Optimization of the Modified T Vacation Policy for a Discrete-Time $\text{Geom}^{[X]}/\text{G}/1$ Queueing System with Startup

Conference Paper in Advances in Intelligent Systems and Computing · September 2018

DOI: 10.1007/978-3-319-66514-6_41

CITATIONS
0

READS
27

4 authors, including:

Caimin Wei
Shantou University
43 PUBLICATIONS 277 CITATIONS

Some of the authors of this publication are also working on these related projects:

- stochastic partial differential equation View project
- retrial queue View project

All content following this page was uploaded by Caimin Wei on 02 February 2018.

The user has requested enhancement of the downloaded file.
Contents

Part I: Mathematics and Fuzziness

Bipolar Fuzzy BRK-ideals in BRK-algebras .. 3
Khizar Hayat, Xiao-Chu Liu, and Bing-Yuan Cao

A New Approach for Solving Fuzzy Supplier Selection Problems Under Volume Discount .. 16
S.H. Nasseri and S. Chitgar

The Lattice of L-fuzzy Filters in a Given R_0-algebra 26
Chun-hui Liu

Intuitionistic Fuzzy Rough Set Based on the Cut Sets of Intuitionistic Fuzzy Set .. 37
Le-tao Wu and Xue-hai Yuan

Applications and Mathematical Modeling in Operations Research 46
Peter Lohmander

Covering Topology Countability Based on a Subbasis 54
Yi-chun Huang, Zhi-wen Mo, and Xian-yong Zhang

A New Type of Soft Subincl ine of Incline .. 64
Liu-hong Chen, Zu-hua Liao, Zhen-yu Liao, Yong Li, Xiao-ying Zhu, and Wei Song

Bidirectional Quantum Teleportation with 5-Qubit States 74
Jinwei Wang and Jing Jiang

Infinitely Small Quantity and Infinitely Large Quantity of Fuzzy Valued Functions for Linear Generation of Structural Elements 82
Tian-jun Shu and Zhi-wen Mo
Part II: Decision and Fuzziness

Hesitant Fuzzy Group Decision Making Under Incomplete Information ... 91
Jin-hui Lv and Si-zong Guo

Signed Total Domination and Mycielski Structure in Graphs 102
Arezoo. N. Ghameshlou and Athena Shaminezhad

An Arbitrated Quantum Signature Scheme Based on W States 107
Yu-ting Jiang and Zhi-wen Mo

Optimal Stochastic Dynamic Control of Spatially Distributed Interdependent Production Units 115
Peter Lohmander

Analysis for the Presence of Quantum Noise on the Teleportation 123
Yun-chao Li, Zhi-wen Mo, and Shu-qin Sun

Design of An Active Control Method for Complete Stabilization of Unknown Fractional-Order Non-autonomous Systems 131
Majid Roohi, Hamidreza Hadian, Mohammad Pourmamood Aghababa, and Seyedeh Maedeh Mirmohseni Amiri

Three Uncertainty Measures in Neighborhood Systems 143
Yan-hong Zhou, Zhi-wen Mo, and Xian-yong Zhang

An Approach in Solving Data Envelopment Analysis with Stochastic Data ... 154
Amir Hossein Nafei, Seyed Mohammad Esmaeil Pourmammod Azizi, and Rajab Ali Ghasempour

Why Do Young People Hate on the Internet? 163
Marta R. Jablonska and Zdzislaw Polkowski

Part III: Fuzzy Geometric Programming and Optimization

Properties of Fuzzy Relation Inequalities with Addition-Min Composition .. 177
Bing-Yuan Cao, Xiao-Peng Yang, and Xue-Gang Zhou

Geometric Programming with Intuitionistic Fuzzy Coefficient 186
Ji-hui Yang, Xue-gang Zhou, and Pei-hua Wang

A New Method for Solving Fully Fuzzy Monomial Geometric Programming with Trapezoidal Fuzzy Parameters 196
Armita Khorsandi, Xiao-Chu Liu, and Bing-Yuan Cao

Note on Max-Lukasiewicz Bipolar Fuzzy Relation Equation 210
Xiao-Peng Yang, Khizar Hayat, Pei-hua Wang, and Xue-Gang Zhou
Contents

Multi-level Linear Programming Subject to Max-product
Fuzzy Relation Equalities .. 220
Ze-jian Qin, Xiao-cou Liu, and Bingyuan Cao

Quadratic Programming with Max-product Fuzzy Relation
Inequality Constraints .. 227
Xue-Gang Zhou, Xiao-Peng Yang, and Pei-Hua Wang

A New Algorithm to Shortest Path Problem with Fuzzy
Arc Lengths .. 244
Armita Khorsandi, Xiao-Chu Liu, and Bing-Yuan Cao

Application Research of Improved Classification Recognition
Algorithm Based on Causality Analysis 250
Yu-bin Zhong, Zi-feng Lyu, and Xiu-ting Kuang

On Intuitionistic Fuzzy Filters of Filteristic Soft BE-algebras 260
Khizar Hayat, Xiao-Chu Liu, and Bing-Yuan Cao

Part IV: Fuzzy Systems and Operations Research and Management
Extremal Graphs of Chemical Trees with Minimal Atom-Bond
Connectivity Index ... 269
Fu-yi Wei, Zi-yang Xie, Qu-Wei, Guo-bin Zhang, Wei-peng Ye, and Yan-li Zhu

A Soft Approach to Evaluate the Customer Satisfaction
in E-retailing .. 282
Chuan Yue and Zhongliang Yue

An M/G/1 Queue with Second Optional Service and General
Randomized Vacation Policy 297
Yan Chen, Xian-Wei Lin, Cai-Min Wei, and Zhun Fan

The Matrix Representation of Fuzzy Error Logic Conjunction
and Applied Research ... 308
Guo Qiwei, Zeng Liting, and Du Juan

Variational Iteration Method for Solving an Inverse
Parabolic Problem .. 321
De-jian Huang and Yan-qing Li

Using Coloring Function to Partition Vertices in a Fuzzy Graph 328
Yan-cai Zhao, Xiao-xuan Liu, and Zu-hua Liao

A New Approach in Geometric Brownian Motion Model 336
Seyed Mohammad Esmaeil Pour Mohammad Azizi and Abdolsadeh Neisy

A Study on Comprehensive Traffic Capacity of Urban Roads 343
Duan Yuan, Zhang Geng, and Yi-cen Mao
Optimization of the Modified T Vacation Policy for a Discrete-Time Geom$^{[X]}$/G/1 Queueing System with Startup

Xian-Wei Lin¹, Yan Chen²(✉), Cai-Min Wei¹,³, and Zhun Fan³

¹ Department of Mathematics, Shantou University, Shantou 515063, People’s Republic of China
¹xwlin1@stu.edu.cn, cmwei@stu.cn
² Department of Natural Sciences, Shantou Polytechnic, Shantou 515078, People’s Republic of China
cylxq331@126.com
³ Guangdong Provincial Key Laboratory of Digital Signal and Image Processing Techniques, Shantou University, Shantou 515063, People’s Republic of China
zfan@stu.edu.cn

Abstract. In this paper, we discuss a discrete-time Geom$^{[X]}$/G/1 queueing system with modified T vacation policy and startup time. We derive the generating functions and the mean values for the steady state system size and the waiting time, and also get those of the busy period, the vacation period and the vacation cycle by using embedded Markov chain. Finally, we determine the optimal (T^*, J^*) to minimize the cost function with fixed cost elements by constructing a cost function.

Keywords: Queueing system model · Startup time · Stochastic decomposition · Modified T vacations policy · Embedded markov chain method

1 Introduction

The server leaves for a vacation with fixed length T slots when the system is empty. After a vacation, the server returns to the system. The server immediately begins to serve if there is at least one customer waiting for service in the system; otherwise, the server takes another vacation and so on until at least one customer waits for service. This vacation policy is called T vacation policy and was firstly studied by Levy and Yechiali [1] and Heyman [2]. Sen and Gupta [3] analyzed a time dependent M/M/1 queueing with T policy via a lattice path combinatoric technique. In recent years, some authors began to study the modified T policy queueing systems. Ke [4] considered modified T vacation policy M/G/1 with an unreliable server and startup, and obtained the expected number of customers, the expected waiting time and other performances. It followed that Ke [5] studied a batch arrival queueing system under modified T vacation.
Optimization of the Modified T Vacation Policy for a Discrete-Time

In this paper, we consider a discrete time batch arrival queueing with modified T policy and startup, and derive the generating functions and the mean values for the steady state system size and the waiting time, and also get the generating functions and the expected values of the busy period, the vacation period and the vacation cycle. In addition, by constructing an cost function, we determine the optimal (T^*, J^*) to minimize the cost function. In fact, the modified T vacation policy is applied to many fields now. Take manufacturing systems for example, a machine will process a subproduct with fixed T slots after all ordinary products have been processed. And after finishing a processed subproduct while no ordinary products wait in queue, the machine continues to process another subproduct. This pattern continues cycle until at least one new ordinary product waits in the queue, otherwise it the server has already processed J subproducts. After that the machine stops to wait for arrival of the new ordinary products.

The remainder of this paper is organized as follows. A full description of the model and an embedded Markov chain are given in the Sect. 2. In Sect. 3, we obtain stochastic decomposition of the queue size and the expected values of waiting time. In Sect. 4, the expected values length of the vacation cycle, the vacation period and the busy period are obtained. We construct a cost function to introduce the optimal policy in Sect. 5. Finally in Sect. 6, we present some numerical results to illustrate the effect of λ on the expected queue size and the waiting time in the system, and obtain the optimal (T^*, J^*) with fixed cost elements.

2 Describing Model and Embedded Markov Chain

In the classical Geom$^{[X]}$/G/1 queueing system, we introduce the following vacation strategy: as soon as the system is empty, the server deactivates to take a vacation with fixed length of T. If no customers are found in the system when a vacation is finished, while the server takes another vacation with the same length T. This pattern continues cycle until a vacation is finished, the server finds at least one customer waiting in the queue or he will be already taken J vacations. If no customers are found at the end of the J-th vacation, the server stops in the system to wait for the arrival of one customer. If there is at least one customer waiting for service in the system when a vacation is finished or the server is idle in the system, he is immediately reactivated. But, the server will need a startup time before supplying service for the waiting customers. As soon as the startup is finished, the server starts supplying service for the waiting customers until the system becomes empty again.

In the Geom$^{[X]}$/G/1 queueing model with T policy and startup time, we denote by A the number of customers who arrive in a single slot. The A is

cylxq331@126.com
assumed to be an integral multiple, and its probability distribution and probability generating function are given by, respectively, \(\lambda(k) = p(A = k), k = 0, 1, 2, \cdots; A(z) = \sum_{k=0}^{\infty} \lambda(k) z^k, |z| \leq 1. \)

In addition, we denote by \(\lambda \) and \(\lambda^{(i)} \) the mean and the \(i \)-th factorial moment of \(A \), respectively, \(\lambda = E[A], \lambda^{(i)} = E[A(A - 1) \cdots (A - i + 1)], i = 2, 3, \cdots. \)

Let \(X \) be the service time of one customer and the length of the service time be an integral multiple of a slot duration, then its probability distribution and probability generating function are given by, respectively, \(b(l) = p(X = l), \quad l = 1, 2, \cdots; B(z) = \sum_{l=1}^{\infty} b(l) z^l, |z| \leq 1. \)

Let \(b \) and \(b^{(i)} \) be the mean and the \(i \)-th moment of the service time distribution, respectively, \(b = E[X]; b^{(i)} = E[X^i], \quad i = 2, 3, \cdots. \)

Let \(S \) be the startup time and the length of the startup time be an integral multiple of a slot duration, then its probability distribution and probability generating are given by, respectively, \(s(l) = p(S = l), l = 1, 2, \cdots; S(z) = \sum_{l=1}^{\infty} s(l) z^l, |z| \leq 1. \)

Let \(s \) and \(s^{(i)} \) be the mean and the \(i \)-th factorial moment of the startup time distribution, respectively: \(s = E[S]; s^{(i)} = E[S(S - 1) \cdots (S - i + 1)], i = 2, 3, \cdots. \)

Now we consider a Markov chain \(\{L_n; n = 1, 2, \cdots\} \), where \(L_n \) denotes the number of customers present in the system after the server has completed service for the \(n \)-th customer. And suppose that \(A_n \) is the number of arriving customers during the \(n \)-th customer’s service and \(\alpha \) is that of present customers in the system at the end of the startup time, thus we have

\[
L_{n+1} = \begin{cases}
L_n + A_{n+1} - 1, & L_n \geq 1, \\
\alpha + A_{n+1} - 1, & L_n = 0
\end{cases}
\]

Let \(A(z) \) be the PGF for \(A_n \), and \(\alpha(z) \) for \(\alpha \). For the system, we imagine a \(\text{Geom}[X]/G/1 \) queueing system with a vacation period that may terminate in one of the following two situations.

Case 1. If there is at least one customer waiting in the system at the end of the \(j \)-th vacation (\(1 \leq j \leq J \)), the server immediately operates a startup. In this case, at the end of the startup time the PGF for the number of customers waiting in the system is given by \([1 - \lambda^{JT}(0)] \frac{A^T(z) - \lambda^T(0)}{1 - \lambda^T(0)} S[A(z)]. \)

Case 2. If there is no customer waiting in the system at the end of the \(J \)-th vacation, the server stays idle in the system. Once a customer arrives, the server immediately operates a startup. Thus, in this case, at the end of the startup time the PGF for the number of customers found of in the system is given by \(\lambda^{JT}(0)A(z) - \lambda(0)S[A(z)]. \)

From the two cases above, at the end of the startup time the PGF \(\alpha(z) \) for the number of customers waiting in the system is given by

\[
\alpha(z) = [1 - \lambda^{JT}(0)] \frac{A^T(z) - \lambda^T(0)}{1 - \lambda^T(0)} S[A(z)] + \lambda^{JT}(0) \frac{A(z) - \lambda(0)}{1 - \lambda(0)} S[A(z)]
\]

If we denote by \(\{k_j, j = 0, 1, 2, \cdots\} \) and \(\{b_j, j = 0, 1, 2, \cdots\} \) the probability distributions for \(A_n \) and \(\alpha + A_n - 1 \), respectively, then the PGFs for them are given by \(A(z) = \sum_{j=0}^{\infty} k_j z^j = B[A(z)], \lambda(z) = \sum_{j=0}^{\infty} b_j z^j = \frac{\alpha(z)B[A(z)]}{z}. \)
Therefore, the transition probability matrix of Markov chain \(\{L_n, n = 1, 2, \cdots \} \) is given by
\[
\tilde{P} = \begin{bmatrix}
 b_0 & b_1 & b_2 & b_3 & \cdots \\
 k_0 & k_1 & k_2 & k_3 & \cdots \\
 k_0 & k_1 & k_2 & \cdots \\
 k_0 & k_1 & \cdots \\
 \vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}.
\]

By the Foster rule, we can prove that the Markov chain \(\{L_n, n = 1, 2, \cdots \} \) is positive recurrence if and only if \(\rho = \lambda b < 1 \).

3 Stochastic Decomposition of Queue Size and Expected Waiting Times in System

In the section, we will obtain the PGFs for the steady-state system size and the waiting time.

Theorem 1. If \(\rho < 1 \), the steady-state system size \(L \) can be decomposed into the sum of two stochastic independent variables, i.e., \(L = L_{\text{Geom}\{X\}/G/1} + L_d \), where \(L_{\text{Geom}\{X\}/G/1} \) denotes the steady-state system size of classical \(\text{Geom}\{X\}/G/1 \) model which generating function and expected value have been given in [15].

Then \(L_d(z) = \frac{1}{E[\alpha]} \left[\frac{\lambda [1 - \alpha(z)]}{1 - L(z)} - 1 \right] \) is the generating function of additional system \(L_d \).

Proof. We assume that a steady-state distribution exists for the Markov chain \(\{L_n; n = 1, 2, \cdots \} \) and that it is denoted by \(\pi_k = \lim_{n \to \infty} p(L_n = k), k = 0, 1, 2, \cdots \).

Because the steady-state \(\{\pi_k, k \geq 0\} \) satisfies \(\Pi \tilde{P} = \Pi \), we have
\[
\pi_j = \pi_0 b_j + \sum_{i=1}^{j+1} \pi_i k_{j+1-i}, \ j \geq 0
\]
where \(\Pi = (\pi_0, \pi_1, \pi_2, \cdots) \).

Taking generating function, we obtain
\[
L(z) = \sum_{j=0}^{\infty} \pi_j z^j = \pi_0 \sum_{j=0}^{\infty} b_j z^j + \sum_{j=0}^{\infty} \sum_{i=1}^{j+1} \pi_i k_{j+1-i} z^j = \pi_0 \frac{\alpha(z) B[A(z)]}{z} + \frac{1}{z} B[A(z)] [L(z) - \pi_0] \tag{2}
\]

Substituting Eq.(1) into Eq.(2), we get
\[
L(z) = \frac{\pi_0 B[A(z)] [\alpha(z) - 1]}{z - B[A(z)]}
\]

By the normalization \(L(1) = 1 \) and the L'Hospital rule, we obtain
\[
\pi_0 = \frac{1 - \rho}{E[\alpha]}
\]
where
\[E[\alpha] = [1 - \lambda g J T (0)] \frac{T \lambda + s \lambda [1 - \lambda g T (0)]}{1 - \lambda g T (0)} + \lambda J T (0) \frac{\lambda + s \lambda [1 - \lambda (0)]}{1 - \lambda (0)} \]
is the mean number customers at the end of the startup time.

Substituting \(\pi_0 \) into Eq.(2), we obtain
\[L(z) = \frac{(1 - \rho) B[\Lambda(z)][\alpha(z) - 1]}{E[\alpha][z - B[\Lambda(z)]]} = L_{\text{Geom}}[X]/G/1 \cdot \frac{\lambda [1 - \alpha(z)]}{E[\alpha][1 - \Lambda(z)]} \]
Thus, it yields
\[L_d(z) = \frac{\lambda [1 - \alpha(z)]}{E[\alpha][1 - \Lambda(z)]} \]
The proof is complete.

Theorem 2. If \(\rho < 1 \), the steady-state waiting time \(W \) can be decomposed into the sum of two stochastic independent variables, i.e., \(W = W_{\text{Geom}}[X]/G/1 + W_d \), where \(W_{\text{Geom}}[X]/G/1 \) denotes the steady-state waiting time of classical \(\text{Geom}^X/G/1 \) model which generating function and expected value have been given in [15]. Then
\[W_d(z) = \frac{[1 - \lambda (0)][1 - \beta(z)]}{E(\alpha)(1 - z)} \]
is the generating function of additional system \(W_d \).

Proof. We consider the waiting time of an arbitrary customer in FCFS systems and give explicit expressions for the PGF \(W(z) \) of the waiting time for FCFS systems. The distribution of the waiting time can be easily obtained by assuming that a group of customers arrive in the same slot and they constitute one super-customer in a \(\text{Geom}/G/1 \) system. That is, the PGF \(A_g(z) \) and the mean \(\lambda_g \) for the number of the super-customers who arrive in a slot in the \(\text{Geom}/G/1 \) system are given by, respectively,
\[A_g(z) = \lambda (0) + [1 - \lambda (0)]z \]
\[\lambda_g = 1 - \lambda (0) \]
The PGF $B_g(z)$ for the service time of a super-customer is given by

$$B_g(z) = \tilde{A}[B(z)] = \frac{A[B(z)] - \lambda(0)}{1 - \lambda(0)}$$ (6)

Therefore, the PGF for the number of present super-customer in the corresponding Geo$[^X]$/G/1 system at the end of super-customer’s service is given by

$$L_g(z) = (1 - \rho)B_g[A_g(z)][\alpha_g(z) - 1]$$ (7)

where

$$\alpha_g(z) = [1 - \lambda^{JT}(0)]\frac{A^T(z) - \lambda^T(0)}{1 - \lambda^T(0)}S[A_g(z)] + \lambda^{JT}(0)\frac{A_g(z) - \lambda(0)}{1 - \lambda(0)}S[A_g(z)]$$

Let $\beta[A_g(z)] = \alpha_g(z)$, then we obtain

$$\beta(z) = [1 - \lambda^{JT}(0)]\frac{z^T - \lambda^T(0)}{1 - \lambda^T(0)}S(z) + \lambda^{JT}(0)\frac{z - \lambda(0)}{1 - \lambda(0)}S(z)$$

Since the number of present super-customer in the system at the end of super-customer’s service equals just that arriving super-customer in the time interval that they have been in the system, by $W_g(z)$ denoting the PGF for the waiting time of the super-customer, we have the following expression

$$L_g(z) = W_g[A_g(z)]B[A_g(z)]$$ (8)

Note that the traffic intensity ρ is the same in classic Geo$[^X]$/G/1 and Geo$[^X]$/G/1 queue systems. Substituting Eqs.(4)–(7) into Eq.(8), we get the PGF $W_g(z)$ for the waiting time W_g of a supercustomer in an FCFS system as

$$W_g(z) = \frac{(1 - \rho)[1 - \lambda(0)][1 - \beta(z)]}{E[\alpha][A[B(z)] - z]}$$ (9)

The waiting time W of an arbitrary customer consists of two independent components. One is the waiting time W_g of a super-customer to who the arbitrary customer belongs; the other, denoted by J, is the sum of the service time for those customers within the same super-customer who are served in front of the arbitrary customer. Note that these components are independent. If $J(z)$ denotes the PGF for J, we have

$$W(z) = W_g(z)J(z)$$ (10)

In order to get the $J(u)$, we know that the number of customers within the super-customer that are served in front of the arbitrary customer is equivalent to the forward recurrence time in a discrete-time renewal process when the inter-renewal time is given by the number of customers included in the super-customer. Hence we have

$$J(z) = \frac{1 - A[B(z)]}{\lambda[1 - B(z)]}$$ (11)
Substituting Eqs. (9) and (11) into Eq. (10), we get
\[W(z) = \frac{(1-\rho[1-\lambda(0)][1-\beta(z)][1-A(B(z))])}{\lambda E[\alpha][1-B(z)][A|B(z)|]} = W_{Geo|G/1}(z)W_d(z) \]

Thus, it yields
\[W_d(z) = \frac{[1-\lambda(0)][1-\beta(z)]}{E(\alpha)(1-z)} \]

The proof is complete.

In addition, from Theorem 2, we obtain the mean waiting time in system given by
\[E[W] = E[W_{Geo|G/1}] + E[W_d] = E[W_{Geo|G/1}] + \frac{E[\beta(\beta-1)][1-\lambda]}{2E(\alpha)} \]

where
\[E[\beta(\beta-1)] = \frac{1-\lambda^JT(0)}{1-\lambda^T(0)} \{ T(T-1)+2Ts+[1-\lambda^T(0)]s^{(2)} \} \]

4 Expected Length of the Vacation Cycle, the Vacation Period and the Busy Period

We define a time interval as a vacation period that starts at the busy period and terminates at the beginning of the startup time, and denote it by \(I_v \). It consists of a vacation and an idle period. Then we can obtain the probabilities and the PGF, respectively,
\[
\begin{align*}
 P(I_v = kT) &= [1-\lambda(0)]\lambda^{(k-1)T(0)} \sum_{j=0}^{T-1} \lambda^j(0), \quad 1 \leq k \leq J, \\
 P(I_v = JT+i) &= \lambda^{JT+i-1}(0)[1-\lambda(0)], \quad i \geq 1
\end{align*}
\]

and
\[
I_v(z) = \sum_{i=1}^{\infty} P(I_v = j)z^j = \frac{[1-\lambda(0)][\sum_{j=1}^{\infty} \lambda^{(k-1)T(0)} \sum_{j=0}^{T-1} \lambda^j(0)]z^{kJT} + \sum_{j=1}^{\infty} \lambda^{JT+i-1}(0)z^{JT+i}}{1-\lambda^T(0)}
\]

Thus, it leads to the mean vacation period length
\[E(I_v) = \frac{-JT\lambda^{JT}(0)[1-\lambda(0)] + T[1-\lambda^{JT}(0)] + \lambda^{JT}(0)[(JT+1)[1-\lambda(0)] + \lambda(0)]}{1-\lambda^T(0)} \]
In this section, we will construct a total long-run average cost function per customer in the system at the beginning of a busy period, the PGF \(\Theta_v(z) \) and the mean \(E(\Theta_v) \) for the length \(\Theta_v \) of a busy period are given by

\[
\Theta_v(z) = \alpha[\Theta(z)] = [1 - \lambda^J T(0)] \frac{\lambda^J(\theta(z)) - \lambda^J(0)}{1 - \lambda^J(0)} S[A(\Theta(z))] + \lambda^J T(0) \frac{\Lambda(\theta(z)) - \Lambda(0)}{1 - \Lambda(0)} S[A(\Theta(z))]
\]

and

\[
E(\Theta_v) = \frac{E(\Theta)[1 - \lambda^J T(0)]}{1 - \lambda^J(0)} \{ \lambda T + s\lambda[1 - \lambda^J T(0)] \} + \frac{\lambda E(\Theta) \lambda^J T(0)(1 + s[1 - \lambda(0)])}{1 - \lambda(0)}
\]

\[
= r[1 - \lambda^J T(0)] \frac{\lambda^J T(0)(1 + s[1 - \lambda(0)])}{1 - \lambda(0)} + r\lambda^J T(0)(1 + s[1 - \lambda(0)])
\]

where \(\theta \) is the length of a busy period caused by the service time of a single customer in the system, \(\Theta(z) \) and \(E(\Theta) \) are the PGF and the mean of \(\Theta \), respectively.

A vacation cycle consists of a vacation period, startup time and the follow busy period. The PGF \(C_v(z) \) and the mean \(E[C_v] \) for the length \(C_v \) of the vacation cycle are given by

\[
C_v(z) = I_v(z) \cdot S(z) \cdot \Theta_v(z)
\]

\[
= S(z) \times S[A(\Theta(z))] \times \left\{ \frac{1 - \lambda^J T(0)[1 - \lambda^J T(0)z^{JT+1}]}{1 - \lambda^J T(0)} + \frac{\lambda^J T(0)[1 - (1 - \lambda(0))z^{JT+1}]}{1 - \lambda(0)} \right\}
\]

and

\[
E[C_v] = E(I_v) + s + E(\Theta_v)
\]

\[
= s + \frac{\lambda E(I_v)[1 - \lambda^J T(0)]}{1 - \lambda^J(0)} + \frac{\lambda^J T(0)[\lambda(0) + (1 - \lambda(0))]}{1 - \lambda(0)}
\]

\[
= s + \frac{\rho[1 - \lambda^J T(0)]}{1 - \lambda^J(0)} \{ T + s[1 - \lambda^J T(0)] \} + \frac{\rho\lambda^J T(0)[1 + s[1 - \lambda(0)]]}{1 - \lambda(0)}
\]

5 Optimal Policy

In this section, we will construct a total long-run average cost function per customer per unit time for the system, in which \(T \) and \(J \) are all decision variables. Our purpose is to determine the optimal \(T \) and \(J \) to minimize this cost function. The following cost elements are considered: \(c_h \) is the holding cost per unit time for each present customer in the system; \(c_s \) is the setup cost for per busy cycle; \(c_i \) is the cost per unit time for keeping the server off; \(c_u \) is the startup cost per unit time for the preparatory work of the server before starting the service.

Employing the definition of each cost element and its corresponding system characteristics, the total long-run average cost per unit time is given by

\[
F(J, T) = c_h \frac{E[L]}{E[I_v]} + c_s \frac{E[I_v]}{E[I_v]} + c_i \frac{E[I_v]}{E[I_v]} + c_u \frac{E[I_v]}{E[I_v]}
\]

\[
= c_h \frac{E[L]}{E[I_v]} + c_s \frac{2 \lambda E[\alpha(\alpha - 1)]}{A} + c_i \frac{E[I_v]}{A} + c_u \frac{(1 - \rho)(1 - \lambda(0))[1 - \lambda^J T(0)]}{A}
\]

\[
= c_h \frac{E[L]}{E[I_v]} + c_s \frac{2 \lambda E[\alpha(\alpha - 1)]}{A} + c_i \frac{E[I_v]}{A} + c_u \frac{(1 - \rho)(1 - \lambda(0))[1 - \lambda^J T(0)]}{A}
\]

(15)
where
\[E[L_{Geo^{|c|}/G/1}] = \rho + \frac{\lambda^2 b^{(2)} - \lambda \rho + b \lambda^{(2)}}{2(1 - \rho)} \]
\[
A = s(1 - \rho)[1 - \lambda(0)][1 - \lambda(0)] + (1 - \rho)[1 - \lambda(0)]\{ -JT\lambda^{(T)}(0)[1 - \lambda^{(T)}(0)] \\
+ T[1 - \lambda^{(T)}(0)] + (1 - \rho)\lambda^{(T)}(0)[1 - \lambda^{(T)}(0)]\{(JT + 1)[1 - \lambda(0)] + \lambda(0) \\
+ \rho[1 - \lambda(0)][1 - \lambda^{(T)}(0)]\{T + s[1 - \lambda^{(T)}(0)]\} + \rho\lambda^{(T)}(0)[1 - \lambda^{(T)}(0)]\{1 + s[1 - \lambda(0)]\} \}
\]

We consider the model with a minimum cost function. For fixed \(c_s, c_h, c_i\) and \(c_u\), the optimization problem is described as follows:
\[
\begin{align*}
\min & \quad F(J, T) = c_h E[L] + c_s \frac{1}{E[C_v]} + c_i \frac{E[I_v]}{E[C_v]} + c_u \frac{s}{E[C_v]} \\
\text{s.t.} & \quad T \geq 1, \quad J \geq 1, \quad T, J \in N^+, \quad (c_h, c_s, c_i, c_u > 0)
\end{align*}
\]

We denote the solution by \((J^*, T^*)\) that minimizes the cost function \(F(J, T)\).

6 Numerical Illustration

In the section, the first purpose is to study the effects of some parameters on the expected values of the customers’ number and waiting time in the system. We assume that the number of customers \(\Lambda\) in a single slot follows a poisson distribution with a parameter \(\lambda\), and that service time \(X\) of a customer and setup time \(S\) follow geometric distributions with the parameters \(p_1\) and \(p_2\), respectively.

For convenience, we choose \(T = 1, 10, 20\), \(J = 5\), \(p_1 = 0.8\) and \(p_2 = 0.8\), vary the value of \(\lambda\) from 0.3 to 0.7.

![Fig. 1. The expected system size](image1)

![Fig. 2. The expected waiting time](image2)

Figures 1 and 2 show that the expected system size and the expected waiting time are all functions of the arrival rate \(\lambda\). We find that whenever \(\lambda\) increases, the expected system size and the expected waiting time increase at a higher level. Meanwhile, the both increase faster with \(T\) increasing.
Optimization of the Modified T Vacation Policy for a Discrete-Time Queueing System

The second purpose is to study the effects of some parameters on the cost function. We assume that the number of customers Λ in a single slot follows a poisson distribution with a parameter λ, and that service time X of a customer and setup time S follow geometric distributions with parameters p_1 and p_2, respectively. We choose $\lambda = 0.15, p_1 = 0.3, p_2 = 0.5, c_h = 2, c_s = 20, c_i = 3$ and $c_u = 10$, vary the values of T and J from 1 to 10 and 1 to 30, respectively.

Figure 3 shows that the minimum cost value per unit time of 5.5731 is obtained at $(T^*, J^*) = (1, 3)$.

7 Conclusion

The paper introduces the optimal modified T vacation policy for the discrete-time Geom$^{[X]}/G/1$ queueing with startup. By using the embedded Markov chain method, we obtain the PGFs and the expected values for the steady state system size, waiting time, busy period and vacation cycle. Additionally, By constructing a cost function, we determine the optimal values of T and J to minimize the cost function. We will further try to study the N policy for the Geom$^{[X]}/G/1$ queueing system.

Acknowledgements. Thanks to the support by National Natural Science Foundation of China (No. 61175073).

Recommender: Professor Lv Shengli, School of Science, Yanshan University, Qinhuangdao 066004 P.R. China.

cylxq331@126.com
References