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Detecting glaucoma based on spectral domain optical coherence
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Abstract
Purpose To develop a deep learning (DL) model for automated detection of glaucoma and to compare diagnostic capability
against hand-craft features (HCFs) based on spectral domain optical coherence tomography (SD-OCT) peripapillary retinal nerve
fiber layer (pRNFL) images.
Methods A DLmodel with pre-trained convolutional neural network (CNN) based was trained using a retrospective training set
of 1501 pRNFLOCT images, which included 690 images from 153 glaucoma patients and 811 images from 394 normal subjects.
The DL model was further tested in an independent test set of 50 images from 50 glaucoma patients and 52 images from 52
normal subjects. A customized software was used to extract and measure HCFs including pRNFL thickness in average and four
different sectors. Area under the receiver operator characteristics (AROC) curves was calculated to compare the diagnostic
capability between DL model and hand-crafted pRNFL parameters.
Results In this study, the DL model achieved an AROC of 0.99 [CI: 0.97 to 1.00] which was significantly larger than the AROC
values of all other HCFs (AROCs 0.661 with 95% CI 0.549 to 0.772 for temporal sector, AROCs 0.696 with 95% CI 0.549 to
0.799 for nasal sector, AROCs 0.913 with 95% CI 0.855 to 0.970 for superior sector, AROCs 0.938 with 95% CI 0.894 to 0.982
for inferior sector, and AROCs 0.895 with 95% CI 0.832 to 0.957 for average).
Conclusion Our study demonstrated that DL models based on pre-trained CNN are capable of identifying glaucoma with high
sensitivity and specificity based on SD-OCT pRNFL images.
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Introduction

Glaucoma is an optic neuropathy characterized by a slow pro-
gressive degeneration of retinal ganglion cells (RGCs), which
leads to irreversible visual field defects [1]. Structural alteration
of the optic nerve head (ONH) and retinal nerve fiber layer
(RNFL) is an early sign of glaucoma [2]. Newer ocular imaging
methods, such as spectral domain optical coherence tomography
(SD-OCT), allow for noninvasive quantitative imaging of these
affected structures in order to facilitate the detection and moni-
toring of glaucoma [3]. As peripapillary RNFL (pRNFL) com-
prising the axons of all RGCs from the entire retina, pRNFL
parameter measurement is currently themost commonly utilized
OCT parameter for clinical glaucoma assessments [4]. Several
studies have reported good diagnostic ability of pRNFL param-
eters in glaucoma using SD-OCT [5, 6]. These, as well as most
of the previously studies with hand-crafted features (HCFs),
have employed an object segmentation including hand-
designed program, followed by utilizing domain knowledge to
manually or semi-automatically extract features, like pRNFL
thickness, and finally make diagnosis using statistical classifiers
or shallow neural computational machine-learning classifiers
designed specifically for each class of objects [3, 7].

The advantage of HCFs is that they can reflect expert
knowledge by selecting and analyzing features which are suit-
able for a given problem, like glaucoma. However, hand-
designed program and feature extraction may be difficult
and time-consuming. By contrast to hand-craft features, deep
learning (DL) algorithms learn the most predictive features
directly from the images. The DL methods have been applied
to various medical imaging modalities, such as fundus pho-
tography, lung radiography, computer tomography (CT), and
MRI [8–11]. Moreover, some studies have report DL model
significantly outperformed other machine learning methods
for detection of glaucomatous visual field (VF) change [12].
To the best of our knowledge, there exists no study that com-
pares diagnostic accuracies of DLmodel and HFCs of pRNFL
parameters obtained with SD-OCT to differentiate normal
eyes from eyes with glaucoma. Thus, the purpose of this study
was to evaluate the efficacy of a DL model for detecting of
glaucomatous pRNFL changes and to compare the DL model
against HCFs based on SD-OCT pRNFL imaging.

Methods

Chinese subjects above the age of 20 years were prospectively
recruited from Joint Shantou International Eye Center of
Shantou University and the Chinese University of Hong
Kong (JSIEC). All participants engaged in an informed con-
sent process and signed a written consent document before
study procedures were carried out. This study was conducted

according to the tenets of the Declaration of Helsinki and had
the approval of the institutional review board.

Examinations and inclusion criteria

All subjects were asked about their medical and ophthalmic
history and underwent a standardized ophthalmic examination
including: slit-lamp examination, Snellen visual acuity, intra-
ocular pressure (IOP) measurement by Goldmann applanation
tonometry, stereoscopic optic disc examination with a 78-D
Volk lens, gonioscopy performed in the dark using a
Goldmann 2-mirror lens, as well as VF testing (Humphrey
Field Analyzer II-750i, Carl Zeiss Meditec).

Glaucomatous eyes were defined by the glaucomatous ap-
pearance of the optic nerve head on color fundus photographs,
regardless of the presence or absence of glaucomatous VF de-
fects. These characteristic changes in the optic nerve head in-
cluded glaucomatous optic disc cupping, peripapillary atrophy,
neuroretinal rim notching, wedge-shaped defects of RNFL ad-
jacent to the edge of optic disc, and optic disc hemorrhage.
Glaucomatous VF defects were defined as those with a cluster
of three points with probabilities of < 5% on the pattern devi-
ation map in at least 1 hemifield, including at least 1 point with
a probability of < 1%, or a cluster of two points with a proba-
bility of < 1%, and/or a glaucoma hemifield test (GHT) result
outside normal limits. Other inclusion criteria included (1) age
> 40 years old and (2) no concomitant ocular disease, like
retinal disease, diabetic mellitus, or significant senile cataract
that could affect the results of SD-OCT examinations.

Inclusion criteria for the normal control groupwere (1) age >
20 years old; (2) best corrected visual acuity of 20/40 or better
with spherical equivalent refractive errors between − 6.0 and
3.0 diopters; (3) intraocular pressure of 21mmHg or less; (4) no
history of glaucoma, retinal disease, diabetic mellitus, or signif-
icant senile cataract that could affect the results of SD-OCT
examinations; (5) normal VF which was defined as a mean
deviation (MD) and pattern standard deviation (PSD) within
95% confidence limits and a GHT result within normal limits.

SD-OCT imaging and hand-crafted features of pRNFL

SD-OCT imaging of pRNFL was carried out with Topcon 3D
OCT-2000 (Topcon, Tokyo, Japan, software version:
8.11.003.04) by experienced operators (X.L, B.C, and J.Y).
The SD-OCTuses a super luminescent diode laser with a center
wavelength of 840 mm and a bandwidth of 50 nm as a light
source. The acquisition rate of the SD-OCT is up to 20,000 A-
scans per second. The transverse and axial resolutions were 20
and 5 μm, respectively. A 3D scan disc protocol was used for
pRNFL imaging in this study. Only images with a quality factor
> 45 were used for analyses. RNFL imaging with 1024 points
of resolution on a 3.46-mm circle diameter was exported and
saved as .jpg format for quantitative analysis.
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A customized software (Anterior Segment Analysis
Program (ASAP)) was used to quantify pRNFL parameters,
including thickness in four different sectors (nasal, temporal,
superior and inferior) and on average. ASAP is a plug-in for
image processing software (ImageJ version 1.38x; public do-
main software, http://imagej.nih.gov/ij/) [13]. The detail of
this software had been reported by us and other research
groups [14, 15]. After automatically delineating the
boundary of pRNFL, the software then automatically
calculated the pRNFL thickness, which include the overall
average thickness in 360°, with 315° to 45° position
designated temporal, 225° to 315° position inferior, 135°to
225° position nasal, and 45°to 135° position superior (Fig.
1). The inter-observer reproducibility of ASAP was assessed
using a random subset of 20 images as evaluated by two ex-
aminers (X.L and C.Z) independently. The reproducibility of
the ASAP was good to excellent, with an intra-class correla-
tion coefficient that ranged from 0.792 to 0.979 for all the
RNFL parameters. We used receiver operating characteristic
(ROC) curves to describe the ability to discriminate
glaucomatous from healthy eyes for each pRNFL parameter.

Datasets

Two datasets were included in this study. The first dataset,
consisted of 1501 peripapillary RNFL OCT images obtained
from153 glaucoma patients with 690 images and 394 normal
subjects with 811 images, was selected from a prospective
study at JSIEC between September 2013 and August 2014.
We had reported some of the results previously [16]. Briefly,
the study was designed to investigate the profile and determi-
nant of hand-crafted features in SD-OCT imaging with a semi-
automatic software. This dataset was further randomly divided
into two sets: a training set (80%with 552 images of glaucoma
and 649 images of normal subjects) for the development of the
algorithm and a development set (20% with 138 images of
glaucoma and 162 images of normal subjects) for monitoring
the performance of the trained model.

The other testing dataset, which included 50 images from
50 glaucoma patients and 52 images from 52 normal subjects,
was used for evaluation of the algorithm and comparison of
the algorithm with RNFL parameters. Subjects in the testing
dataset were enrolled prospectively after the training dataset
were established from the same center. The inclusion and ex-
clusion criterion were identical for both the training dataset
and testing dataset except that age was above 40 years old in
normal subjects of testing dataset.

Development of Deep Learning Model

We used transfer learning with fine-tune technique to build the
classifier in this study. To achieve this, a modified
convolutional base of convolutional neural network (CNN)

model with weights pre-trained on ImageNet was used as
DL model [17]. The pre-trained weights of DL model were
further fine-tuned on our dataset for classification. The applied
CNNwas Inception-V3with 159 layers (Google Inc) [18]. The
DL model was implemented in Tensorflow framework
(Google, version 1.10.0) with Keras API (version 2.2.4). All
images were resized to 224 × 224 pixels as required by Keras
API. Image pixel values were scaled to values in a range of 0
through 1. Data augmentation was performed to increase the
amount and type of variation within the training dataset, in-
cluding horizontal flipping, rotation of 20°, and sharpening
and adjustments to saturation, brightness, contrast, and color
balance. Training was then performed by a minibatch gradient
descent of size 32 with an Adam optimizer learning rate of
0.001. Training was run for 100 epochs, as the loss of the
model decreased and the accuracy of the validation set
increased.

To visualize the most predictive features for detecting
glaucomatous pRNFL changes, a class activation map
(CAM) was used to open the “black box” of DL model [19].
ACAM is a 2D grid of heatmap associated with a specific
output class, computed for every location in any input image,
indicating how important each location is with respect to the
class considered.

Statistical analysis

The Student t test or Mann-Whitney test was used to evaluate
demographic and clinical differences between normal subjects
and glaucoma patients. The mean and standard deviation of
the following parameters were calculated: age, spherical
equivalent, axial length, visual field (MD and PSD), image
quality score, and pRNFL thickness in overall average and
four different quadrants. The diagnostic accuracy of DL mod-
el and each pRNFL parameter to differentiate between normal
and glaucomatous eyes was determined by computing the area
under the curve (AUC) of ROC, sensitivity, specificity, and f1
score with 95% confidence intervals. Sensitivities at fixed
specificities of 80% and 90% were determined for DL model
and all the pRNFL parameters. Comparison of AUC was car-
ried out using DeLong’s method [20]. All statistical analyses
were carried out using commercial statistical software (IBM
SPSS Statistics v. 17 for Windows; SPSS Inc. Chicago, IL)
and statistical programming language Python (ver. 3.5.1,
Python Software Foundation, Beaverton, USA).

Results

Demographics of the training and testing sets are given in
Table 1. In testing set, mean age was 53.57 and 50.70 years
for normal [range 40–76 years] and glaucoma [range 24–72
years] subjects respectively. In training set, mean age was
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41.84 and 49.54 years for normal [range 18–80 years] and
glaucoma [range 21–76 years] subjects respectively.
Comparison of HCFs, including pRNFL thickness on average
and in four different sectors, is shown in Table 2. The average
and different sectors of pRNFL thickness were significantly
smaller in the glaucoma group compared with the normal
group in both training and testing datasets (all with p <
0.001) except for nasal sector.

The training curve for the DLmodel is shown in Fig. 2. We
trained each DL model for 100 epochs (iterations through the
entire dataset) until the absence of further improvement in
both accuracy and loss function. As shown in Fig. 2, the loss

function value and accuracy rate of both training and valida-
tion dataset changed dramatically at the first five epochs and
then stabilized after that, showing that our DL models reach
good convergence.

Using the pRNFL thickness in four different sectors, the
AUC obtained in the independent test set varied between
0.661 and 0.938 (the lowest AUC value of 0.661 with 95%
CI 0.549 to 0.772 for pRNFL thickness in temporal sector, the
highest AUC value of 0.938 with 95% CI 0.894 to 0.982 for
pRNFL thickness in inferior sector respectively), as shown in
Table 3 and Fig. 3. The DL model achieved an AUC value of
0.990 [95% CI 0.974 to 1.000], which was significantly larger

Fig. 1 Overview diagram of
classic machine learning with
hand-crafted features vs. deep
learning. a A classic machine
learning with hand-crafted fea-
tures (HCFs) involves an object
segmentation using hand-
designed program, follows by
utilizing domain knowledge to
manually or semi-automatically
extract features, and finally makes
diagnosis using statistical classi-
fiers or machine-learning classi-
fiers to make a prediction. b A
deep learning approach learns the
most predictive features by a se-
ries of hidden layers which ex-
tracts increasingly abstract fea-
tures from the image directly
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than the AUC values of all other HCFs (p < 0.001, DeLong’s
method with Holm’s method for multiple comparisons).
CAMs were generated to visualize the regions on SD-OCT
imaging that were most important for the glaucoma predic-
tion. Figure 4 shows two examples of the strongest activations
within the DL model, after being assigned the positive for
glaucoma. For normal pRNFL imaging, no area is activated.
Most of the pRNFL area has been activated by CNN in glau-
coma. This shows that the network is focusing on the part of
the image where the glaucomatous changes are present.

Discussion

In this study, we had shown that a DL model was effective at
distinguishing glaucoma from normal SD-OCT imaging of
pRNFL, and its accuracy was higher when compared with
pRNFL parameters which were extracted by a hand-crafted

software. Our results demonstrated the possibility of applying
DL to assist screening and diagnosis of glaucoma in SD-OCT
images.

SD-OCT is widely used for glaucoma detection, and
peripapillary RNFL analysis represents the scanning protocol
most used for routine patient management. Both manual and
semi-automatic methods have been reported to diagnose glau-
coma based on SD-OCT images. By using build-in software,
Harsha et al. reported AUC between 0.792 and 0.884 for
pRNFL parameters, which was comparable to the current
study [21]. Using RTVue-100 system, Seong et al. report a
higher AUC value from 0.921 to 0.976 for pRNFL parameters
in patients with different glaucoma stages [22]. Although there
are differences in the dataset and reference standards com-
pared with the previous studies, the present study extends this
body of work by using DL model with high sensitivity and
specificity. Our study had a unique difference when compared
with the previous studies. Most previous studies used HCFs,

Table 1 Demographics of the training and testing datasets

Testing set Training set

Normal (n = 52) Glaucoma (n = 50) p* Normal (n = 394) Glaucoma (n = 153) p* p+ p++

Age, y (mean ± sd) 53.57 ± 10.06 50.70 ± 15.01 0.262 41.84 ± 16.55 49.54 ± 16.05 < 0.001 0.652 < 0.001

Gender (male/female) 20/32 42/8 < 0.001 191/203 101/54 < 0.001 0.005 0.173

Eye (OD/OS) 27/25 26/24 0.984 196/198 81/72 0.503 0.908 0.769

Spherical equivalent (D) 0.14 ± 0.29 − 0.90 ± 2.43 0.006 − 1.07 ± 1.96 − 1.36 ± 3.26 0.298 0.353 < 0.001

Axial length (mm) 23.05 ± 0.84 23.88 ± 1.22 0.030 23.88 ± 1.15 24.15 ± 1.60 0.150 0.315 < 0.001

Visual field MD(dB) − 1.04 ± 1.46 − 12.63 ± 10.84 < 0.001 − 1.00 ± 1.32 − 12.90 ± 10.93 < 0.001 0.879 0.818

Visual field PSD(dB) 1.58 ± 0.47 6.31 ± 4.21 < 0.001 1.50 ± 0.44 6.54 ± 4.00 < 0.001 0.716 0.164

Image quality score 57.81 ± 4.49 53.60 ± 3.83 < 0.001 55.24 ± 4.21 51.95 ± 6.19 < 0.001 0.077 < 0.001

p* comparison between glaucomatous and normative eyes in the training or testing dataset, p+ comparison between glaucomatous eyes in the training
dataset and those in the testing dataset, p++ comparison between normative eyes in the training dataset and those in the testing database

Table 2 Comparison of pRNFL parameters between training and testing set

Training set Testing set

Normal (n = 52) Glaucoma (n = 50) p* Normal (n = 394) Glaucoma (n = 153) p* p+ p++

Parameters Mean (95% CI) Mean (95% CI) Mean (95% CI) Mean (95% CI)

pRNFL thickness

Average 108.69 ± 10.09 80.74 ± 18.64 < 0.001 106.97 ± 14.44 78.10 ± 20.39 < 0.001 0.539 0.115

Inferior sector 139.10 ± 15.71 90.76 ± 25.65 < 0.001 133.73 ± 13.82 89.87 ± 28.55 < 0.001 0.305 0.362

Superior sector 129.54 ± 13.49 88.26 ± 24.01 < 0.001 128.72 ± 13.67 90.82 ± 25.44 < 0.001 0.228 0.665

Nasal sector 84.94 ± 14.85 73.44 ± 17.02 0.389 78.87 ± 15.00 68.93 ± 15.14 0.778 0.278 0.805

Temporal sector 80.75 ± 10.76 70.14 ± 18.64 < 0.001 86.00 ± 14.43 66.35 ± 17.63 < 0.001 0.57 0.023

p* comparison between glaucomatous and normative eyes in the training or testing dataset, p+ comparison between glaucomatous eyes in the training
dataset and those in the testing dataset, p++ comparison between normative eyes in the training dataset and those in the testing database
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which are labor intensive and need to be specified by
experts. The supervised DL technologies adopted in this
study allow training entirely end-to-end. This would help

to aid in the implementation of large-scale screening pro-
grams by providing quick and objective SD-OCT image
assessment.

Fig. 2 The training curve for the
deep learning model. The loss
function value and accuracy rate
of both training and validation
dataset changed dramatically at
the first 5 epochs and then
stabilized after that, showing that
our DL models reach good
convergence

Table 3 The diagnostic performance of DL model as compared with hand-crafted features of pRNFL imaging

Accuracy (95% CI) p Sensitivity at 80% specificity (%) Sensitivity at 90% specificity (%)

Deep learning models 0.990 (0.974 to 1.000) 0.981 0.981

pRNFL thickness

Average 0.895 (0.832 to 0.957) < 0.001 0.865 0.577

Inferior sector 0.938 (0.894 to 0.982) < 0.001 0.971 0.730

Superior sector 0.913 (0.855 to 0.970) < 0.001 0.885 0.620

Nasal sector 0.696 (0.594 to 0.799) < 0.001 0.346 0.250

Temporal sector 0.661 (0.549 to 0.772) < 0.001 0.135 0.077

Graefes Arch Clin Exp Ophthalmol



The application of DL is usually limited due to the lack
of large training sets, like several tens of thousands of
examples to train DL model effectively. Given a finite
amount of OCT images can be prepared in the clinical
setting, several authors suggested to use transfer learning
to improve the performance of DL model. Transfer learn-
ing has proven to be a highly effective technique and been
widely used in multiple medical domains with limited
data [7, 23]. Rather than training a completely blank net-
work, we adapted DL model base pre-trained on the
ImageNet dataset which involved more than 14 million
images with 1000 classes. After running pre-trained
CNN base over our dataset, we then extended the models
by adding dense layers on top and running the whole
thing end-to-end on the input data. These techniques yield

a more accurate model in much less time with relatively
small dataset.

Deep learning models have often been functionally so-
called black boxes because it is difficult to determine how
DL makes its predictions [24]. CAMs are tools that can help
aid visualization of a CNN. It is interesting to notice that
features outside RNFL region also contribute to DL model
predictions. Previous studies had reported several other
glaucomatous structure defects, such as the ganglion cell layer
(GCL) and peripapillary microvascular changes [25, 26]. It is
possible that CAMs will prove to be even more useful to
reveal the structure–function relation in glaucoma.

Our study has several limitations. First, our DL
models are developed based on Topcon model. It had
been reported that pRNFL thickness values obtained by
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Topcon OCT are significantly higher than those mea-
sured by Cirrus OCT in both normal and glaucomatous
eyes [27]. Second, the macular data of SD-OCT was not
available in the training set in current study. Some sys-
tematic review has reported pRNFL parameters are still
preferable to macular parameters for diagnosing manifest
glaucoma, although the differences are small. Third, pre-
vious study had reported the effects of peripapillary at-
rophy on the diagnostic ability of SD-OCT parameters.
Further studies are needed to explore the effect of
peripapillary atrophy on DL model developed in this
study [28]. Fourth, all SD-OCT images were collected
from the same center and external validation test is need-
ed to confirm the diagnostic performance in different
centers or OCT devices in the future. Also, most of the
glaucoma cases were quite severe and this made classi-
fication easier in the current study. Lastly, we used im-
ages of Chinese eyes only, so our results may not be
applicable to other populations.

In spite of these limitations, DL model developed in this
study has achieved higher sensitivity and specificity compared
to traditional HCFs. DL has a high diagnostic capability and
may help screening and diagnosis of glaucoma in clinic.
Further studies with larger dataset are needed to evaluate
whether DL model also predict other clinical outcomes, in-
cluding pRNFL imaging from different eye center, OCT de-
vices, different size or appearance of optic disc, or different
glaucoma stages.
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