eq. (32), we can have a theorem as follows:

Theorem 1. If \(\rho < 1 \), the steady-state system size \(L \) can be decomposed into the sums of two stochastic variables, i.e., \(L = L_0 + L_d \), where \(L_0 \) denotes the steady-state system size at departure epoch of M/G/1 queue with second optional service whose generating function has been given in [1], \(L_d \) is the steady-state additional system size due to the general randomized vacations with the probability generating function as follows

\[
L_d(z) = \frac{1 + (1 - p)V^*(\lambda)(1 - z) - V^*(r(z))}{(1 - z)[\lambda v + (1 - p)V^*(\lambda)]}
\]

Proof. From Eq. (32), it is very easy to obtain the theorem.

Utilizing Theorem 1, we can obtain a remark as follows.

Remark 1. If \(\rho < 1 \), the mean system size can be written as \(E[L] = E[L_0] + E[L_d] \), where \(E[L_0] \) denotes the mean system size at departure epoch of M/G/1 queue with second optional service whose detailed expression has been given in [1], \(E[L_d] \) is the additional mean system size due to the general randomized vacations with the probability generating function as follows

\[
E[L_d] = \frac{\lambda^2 v^{(2)}}{2[\lambda v + (1 - p)V^*(\lambda)]}
\]

where \(v^{(2)} \) stands for the two moment of the general distribution \(V(x) \).

Utilizing Remark 1 and Little formula, we can obtain the other two remarks as follows.

Remark 2. If \(\rho < 1 \), the expected value for the sojourn time of a customer in the system is given by

\[
E[W] = \frac{E[L_0]}{\lambda} + \frac{\lambda v^{(2)}}{2[\lambda v + (1 - p)V^*(\lambda)]}
\]
Remark 3. If \(\rho < 1 \), the expected value for the waiting time of a customer in the system is given by

\[
E[W_q] = \frac{E[L_0]}{\lambda} + \frac{\lambda v (2)}{2[\lambda v + (1 - p)V^*(\lambda)]} - \frac{1}{u_1} - \frac{\alpha}{u_2}
\]

From the expressions of \(P_1(z), P_2(z), P_3(z) \) and \(p_{0,0} \), we can determined the probability for each state of the server, as in the following Corollary 1.

Corollary 1. If \(\rho < 1 \), then

1. the probability when the server is idle is

\[
p_{0,0} = \frac{(1 - p)(1 - \rho)V^*(\lambda)}{\lambda v + (1 - p)V^*(\lambda)}
\]

2. the probability when the server is busy with supplying the first essential service is

\[
P_1 = \rho_1
\]

3. the probability when the server is busy with supplying the second optional service is

\[
P_2 = \rho_2
\]

4. the probability when the server is taking a vacation is

\[
P_3 = \frac{(1 - \rho)\lambda v}{\lambda v + (1 - p)V^*(\lambda)}
\]

where \(\rho_1 = \frac{\lambda}{u_1}, \rho_2 = \frac{\alpha \lambda}{u_2} \).

4 Special Cases of the Model

In the section, we will give two special cases of our model by choosing the different value of \(p \). We will only study \(\Pi(z) \) for the two cases of the model, and the other parameters can be studied similarly.

Case 1. Let \(p = 1 \). Then our model can be simplified to the M/G/1 queue with second optional service and multiple vacations. Let \(p = 1 \) in \(\Pi(z) \). We have the probability generating function of system size at a departure epoch as follows

\[
\Pi(z) = \frac{(1 - \rho)[1 - V^*(r(z))][G_1^*(r(z))][(1 - \alpha) + \alpha G_2^*(r(z))]}{\lambda v[(1 - \alpha)G_1^*(r(z)) + \alpha G_1^*(r(z))G_2^*(r(z)) - z]}
\]

Case 2. Let \(p = 0 \). Then our model can be simplified to the M/G/1 queue with second optional service and single vacation. In addition, let \(p = 0 \) in \(\Pi(z) \). We have the probability generating function of system size at a departure epoch as follows

\[
\Pi(z) = \frac{(1 - \rho)[1 + V^*(\lambda)(1 - z) - V^*(r(z))][G_1^*(r(z))][(1 - \alpha) + \alpha G_2^*(r(z))]}{[\lambda v + V^*(\lambda)][(1 - \alpha)G_1^*(r(z)) + \alpha G_1^*(r(z))G_2^*(r(z)) - z]}
\]
5 Numerical Results

In the section, our first purpose is to study the effects of parameters p and λ on the expected system size of messages and the expected waiting time of messages in the system. We assume that the length of a first essential service, a second optional service and a vacation all follow exponential distributions with parameters μ_1, μ_2 and ν, respectively.

For convenience, we choose $\mu_1 = 2.5$, $\mu_2 = 2.0$, $\nu = 1.5$, $\alpha = 0.5$ and $p = 0, 0.2, 0.5, 0.7, 1$, and then vary the value of λ from 0 to 1.0.

Figures 1 and 2 show that the expected system size and the expected waiting time are functions of the arrival rate λ and p. We find that whenever λ increases, the expected system size and expected waiting time increase at a higher level with a fixed p, so the both are increasing functions of λ. Similarly the both are also increasing functions of p with a fixed λ.

The second purpose is to study the effects of parameters p and λ on probabilities $p_{0,0}$ and P_3. We make some assumptions as above.

Figures 3 and 4. The expected waiting time
Figures 3 and 4 show that $p_{0,0}$ is a function of the arrival rate λ and p. We find that λ increases, $p_{0,0}$ decreases at a lower level with a fixed p, so it is a decreasing function of λ. Furthermore, P_3 is increasing function about p with a fixed λ, but not of the monotonicity, of λ with a fixed p.

6 Conclusions

In this paper, we study the general randomized vacation policy for the M/G/1 queueing system with second optional service. By the Kolmogorov forward equations and supplementary variable method, we obtain the probability generating functions for the steady state system size and expected values for the steady state system size, waiting time and sojourn time. Additionally, utilizing numerical illustration, we study the effects of parameters p and λ on the expected system size of messages, the expected waiting time of messages and the probabilities when the server is idle and is on vacation.

Acknowledgements. Thanks to the support by National Natural Science Foundation of China (No. 61175073).

Recommender: Professor Lv Shengli, School of Science, Yanshan University, Qinhuangdao 066004 P.R. China.

References