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Abstract

There are a number of government directives andlaggns as well as many public schemes
on the recycling of batteries, in spite of thisg tquantity of batteries that are actually
recycled is still very low. Current production cajppa cannot meet projected demand of
Lithium-ion batteries. To counter this, the recldéio@ and repurposing of metals like
cadmium, Lithium and Zinc from used or spent baters the only viable scheme. This is
both environmentally friendly and economically figdes. An alternative is the selective
chemical leaching in the presence of Sulfuric amd Sodium metabisulfite. In this paper,
the effect of these chemicals as well as the goliijuid ratio and time of retention is
comprehensively studied. Experiments are desigaedhe recovery of Zinc and cadmium
from the spend Lithium-ion batteries mix. To maxmithe recovery of Zinc and cadmium,
the combined genetic programming and simulated almgeapproach is proposed. Genetic
programming is used for the formulation of functbrelationship between recovered metals
Zinc and cadmium and the inputs (Solid/Liquid ratoncentration of Sulfuric acithass of
Sodium metabisulfite and retention time). The optimput conditions determined using the
simulated annealing algorithm includes Solid/Liquadio of 11.7%, 0.86 M Sulfuric acid,
0.56 g/g of Sodium metabisulfite and 45 minuteseténtion time. Three dimensions surface
analysis reveals that a lower value of Solid/Liquatio favours a better yield. The optimal
conditions are validated using experiments. Thidioms the efficacy of simulated annealing
aided genetic programming techniques as well asofpténal conditions of the metal
extraction.

Keywords. Spent battery mix; Metal recovery; Recycling; Gémeprogramming;
Bioleaching
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1. Introduction

Cleaner energy storage systems such as Lithiumbaiteries have propelled society to
become more mobile and portable (Nemecek, 19949pietheir considerable advantages,
they still pose significant environmental and he&ldzards. Most of these hazards arise from
improper disposal and storage of end-of-life baterGlobal production and consumption of
batteries has increased disproportionately to ptesaste management measures, causing

both short and long term issues.

Battery packs are extremely flexible in their desand use, being composed of individual
smaller and usually identical cells (Battery pa2@18). They have longer life span of 2-3
years, and their usage in electric vehicles hasalted in decreased environmental impact
when compared to traditional internal combustid®) (€ngine-run vehicles when compared
using a life cycle assessment (Notter et al., 20R8yulations have also been passed limiting
the amount of dangerous chemicals in batteriesgagslty mercury (U.S. Environmental
Protection Agency, 1997). The end product has becamore environmentally friendly than
before while being more efficient and resistantfaiture. Lithium ion batteries have a very
small environmental cost to bear (Boyden, 2014heDbattery chemistries like Ni-Cd pose
more significant environmental threats and risingdpiction levels imply higher rates of their
consumption. Materials like Cadmium and Cobalt hewey adverse effects on both health
and the environment (World Health Organisation, @Qleyssens et al., 2017). There are
several regulations in place limiting the use oéséh materials in most products. Their
disposal and repurposing after they have reachadehd-of-life is severely lacking (Official

Journal of the European Union, 2006).

In some countries, upwards of 250,000 tonnes debes were deemed as waste in 2014

(Eurostat, 2018). In 2016, worldwide consumptionlittfium for battery use was 77,821



metric tons of lithium carbonate equivalent (Statis2018a). Demand for the metal is
projected to reach 422,614 metric tons of lithiuanbonate equivalent (Statista, 2018b) by
the year 2025. Producers are not currently capableneeting this demand. In some
countries, <2% of all lithium batteries are recyclghile the rest are put to landfill (Boyden,
2014). This represents a high threat to publicthg&all & Pope, 1995) and the environment
via the leakage of dangerous chemicals (Andreseii@per, 2012). It also represents a
waste of reusable resources. There is a 30% dectiaasverall cost by using recycled

materials (Rabah et al., 2008).

Rising production demands can be alleviated bygusmaterials from spent batteries that
have undergone a set of recovery and extractiocepses. Each process must start with the
sorting of various batteries based on their chehucanergy contents (Tonteri et al., 2000).
This can be done manually or through some degreitwimation (Bernardes et al., 2004).
The mix so obtained must undergo extraction toinbteetals like Li, Cd, Ni etc. which are
used in further production. These extraction pracesl are usually hydrometallurgical for
lower value metals, but can also by pyrometallaiphysical, chemical or biochemical in
nature (Li et al., 2009). The set of productioratneents depends on the battery chemistry in
guestion (Wang, 2014). One must factor in transpod energy requirements to see the

economic feasibility of recycling spent batteribsu et al., 2014).

Metal extraction via hydro and pyrometallurgicalthwls involves a heavy energy intake, as
well as high security and pollution risks (Roccheét013). An alternative to this is chemical
and biochemical methods of metal extraction. Biciéag is one biochemical technique
which uses bacteria (likAcidithiobacillus ferrooxidans for iron pyrites (Zhang et al., 2008)
and Penicillium citrinum for low grade manganese ores (Acharya et al., 3G02eact with
the metal to yield soluble products. These solghbtelucts then undergo further filtration to

extract metal. This technique provides high yielng requires significant improvements
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before it can be considered commercially viables¢@let al., 2003). Metal solubilisation via
H,SO, can be performed in a single step leaching proeess yields of up to 81% for
Cadmium, 96% of Cobalt, 94% of Manganese, 68% ack&liand 99% of Zinc from a mix

generated from spent batteries.

Previous research focussed on the use of resparfaees methodology (RSM) for modelling
and optimizing the metal yields (Tanong et al., ZORSM is based on assumption of model
structure followed by an estimation of coefficiemighe model using optimization methods.
This method works satisfactorily if the informati@bout the system behavior is known.
Actual engineering problems are often complex, igaftensional, and incomplete
information. RSM is no longer suitable. Predictivedelling methods based on Artificial
intelligence (Al) seems a better alternative. Amdkigmethods, evolutionary approach of
genetic programming (GP) has the ability to aut@rtae model structure and coefficients
estimation resulting in the evolution of the besidel (Woodward et al., 1999). The GP
model has a free non-linear form that has thefitesit can adapt to the system behaviour. A
number of diverse applications for GP techniquesehbeen found, which shows its

effectiveness and efficacy to model the systenangfgiven complexity.

This study aims to propose a combination of GP @imdilated annealing (SA) approach to
maximize the recovery of Zinc and Cadmium. The Hpeworks are listed as follows.
Firstly, the effect of concentration of,50,, mass of Ng5,0s as well as the solid-to-liquid
ratio and time of retention is comprehensively &dd Secondly, experiments are firstly
designed for the recovery of Zinc and cadmium fithve spend Lithium-ion batteries mix.
Thirdly, GP is used for the formulation of functarelationship between recovered metals
Zinc and cadmium and the inputs (Solid/Liquid ratoncentration of Sulfuric acithass of
Sodium metabisulfite and retention time). A compsaea study between GP, the Box-

Behnken model and analysis of variance (ANOVA) gsial has also been performed. Then,
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the optimal input conditions are determined andided¢d using experiments. Finally,
conclusions are then drawn upon the efficacy ofpitogosed approach, as well upon metal

extraction.

2. Research Problem Undertaken

This section discusses the research problem statdorehe combined GP and SA approach
for the study of chemical metal extraction from @erst battery mix. A disproportionate
amount of spent batteries is not recycled, in spiitearious public programmes for the same.
Recycling spent batteries to recycle valuable rsasabne way to reduce rising demands on
production. Recycling batteries consists of sortimgetal extraction and reprocessing.
Existing pyrometallurgical and hydrometallurgicaktraction techniques require a high
energy input while posing significant security gradlution risks. One alternative to the same
would be to use chemical extraction usingsSB, and NaS,0s catalysed chemical leaching.
The various parameters such as Solid/Liquid raoomcentration of BBy, mass of Ng5,05
and retention time affecting the yield are interelggient to some degree and the appropriate
amount of each is unknown that can result in mazatmn of Zn and Cd. The main problem
undertaken in this study is to determine the optimamount of Solid/Liquid ratio,
concentration of bEBOy, mass of Ng5,0s and retention time resulting in maximum recovery
of Zn and Cd from the spend Li-ion batteries mixepiztion of the research problem

statement is displayed as shown in Figure 1.
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Figure 1. Depiction of the research problem statement

3. Design of Experiment

Samples of spent batteries were collected, mandafssembled and sorted according to the
following concentrations (Tanong et al., 2017):8%&2Li-ion, 0.80% lithium iron sulphide,
1.60% Ni-MH, 15% Zn-C, 14.3% Ni-Cd and 68% alkalivegttery. The mix then underwent
screening for alien particles including non-metaliomponents and other contaminants.
Metallic composition of the resultant was then deieed using inductively coupled plasma-
atomic emission (ICP-AE) spectroscaielville, 2014). The battery mix so obtained was

then put through a series of experiments, eachdiftbrent parameters.

Table 1: Box-Behnken optimised parameters

Solid/Liquid ratio concentration of mass of Na,S,05 Retention




(X1) H>S04 (X2) (X3) time(Xy)

LOW 10% 0.5 0.45 15
MIDDLE 15% 1.0 0.60 30
HIGH 20% 15 0.75 45

The mix was added to an Erlenmeyer flask. The pynam was to study the effects of
H.SO, and NaS,0s, as well as to study their interactions. Theggeements involved the
parameters: Solid/Liquid ratio {)x concentration of k6O, (X2), mass of Ng5,0s (x3) and

the Retention time of the mixturefx It was originally designed to be performed usiang
fractional Box-Behnken design, the discretenesthefparameter values. These values are
listed in the Table 1. Based on the given range,rémdom data was generated to simulate
data points, and additive white Gaussian noiseadded. This was done in MATLAB 2016a

as follows:

output_with_noise = awgn (output_without_noise, Sneasured’) 1)

The code required to generate the data set isgedvn Appendix A. It must be noted that
for the data generated, snr value was always s2tThis prevented too much distortion from
the original data while also adding enough noissitaulate experimental error. Noise was
added to the data to prevent it from overfit scesaras well as to simulate experimental
error. The data set after the addition of noiséwdrresponding output is given in Appendix

B.

Additive white Gaussian noise is usually added &badsets to simulate error functions.
Gaussian noise is a statistical noise whose prbtyaldensity function is normally

distributed. This function is given by:



_(z-w?

be (Z) = a\/127'te 20° (2)

where z is the grey levely represents the mean amdhe mean. White Gaussian noise is a
special case of the more general Gaussian noisefewyalues at any pair of times are
identically distributed and statistically indepenti¢Salam, 1998). The necessity of adding
noise arises due to data biasing, which is a compitéad! in predictive models and inversion

algorithms.

The ANOVA and Linear Regression analysis was thppli@d to the original dataset
(Appendix A). This was done to fully compare thdiceicies of all three methods in

modelling the extraction of metal from a spent dgtmix.

4. Genetic programming Approach

Genetic programming (Gandomi et al., 2015), an ppraach stem from the principle of
Darwinian evolution i.e. “Survival of the fittest"The procedure involves randomly
initialising candidate solutions, which are prolgbically chosen to reproduce basing on
their fitness on the output data. Each generat@s dn fixed population size, where each
member is one model. During the initialisatiorng tihitial input and output sets (terminal
set), the function space with which to compose rhegpressions (Figure 2), population and
generation size and the number of genes (inhegitaloldel information) need to be specified.
Each model is usually represented as a tree asnstt/there have been techniques that use

other approaches (Brameier & Banzhaf, 2011).
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Figure 2. Internal representation of models in GP

Each model has a probability of being chosen fer gb-called mating pool depending on
their fitness ratio. This criterion of selectiornvéars models that fit data better while also
maintaining genetic diversity. Reproduction regsiirdhe model information from two

candidate solutions, while mutation modifies thg¢adaf one model alone. Generally,

mutation rates are kept very low.

The main advantage of using genetic programmirigedack of needing to specify specific
model equations unlike other techniques (Huand.e2@18; Garg et al., 2018). GP is able to
generate free form equations depending on the iimgvailable to it in the function space
due to the nature of model reproduction. This afldar the modelling of highly non-linear

models. Another consequence of the technique is s data agnostic nature i.e. the
approach is completely independent of the typeatd,dorovided it is supplied in computable
form. This opens it up to many problems, wheregtrablem is reduced to finding a suitable

representation for the data.

In this study, the model was trained on the datavshin Appendix B. The model was trained
on 80% of the data, tested on 17% while the remgiBPo was used to validate it. Maximum
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tree depth was 9, while the population was limited00 for 65 generations. Best node count
is depended on the data used, where it was 4ehéCd dataset and 110 for the Zn. The
crossover, mutation and direct reproduction prdhggs were set to values of 0.85, 0.1 and
0.05 respectively. Performance evaluation was dsiveg the common functions: Root Mean
Square Error (RMSE) and Mean Absolute Percentager HMAPE). If the research

problems are complex, other criteria such as perdoce index can be considered (Gandomi

& Roke, 2015).

i‘GP_Weldi - Actual _Yield|

RMSE =112 ©)

N

GP _Yield - Actual _Yield|
' x100 )
Actual _Yield. |

MAPE (%) = 12‘
ns

whereGP _Yield is the value predicted ath data sample by the GP modéttual_Yield; is

the actual value ath data sample aridis the number of the training samples

5. Results and Discussions

5.1 Statistical modelling using linear regression and GP

The experimental output is dependent on the fouretaied parameters: Solid/Liquid ratio
(x1), concentration of k80O, (x2), Mass of NaS,0Os (x3) and the Retention time of the mixture
(x4). The correlation matrix is given in Table 2. Frdmble 2, it can be seen that each
parameter has some degree of correlation with eti@r. The linear modelling was unlikely
to be successful. Multiple linear regression moaedse formulated from the data, and the
results justify the findings of the correlation mdat R Square(R?) values (Table 3) for both
outputs were found to be lower, indicating thatnedr regression model is not accurate in

prediction of outputs (Zn and Cd).
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Table 2: Correlation matrix for input parametersand outputs

Solid/Liquid H,.SO, Na,S,05 Retention | Y predicted Y predicted
ratio conc. mass time for Zn for Cd
Solid/Liquid
1
ratio
H,SO, conc. 0.02453313 1
NaxS,0s
-0.045804544 0.1331755 1
mass
64
Retention 0.0769006
0.075367466| 0.0207201 1
time 59
13
Y predicted - 0.1539803 0.0214738
-0.252469158 0.1277014 1
Zn 31 18
56
Y predicted - 0.1188554| 0.1580023
-0.281479146 0.1343630 0.158251496 1
Cd 52 48
65

11

Table 3: Results of Regression for Zn and Cd

Regression Satistics

Metrics Zn Cd
Multiple R 0.326388131 0.364153609
R? 0.106529212 0.13260785

Adjusted R Square

0.068100361

L

0.095300661

Standard Error

7.761167584

7.384879928

Observations

98

98




In this perspective, the two GP models were constcufor the Zn and Cd yield respectively.
Settings of GP was kept based on trial-and-errpragech. The maximum number of genes
was set to 6, and the node functions used wereEBMPLUS, MINUS, RDIVIDE, PLOG,
SINE, COSINE, TAN, PLOG (lagx|), PSQROOT\(x|) and EXP. Tree depth was limited to
9. There were no limits on the number of nodes. 8%e data was used for training, 17%
for the testing and 3% for validation of the modéie best GP models are selected based on

the minimum training error among all the runs.

The results as shown in Figure 3 and Table 4 shbatsthe GP models (Equations Al and
A2 given in Appendix C) performed better than othesdels such as linear regression and
theoretical. This implies that the GP based meigldymodels manages to closely capture

dynamic involved in bioleaching process for actiedds of metals.
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Yield of Cd in %

Yield of Zinc in %

Figure 3. Comparative Analysis of Theoretical, Linear regression and GP for (a) Cd and (b) Zn
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Table 4: Performancesof GP for Zn and Cd

Performance metrics Zn Cd
best training RMSE 8.69e-011 9.17e+00
best training MAPE 5.37e-01 1.65e+01
best test RMSE 1.42e+01 9.48e+00
best test MAPE 1.47e+01 1.55e+01




5.2 Effects of theinputson Zn and Cd yield (%) (3-D analysis)

This section discusses the details on two dimessi@D) and three dimensions (3-D)
analysis for evaluating the effect of inputs (Skliguid ratio, concentration of ¥$0,, mass

of N&S;0s and retention time) on the metals yields (%). Zbalysis is performed by
varying one given input while keeping other inpatsits mean value. 3-D analysis is

performed by varying two inputs, while keeping othat its mean value.

045

0 002 004 006 008 01 012 044 016 018 02
3

bag 0'62 Sesi 0T 0 002 0.04 006 008 01 012 014 016 018 02
X,
X3

(b) (d) ®

Figure 4. 3-D analysis investigating the effect of inputs on the yield of Cadmium. (a) Effect of the
concentration of H,SO, (x;) and Na,S,0s5 (x,) on yield of Cadmium, (b)Contour map of (a), (c)
Effect of concentration of Na,S,05(x,) and Solid/Liquid ratio (xs) on yield of Cadmium, (d) Contour
map of (c), (e)Effect of the concentration of H,SO, (x;) and Solid/Liquid ratio (x3) on yield of
Cadmium, (f) Contour map of (€).
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X3

(f)

Figure 5. 3-D analysisinvestigating the effect of inputs on theyield of Zinc. (a) Effect of the concentration
of H,SO,4 (X;) and Na,S,05 (x,) on yield of Zinc, (b)Contour map of (a), (c) Effect of concentration of
Na,S,05 (%) and Solid/Liquid ratio (x3) on yield of Zinc, (d) Contour map of (c), (e)Effect of the
concentration of H,SO, (x;) and Solid/Liquid ratio (xs) on yield of Zinc, (f) Contour map of (e).

The above graphs indicate how variations in theiingarameters affect the yield of metal.
Common to both graphs is the trend of Solid/Liqtatio; a lower value favours a better
yield. This is especially evident in graph (e) @nc, where the highest value was observed
at a lower value of S/L ratio. In graph (a) for @adm, a peak is observed in the same range,
further confirming the trend. In the Cd graphs &op (e), peaks are seen near the optimal

conditions for HSO, (1-1.5 M) and Ng5,05 (0.45 g/g).
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5.3 Optimization for maximum yield (%) of Zn and Cd

For obtaining the maximum vyield of Zn and Cd, tlfe&pproach was used on the formulated
GP models. SA is a heuristic minimalizing techniquith roots in the annealing of metals.
Optimising algorithms usually generate a randonutsmh and compare it with the points in
its neighbourhood. This can lead to the algoritremg fixed at local maxima/minima, which
is undesirable. SA counters this by introducing pussibility of randomly moving to a
‘worse’ solution instead of a ‘better one. Detaigbout this algorithm is given in

(Kirkpatrick, 1983). It is essentially defined adléws:

1. Start at a high temperature value, with inputsrafi (Temperature is a controlling
parameter which is iteratively scaled down)

2. Compute the cost of random input.

3. Compute the cost of random neighbour.

4. If cost of neighbour is lower, switch current paiatneighbouring point. If the cost of

neighbour is higher, switch basing on probabiligfided as:

costpeighbour—COStcurrent
©)

P(SWltChlng) = e temperature

5. Scale temperature down, and rerun through stepsu@tdl arbitrary accuracy is

reached.

This algorithm will act as a minimiser. Step 4 iedified to switch when cost of neighbour is
higher, otherwise switch probabilistically as defin This acts as a suitable maximising

algorithm. Despite the stochastic nature of therlgm, it is very effective.

In the run, the GP generated model for Zinc wasl asethe cost function to be optimised,
temperature was set to 1.00*1@lpha value as 0.88. SA algorithm was run 10 gimeth

1000 iterations before the algorithm terminatedhe@me. The optimal conditions obtained
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through this method are: Solid/Liquid ratio setlth7%, 0.86 M HSO,, 0.56 g/g of NgS,0s
and 45 minutes of retention time. The obtained tmrd comply well with experimental
runs as mentioned in (Tanong et al., 20The computation of optimal points using SA
aided GP programming is very effective in this casee resilience of the algorithm to noise
is also very good. The optimal conditions for teadhing of metals have been found and
verified. This enables the further experimentaton development of this process. This also
makes similar optimisation of other processes mddde battery recycling possible. This
study focusses on the deterministic optimizationcéftainty is inevitable in the chemical
removal process (Zhang and Lam, 2015). Risk andhibty analysis can be investigated
(Zhang et al., 2017a; 2017b). Intelligent disasdgmloblem (Yun et al., 2018) can be also

solved using the present framework.

6. CONCLUSIONS

The present work proposes the comprehensive studgttmise the chemical metal leaching
of valuable metals from a mix of spent batteriese Dptimisation of the chemical metal
leaching process has been carried out using cowhhisiag Combined genetic programming
and simulated annealing Approach. Experiments werglucted to validate this approach.
The optimal conditions obtained are: Solid/Liquatioc = 11.7%, molarity of }60, = 0.86

M, g/g of NaS,0s = 0.56 g/g and 45 minutes of retention time foximazation of Zn and

Cd from spend batteries. The obtained conditiomspdp well with experimental run3his

enables the further experimentation and developmietitis process. This also makes similar
optimization of other processes needed for battecycling possible. This technique for
metal leaching can be recommended to help fa@lithé recycling of batteries on a large

scale. In this study, we chose an option to maxentie recovery of Zn and Cd. Researchers

17



can also choose other metafnce this study has only four input variables, ¢s&ablished
GP models are acceptable. In the follow-up reseamelv models can be considered to
accommodate higher dimensional problems. Futureksvoshall emphasize on the
incorporation of risk and reliability analysis ohet chemical removal process having
uncertainty and compare the performance to thosdumted in the present study. The current
framework can also be applied to solve intelliggisassembly problem of battery packs for

electric vehicles.
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APPENDICES

APPENDIX A

%f{
this program generates data for experiment number 2.
experiment 2 focuses on the effect of these parameters:
1. solid/liquid ratio
2. concentration of H2SO4
3. mass of N2S205
4 Retention time
%}

sl_ratio = rand(100,1)*0.2

conc_h2so4 = 0.5 + (1.5 - 0.5).*rand(100,1)
mass_na2s205 = 0.45 + (0.75 - 0.45).*rand (100,1)
retention_time = ceil (rand (100,1)*30 + 15)

% these functions return the yield of the respective metal as percentage value.

function [y ] = CdRemovalYield ( x1, x2, x3, x4 )
% gives the yield percentage of Cadmium basing on the factors in the second experiment
y = 36.9 - 25.4*x1 + 33.7*x2 - 5.27*x3 - 0.40*x4

function [y ] = CoRemovalYield ( x1, x2, x3, x4 )
% gives the Cobalt removal yield from the second experiment
y = 37.7 - 21.1*x1 + 30.0*x2 - 2.05*x3 + 0.83*x4

function [ y 1= MnRemovalYield( x1, x2, x3, x4 )
% gives the yield percentage of Manganese basing on the factors of the second experiment
y = 68.2 - 15.7*x1 + 24.1*x2 - 0.47*x3 -0.50*x4 ...

-0.56*(x1.*x3) - 0.04*(x1.*x4) -0.76*(x2.*x3) -1.02*(x2.*x4)...

-2.19*(x3.*x4) - 1.08*(x1.*x1) - 10.3*(x2.*x2) ;

function [ y ] = NiRemovalYield( x1, x2, x3, x4 )
% gives the yield percentage of Nickel basing on the factors of the second experiment
y =13.9 - 22.3*x1 + 28.3*x2 - 3.55*x3 + 2.21*x4 ...

-4.38*(x1.*x4) -6.06*(x2.*x3) + 12.3*(x1.*x1) + 10.2*(x2.*x2) ...

+ 5.15*(x3.*x3) + 6.18*(x4.*x4) ;

function [y ] = ZnRemovalYield( x1, x2, x3, x4 )
% gives the yield percentage of Zinc basing on the factors of the second experiment
y = 57.4 - 18.8*x1 + 29.8*x2 - 4,05*x3 - 0.90*x4 ...

- 3.94*(x1.*x3) + 1.70*(x2.*x3) - 0.46*(x2.*x4) - 2.38*(x3.*x4) ...

- 8.47*(x2.*x2);
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APPENDIX B

The following table lists the noised input param&#nd corresponding outputs.

Input parameterswith noise Recomputed output parameters
e | e | e | oime | Cavied | o | gy | Nivied | 2D
0.129 1.486 0.109 20 75.121 95.929 33.851 2579.40'05.252
0.109 1.900 0.418 23 86.775 110.649  -3.002 3405.92907.987
0.218 0.843 0.749 18 48.626 71.795 22.662 2062.070/4.422
0.080 1.695 1.154 28 74.707 107.785 -57.142 4937.52102.406
0.357 1.071 0.371 23 52.748 80.6Q7 20.272 3330.52678.585
0.081 1.963 1.194 24 85.112 112.361  -50.761 37@0.17110.383
0.169 1.376 0.808 28 63.494 96.974  -25.123 4948.6791.204
0.085 2.240 1.306 19 95.730 116.184 -41.032 2398.93118.539
0.067 1.375 0.697 30 65.865 101.000 -23.244 5684.37 93.119
0.092 1.238 0.342 37 59.695 102.920 -12.783 8586.77 88.575
0.101 1.751 0.048 23 83.875 107.0Y7  22.0b4 3401.76803.668
0.114 0.861 0.629 39 44.110 92.210  -28.897 9506.4636.919
0.124 0.315 1.000 18 31.901 57.428 17.745 2053.25%0.459
0.161 0.198 0.476 27 26.162 61.667 22.396 4561.33(%6.264
0.234 1.056 0.236 16 58.880 77.222 44.435 1649.55(0.454
0.174 1.968 0.470 22 87.527 110.367  -5.973 3122.40008.778
0.134 1.764 0.130 16 85.868 100.814  34.8b7 1699.09103.456
0.072 0.231 0.340 21 32.667 59.847 40.693 2783.53%8.933
0.093 0.246 0.614 20 31.590 58.457 29.621 2526.39(68.980
0.133 1.517 0.692 24 71.402 98.907 -7.827 3669.964€6.107
0.095 0.701 0.527 21 46.915 73.060 28.125 2797.0582.490
0.031 0.964 0.881 20 55.953 80.757 12.080 2559.1981.541
0.057 1.742 0.619 33 77.683 114.866 -43.004 6880.83104.227
0.265 0.467 1.557 43 20.507 78.622 -117.629 11898/ 62.340
0.060 1.231 0.821 44 54.953 108.216 -76.310 12707.5 88.970
0.018 1.038 1.449 22 54.988 83.7581  -24.128 3088.4083.995
0.092 2.153 0.310 30 93.469 124598 -31.094 5791.66115.814
0.048 0.626 0.987 27 40.787 75.865 -11.646 4591.5781.164
0.184 0.407 0.560 31 30.590 70.6Q7 6.294 6004.229 2.066
0.040 0.690 0.951 23 44.943 74.711 2.710 3350.7198 3.222
0.069 0.446 0.769 18 38.944 63.004 27.607 2062.01(5.410
0.110 1.199 0.487 29 60.337 94.412 -1.1%9 5303.61(87.054
0.119 0.304 0.012 21 35.646 61.704 54.993 2781.70160.214
0.031 3.258 0.107 16 138.96¢ 147.8p8 -28.367 1876.6 149.926
0.275 2.300 0.659 44 86.357 136.0y1 -126.p13 12097, 116.774
0.119 1.245 1.227 28 58.175 93.270  -46.409 4949.05@8.270
0.096 1.375 0.543 44 60.361 112.350 -56.85 127d8.44 92.588
0.224 0.001 0.846 38 11.586 62.810 -25.645 8980.91%19.218
0.150 1.116 0.972 16 59.187 79.312 18.151 1656.903.846
0.110 1.250 0.033 36 61.668 102.7p2  13.7B9 8134.0988.593
0.028 1.714 0.842 37 74.725 117.5p4  -74.178 8621.40103.962
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0.106 0.593 0.238 35 38.914 81.794 19.981 7662.1469.057
0.099 2.304 1.246 32 92.661 128.7835 -114.048 6832.4 120.198
0.124 0.803 0.606 22 48.814 76.187 19.950 3065.23774.992
0.061 1.664 1.275 39 69.115 116.097 -118.172 93B4.4 101.849
0.075 1.789 0.446 22 84.129 107.181 3.591 3122.64805.301
0.091 0.591 0.914 27 38.915 74.069 -7.398 4584.2489.323
0.028 1.928 0.437 42 82.067 128.919 -68.711  11089.3 110.332
0.145 1.215 0.508 41 55.074 104.069 -37.912 10889.2 86.871
0.254 0.267 0.022 28 28.127 63.544 46.584 4892.9966.582
0.029 0.927 0.751 25 53.445 84.108 3.099 3958.895 0.478
0.218 2.904 0.554 34 112.694 147.2p3 -112.p72  BB34.| 135.831
0.146 0.308 0.160 43 25.525 79.220 21.842 11514.2169.832
0.236 0.835 0.333 43 40.064 92.736 -12.944  11575.0573.826
0.118 1.324 0.726 33 61.511 100.846  -34.652 6847.06 90.651
0.104 0.973 0.230 25 55.838 84.976 29.987 3953.4090.443
0.187 0.273 0.949 41 19.938 74.020 -47.166  10483.8958.012
0.072 0.662 0.414 29 43.590 79.254 17.647 5285.5781.766
0.012 0.789 1.354 43 38.854 94.036 -104.504 11360.1 76.692
0.342 2.163 0.085 16 94.252 108.4y3  19.9[/3 1708.72711.420
0.192 0.279 0.589 31 25.930 66.549 6.054 5998.§885 8.112
0.088 1.828 0.115 37 80.880 121.1y4  -20.765 86284.20106.237
0.124 1.715 0.103 21 82.604 103.752  25.037 2848.87602.174
0.007 1.022 0.394 26 58.705 89.0Q00 18.9016 4284.6683.739
0.163 0.004 0.898 21 19.757 49.965 13.19 2768.4550.450
0.208 1.089 1.179 25 52.089 84.303 -27.792 3942.8§2@81.932
0.004 0.560 0.891 28 39.791 75.843 -7.024 4937.32670.026
0.255 0.696 0.422 32 38.861 78.900 6.835 6394.624 9.356
0.274 0.749 0.925 17 43.505 66.599 18.9p4 1835.7630.564
0.031 0.039 0.865 32 20.068 63.004 -9.772 6409.57%3.982
0.172 0.744 0.660 24 44.515 74.949 11.8f4 3628.69F2.329
0.127 1.089 0.901 23 56.436 84.942 -3.568 3356.4983.473
0.059 0.262 0.878 23 30.412 61.612 10.3b1 3334.3580.103
0.023 0.793 0.001 20 55.059 77.624 54.240 2556.4896.619
0.164 0.895 1.015 44 39.934 95.517 -82.961  12020.3376.976
0.126 0.923 0.288 44 45.701 98.674 -12.120 12081.3878.550
0.191 2.017 0.210 40 82.923 126.957 -49.582  10848.5 109.923
0.219 3.432 0.817 37 127.909 165.0p1 -191.p90 8807.| 151.572
0.064 2.295 0.479 21 101.67% 121.683 -14.350 2889.8 120.574
0.191 0.801 0.519 26 45.913 78.219 13.280 4249.76(0r3.681
0.031 1.863 1.020 21 85.122 108.2y6  -22.422 28@0.47108.336
0.037 0.168 1.151 16 29.146 52.871 19.5b5 1634.55(%7.703
0.067 2.621 0.490 25 110.947 134666 -47.926 4388.8 130.251
0.165 1.635 0.860 36 68.874 111.383 -70.176 8189.11 99.019
0.004 1.603 0.495 34 74.625 112.923 -29.991 7298.75101.105
0.022 0.243 0.727 32 27.905 69.600 -2.270 6415.98%0.231
0.128 0.845 0.866 29 45.939 82.625 -16.490 5283.9436.157
0.038 0.910 0.263 24 55.627 83.589 32.5p9 3653.9799.813
0.010 0.298 0.654 31 30.839 70.817 4.484 6027.783 2.098
0.270 0.449 0.913 38 25.143 75.126 -41.082 8984.9981.691
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0.177 0.450 0.755 38 28.382 77.449 -26.031 9001.71983.472
0.208 0.117 1.406 33 14.965 61.342 -55.705 6790.3252.989
0.159 0.934 0.190 38 48.125 93.5Q07 7.661 9025.803 8.238
0.136 0.134 0.228 35 22.764 67.436 29.00p2 7641.3584.839
0.227 1.906 0.303 19 86.151 105.224  13.240 2350.38705.918
0.252 1.330 1.009 31 57.608 95.950 -50.035 6031.5288.303
0.246 1.289 1.118 26 57.786 90.456 -34.638 4263.4287.176
0.087 0.989 0.533 18 58.018 79.3§7 31.6P2 2081.6431.241
0.266 1.821 1.000 20 78.217 101.247  -19.481 2577.60102.646
0.017 0.175 0.647 21 30.563 58.7Q00 27.442 2788.2358.299
APPENDIX C

The model equations for Zinc yield in % is:

sin(exp(((x3)+((9,440839)))+(cos(xl)))))
*
x3

Yzn = 97.867 + (132.4566) * = +(—9.4264) * ((x3) + (x3)) + (0.45898) * <
(x3)*((H+"1135))+(sin((—29.969512))))

<(tan (((x4) * (xl)) * (cos(xl)))) - <<wsx_#3)> * (((x4) + (xl)) * (plog (x3))))>> + (—0.00097061) = <(((x3) + (x4)) + (plag (xZ))) -

sin(sin(x1))
an( GDFGEDY
/ ‘a"((xs)»m)) \
exp( sin( (£2)+(tan((2.478800)))
<<(x3) * ((g) + (i—j))) . (tan(x3)))> +(8.3473) (onf( ) |+ (0.18178) *
exp(exp((-1. ) x )
tan(((plog(zi))“ziin(l(izizzlzlz)sl))))+(ploy<((fo.7341135))+(Sm((729'969512)»)))/

(

x1
sin(sin(tan(x1)))
(1) +(x1
()
p(sin

A Ga)e(x2)

xo{sin{ (23 +(can((z4750001))

N—

(A1)

and that for Cadmium yield in % is:

Yea =

41.7032 + (—4.3431) *

<sin ((((squa_re((—23.617098))) * (xZ)) ~ ((psaroot(x#)) - (sin((s.202223))))> ~ ((psqroot (xa)) - (sin((5.202223))))>) +(0.0024014) *
cos(square(x4))

((square(xz)) + <<(COS(square(x4))) + (*)) - (x4))> + (4.5706) (((cos(exp(cos(square(x4))))) * (sin(x4-))) - (Siﬂ(X1))) +

(—2.9824) * <sin ((sin(psqroat(xz))) * (m))) + (3.5601) *

<(square(sin(x4))) - ((cos(exp(cos(square(x4))))) - (exp (psqroot(psqroat(xB)))))> + (0.0054371) * <<sin ((sin(psqraot(xz))) *

(cos(sqji:re(x‘t)))>) - ((sin(x4)) * ((square(x4—)) + (square(xZ)))))
(A2)
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Problem of Maximum Extraction of Cadmium and Zinc from spent battery mix is undertaken
Combined Genetic Programming and Simulated Annealing approach is proposed
Genetic programming models fits the cadmium and zinc output very well

Simulated annealing optimizes the Genetic programming model to obtain the optimum inputs



