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a b s t r a c t

This paper proposes a novel constraint-handling mechanism, namely the angle-based constrained dom-
inance principle (ACDP), to solve constrained multi-objective optimization problems (CMOPs). In this
work, the mechanism of ACDP is embedded in a decomposition-based multi-objective evolutionary al-
gorithm (MOEA/D). ACDP uses the angle information among solutions of a population and the proportion
of feasible solutions to adjust the dominance relationship, so that it can maintain good convergence,
diversity and feasibility of a population, simultaneously. To evaluate the performance of the proposed
MOEA/D-ACDP, fourteen benchmark instances and an engineering optimization problem are studied.
Six state-of-the-art CMOEAs, including C-MOEA/D, MOEA/D-CDP, MOEA/D-Epsilon, MOEA/D-SR, NSGA-
II-CDP and SP, are compared. The experimental results illustrate thatMOEA/D-ACDP is significantly better
than the other six CMOEAs on these benchmark problems and the real-world case, which demonstrates
the effectiveness of ACDP.

© 2018 Published by Elsevier B.V.

1. Introduction

Multi-objective optimization problems (MOPs) involve the op-
timization of more than one objective function. In the real world,
many optimization problems involve a number of constraints and
multiple conflicting objectives. In general, a CMOP canbedescribed
mathematically as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

minimize F(x) = (f1(x), . . . , fm(x))T

subject to gi(x) ≥ 0, i = 1, . . . , q

hj(x) = 0, j = 1, . . . , p

x ∈ Rn

(1)
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where F (x) = (f1(x), f2(x), . . . , fm(x))T ∈ Rm is an m-dimensional
objective vector, gi(x) ≥ 0 is the ith inequality constraint, and
hj(x) = 0 is the jth equality constraint. x ∈ Rn is an n-dimensional
decision vector. The feasible region S is defined as the set {x|gi(x) ≥
0, i = 1, . . . , q and hj(x) = 0, j = 1, . . . , p}.

In CMOPs, there are usually more than one constraint. To cap-
ture the degree of constraint violation, these constraints are com-
monly summarized into a scalar value as follows:

φ(x) =
q∑

i=1

|min(gi(x), 0)| +
p∑

j=1

|hj(x)| (2)

When φ(x) = 0, the solution x is feasible; otherwise it is infeasible.
For any two feasible solutions xa ∈ Rn and xb ∈ Rn of a CMOP, it

can be said that xa dominates xb if the following condition is met:

∀i fi(xa) ≤ fi(xb) and ∃j fj(xa) < fj(xb) (3)

where i, j ∈ {1, 2, . . . ,m}. If there exists a solution x∗ ∈ S that
is not dominated by any other solution in S, x∗ can be said to be a
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Pareto optimal solution. The set of all Pareto optimal solutions is
called a Pareto set (PS). The set of the vectors in the objective set
to which the PS maps is called the Pareto front (PF), which can be
defined in the form PF = {F (x)| x ∈ PS}.

Maintaining a balance among convergence, diversity and feasi-
bility of a population is very criticalwhen solving CMOPs. There are
two basic aspects of maintaining the balance of these three met-
rics in constrained MOEAs (CMOEAs). One is the multi-objective
optimization method and the other is the constraint-handling
technique. Multi-objective evolutionary algorithms (MOEAs) are
widely used to solve MOPs, because MOEAs can, in a single run,
evolve a set of non-dominated solutions that approach the global
optimum and are well distributed. According to the selection
strategy used in the evolutionary process, MOEAs can be classified
into three different types. The first type is the dominance-based
MOEA, which uses a selection strategy based on Pareto domina-
tion. A popular MOEA of this type is NSGA-II [1], which adopts
a non-dominated sorting and elitism-preserving strategy. Other
representative dominance-based algorithms include NSGA [2],
MOGA [3], SPEA [4], PAES-II [5], SPEA-II [6] and NPGA [7]. The
second type is the decomposition-based MOEA. A representative
example is MOEA/D [8], which decomposes an MOP into a number
of single-objective optimization problems(SOPs). In recent years,
decomposition-based MOEAs have attracted much attention, and
many variants ofMOEA/D have been proposed, includingMOEA/D-
DE [9], MOEA/D-M2M [10], EAG-MOEA/D [11], MOEA/D-SAS [12]
and so on. The third type of MOEA is the indicator-based MOEA.
A classic example of this type is IBEA, which uses a scalar metric
index to assist the selection [13]. Other representative examples of
this type include SMS-EMOA [14], HypE [15] and FV-MOEA [16].

The constraint-handling technique is the other key component
in CMOEAs. In general, constraint-handling methods can be classi-
fied into four types. The first type is the feasibility-driven method,
which tends to preserve feasible solutions in a population. Coello
Coello and Christiansen [17] proposed a simple method, in which
infeasible solutions are all ignored during the evolutionary process.
Deb et al. proposed a constrained dominance principle (CDP) [18]
to compare two arbitrary solutions. CDP has three basic rules: (1)
When two feasible solutions are compared, the one dominating
the other in terms of objectives is better. (2) When a feasible
solution is compared with an infeasible one, the feasible one is
better. (3) When two infeasible solutions are compared, the one
with a smaller degree of constraint violation is better. Powell and
Skolnick [19] proposed a constraint-handling technique named
superiority of feasible solution (SF). For an infeasible solution, its
fitness is defined as the sum of the objective value of the worst
feasible solution (fworst ) and the constraint violation φ(x) of the
infeasible solution, whereas the fitness of a feasible solution is
simply equal to its objective value. Therefore, feasible solutions
are always better than infeasible solutions. The above feasibility-
driven constraint-handling methods have not taken full advantage
of the useful information contained in the infeasible solutions,
which may lead them to become trapped in local optima.

The second type trades off the feasibility and convergence of
a population simultaneously. Jimsenez et al. proposed a min–
max formulation [20], which drives infeasible solutions to evolve
toward feasible ones, and drives the feasible solutions to evolve
toward the global optimum. Young proposed a non-dominated
ranking method [21] which blends the ranks of a solution in both
objective and constraint spaces. Singh proposed an infeasibility-
driven evolutionary algorithm (IDEA), which maintains a small
proportion of infeasible solutions in the population to improve the
convergence [22]. In [23], a stochastic ranking method (SR) was
proposed, in which solutions are compared based on objectives or
constraints randomly with a probability Sr . Takahama et al. pro-
posed an ϵ constraint-handling method [24]. When the constraint

violation of a solution is smaller than ϵ, it is regarded as a feasible
solution. In [25], an adaptive ϵ constraint-handling method was
proposed. Ning proposed a constrained non-dominated rank based
on the constraint violation and Pareto rank [26] to balance the
feasibility and convergence. Most constraint-handling methods of
this type do not explicitly consider a mechanisms to maintain
diversity of the population, especially for solving CMOPswith large
infeasible regions.

The third type is the penalty-based method. Woldesenbet et al.
proposed an adaptive penalty function, which consists of a dis-
tance value and two penalty values [27]. Jan and Zhang proposed
a penalty function for MOEA/D. It adopts two types of penalty
functions [28]. However, the ideal penalty factors are difficult to
set in advance.

The fourth type is the hybrid method, which combines parts
of several constraint-handling methods to deal with constraints.
Wang et al. proposed the adaptive tradeoff model (ATM) [29]. In
ATM, the evolutionary process is classified into three phases. In
each phase, a different constraint-handling method is adopted. Qu
et al. proposed an ensemble method to deal with constraints [30].
It has several sub-populations, and each sub-population uses a
different constraint-handling method.

It can be concluded that most of the existing constraint-
handling methods emphasize treating convergence and feasibility
during the evolutionary process, while diversity is usually not
explicitly considered and well maintained. In this paper, we pro-
pose a new constraint-handling method named ACDP, which can
maintain good diversity as well as convergence and feasibility of
a population simultaneously. The method uses the angle informa-
tion among solutions of a population and the proportion of feasible
solutions to adjust the dominance relationship.

The rest of this paper is organized as follows: Section 2 briefly
introduces MOEA/D, NSGA-II and six representative CMOEAs. Sec-
tion 3 introduces the details of the angle-based constrained dom-
inance principle embedded in MOEA/D. Section 4 gives compre-
hensive experimental results of the proposed algorithm MOEA/D-
ACDP and six other CMOEAs on LIR-CMOPs and the I-beam opti-
mization problem. Finally, conclusions are made in Section 5.

2. Related work

2.1. Decomposition-based CMOEAs

In the original framework of MOEA/D [8], given a series of
uniformly distributed weight vectors, a MOP is decomposed into
N scalar subproblems (SOPs), and each SOP relates to one solution.
In MOEA/D, a set of N uniformly spread weight vectors λ1, . . . , λN

is initially generated forN subproblems. Aweight vectorλi satisfies
the following conditions:
m∑

k=1

λi
k = 1 and λi

k ≥ 0 for each k ∈ {1, . . . ,m}. (4)

There are several approaches to decompose a MOP into a num-
ber of scalar optimization subproblems [8,31]. Three decompo-
sition approaches, including the weighted sum [31], Tchebycheff
[31] and boundary intersection approaches [8] are commonly used.
In this paper, the Tchebycheff decompositionmethod is used in the
MOEA/D framework. The jth subproblem is defined as follows:

minimize g te(x|λj, z∗) = max
1≤i≤m

{
1

λ
j
i

|fi(x)− z∗i |

}
subject to x ∈ S (5)

where z∗ = (z∗1 , . . . , z
∗
m) is the ideal point, and z∗i = min{fi(x)|x ∈

S}.
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Decomposition-based CMOEAs combine the MOEA/D with dif-
ferent constraint-handling mechanisms. In this paper, we intro-
duce four representative decomposition-based CMOEAs includ-
ing C-MOEA/D [25], MOEA/D-CDP [32], MOEA/D-Epsilon [33], and
MOEA/D-SR [32].

• C-MOEA/D [25] uses a variant of the epsilon constraint-
handling technique. In this technique, the epsilon level is set
to handle constraints according to the constraint violation
and the proportion of feasible solutions in the current popula-
tion.When comparing any two solutions, if overall constraint
violations of the solutions are both less than the epsilon level,
the one with a better aggregation value dominates the other.
Otherwise, the onewith a smaller overall constraint violation
dominates the other.
• MOEA/D-CDP [32] uses CDP to judge the dominance rela-

tionship between two arbitrary solutions. The comparison
between two solutions is based on the following two rules:
(1) When two feasible solutions are compared, the one with
a better aggregation value is better.
(2) When at least one of two solutions is infeasible, the one
with a smaller degree of overall constraint violation is better.
• MOEA/D-Epsilon [33] uses the original epsilon constraint-

handling technique. The epsilon level setting can be found
in [34]. As the generation counter K increases, the epsilon
level dynamically decreases.
• MOEA/D-SR [32] embeds the stochastic ranking method

(SR) [23] in MOEA/D to deal with constraints. A threshold
parameter rf ∈ [0, 1] is set to balance the selection between
the objectives and the constraints. When comparing two
solutions, if a random number in [0, 1] is less than rf , the
one with a better aggregation value is retained into the next
generation. If the random number in [0, 1] is greater than rf ,
MOEA/D-SR is similar to MOEA/D-CDP. In the case of rf = 0,
MOEA/D-SR is equivalent to MOEA/D-CDP.

2.2. Dominance-based CMOEAs

Currently NSGA-II [1] is a widely used dominance-basedMOEA.
In NSGA-II, an offspring population Q is generated by genetic
operators from the population P at each generation. A fast non-
dominated sorting approach is applied on P ∪ Q . Each individual
is assigned to a non-dominated rank. Solutions in the first k ranks
are selected into P ′, until the number of solutions in P ′ is greater
than or equal to the population size NP . If the size of P ′ is greater
than NP , solutions in the kth rank are first removed from P ′. Then,
solutions in the kth rank are sorted based on crowding distances in
descending order, and the first |NP − P ′| solutions are added to P ′
to make sure that the size of P ′ is equal to NP .

Dominance-based CMOEAs select the next generation based
on the fast non-dominated sorting approach. Two representative
examples include NSGA-II-CDP [1] and SP [27]. In NSGA-II-CDP [1],
the CDP method is adopted to judge the dominance relationship
between any two individuals. In SP [27], a CMOP is transformed
into an unconstrained MOP by using a penalty function. The value
of the penalty function is self-adaptively changing according to
the feasibility fraction of the current population. The population
is sorted based on non-dominated sorting [1] on the transformed
objectives during the evolutionary process.

3. MOEA/D with angle-based constrained dominance principle

In this section, the definition of the proposed ACDP and the
effectiveness of this mechanism in MOEA/D are detailed.

Fig. 1. Illustration of the angle between x1 and x2 .

3.1. Angle-based constrained dominance principle

In the CDP approach [1], with its three basic rules, the overall
constraint violation is the most important factor during the evo-
lutionary process, and some useful information in the infeasible
regions tends to be ignored.

The angle between two solutions in the objective space can
be used to measure their similarity [35]. Compared with other
Euclidean distance metrics, the angle information is easier for
normalization [36]. In this paper, we propose an angle-based con-
strained dominance principle(ACDP) to deal with constraints.

The definition of the angle between any two solutions x1 and x2
is given as follows:

angle(x1, x2, z∗)=arccos
(
(F(x1)− z∗)T · (F(x2)− z∗)
∥F(x1)− z∗∥ · ∥F(x2)− z∗∥

)
(6)

where z∗ = (z∗1 , . . . , z
∗
m) is the ideal point, and z∗i = min{fi(x)|x ∈

S}. ∥ · ∥ is the two-norm of a vector.
As shown in Fig. 1, given any two solutions x1 and x2, the angle

between them in the objective space is θ2
1 . Obviously, the angle

between any two solutions is less than or equal to π/2, which
means that the range of angle between any two solutions belongs
in [0, π/2].

Given any two solutions x1 and x2, a threshold angle θ , a random
number r and a parameter pf (Number of Feasible Solutions

Population Size ) which de-
notes the proportion of feasible solutions in the current population,
the ACDP is defined as follows:

1. If both solutions are feasible, given one solution dominates
the other, the one dominating the other is better; otherwise,
they are incomparable.

2. If there is at least one infeasible solution and
angle(x1, x2, z∗) ≤ θ , the one with a smaller constraint
violation dominates the other.

3. When there is at least one infeasible solution and
angle(x1, x2, z∗) > θ , if r < pf , and given one solution
dominates the other, the one dominating the other is better;
otherwise, they are incomparable.

3.2. ACDP in the framework of MOEA/D

As we know, MOEA/D uses the value of the decomposition
function of a solution in the updating of its neighbors. In order to
use ACDP to handle constraints in the framework of MOEA/D, here
we provide a version of ACDP which is suitable to the algorithm.

Given a subproblemwith aweight vector λ, for two solutions x1
and x2, their overall constraint violations are φ1 and φ2. It is worth
noting that φ1

≥ 0, φ2
≥ 0. The aggregation values of x1 and x2
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Fig. 2. Illustrations of the evolutionary process of MOEA/D with CDP and ACDP.

on the subproblem sp are g te(x1|λ, z∗) and g te(x2|λ, z∗). The ACDP
dominance⪯θ in the framework of MOEA/D is defined as follows:

x1 ⪯θ x2 ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rule 1 if φ1
= φ2

= 0 :

g te(x1|λ, z∗) < g te(x2|λ, z∗);

Rule 2 if φ1
+ φ2 > 0 and angle(x1, x2, z∗) ≤ θ :

φ1 < φ2
;

Rule 3 if φ1
+ φ2 > 0 and angle(x1, x2, z∗) > θ :

r < pf and g te(x1|λ, z∗) < g te(x2|λ, z∗).

(7)

where θ is a threshold parameter, which is defined by users. In
Eq. (7), the constraint-handling method ACDP is equivalent to
CDP [1] when θ ≥ π

2 . The reason is that the maximum value
of angle(x1, x2, z∗) is π

2 . As a result, the value of angle(x1, x2, z∗)
is always less than or equal to θ when θ ≥ π

2 . In the case of

φ1 < φ2 in Eq. (7), the second rule can be always met, but the
third rule can never be fulfilled. Thus, Eq. (7) can be transformed
into Eq. (8) when θ ≥ π

2 , which is the same as CDP. Note that Rule
2 of Eq. (7) can be decomposed into two sub-rules. The first sub-
rule is that when a feasible solution is compared with an infeasible
one, the feasible one is better, which is the same as the second rule
of CDP. The second sub-rule is that when two infeasible solutions
are compared, the one with a smaller constraint violation is better,
which corresponds to the third rule of CDP.

x1 ⪯θ x2(θ ≥
π

2
)⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Rule 1 if φ1

= 0, φ2
= 0 :

g te(x1|λ, z∗) < g te(x2|λ, z∗);

Rule 2 if φ1
+ φ2 > 0 :

φ1 < φ2.

(8)

In Rule 1 of ACDP, when these two solutions are both feasible,
the solution with a lower aggregation value dominates the other,
which is similar to the first rule of CDP.



Z. Fan et al. / Applied Soft Computing Journal 74 (2019) 621–633 625

When at least one of x1 and x2 is infeasible, CDP only compares
the constraint violations of these two solutions, which makes the
diversity of the population difficult to maintain when most of the
solutions in the population are infeasible. In contrast, ACDP uti-
lizes additional information to compare the two solutions, which
includes both the angle between the two compared solutions in
the objective space and the proportion of feasible solutions in the
current population (pf ). More details of ACDP in this situation are
listed as follows:

• In Rule 2 of ACDP, if the angle between x1 and x2 in the
objective space is smaller than the parameter θ , ACDP consid-
ers that these two solutions are similar and compares them
according to their constraint violations. Because these two
solutions are similar, based on the framework of MOEA/D,
they will be considered to relate to the same subproblem. In
this situation, using the constraint violations to compare the
two solutions will not cause the loss of the diversity.
• In Rule 3 of ACDP, if the angle between x1 and x2 in the

objective space is larger than the parameter θ , ACDP con-
siders that these two solutions are dissimilar, and the solu-
tion with a lower aggregation value will dominate the other
with a probability of pf . Some infeasible solutions with low
aggregation values will have a chance to be selected in the
next generation, which may enhance the convergence of the
population.
• The probability in Rule 3 of ACDP is set to be the proportion of

feasible solutions in the current population. It keeps the bal-
ance of the exploration of the population between infeasible
regions and feasible regions. When pf is large, ACDP tends to
explore infeasible regions. When pf is small, ACDP tends to
explore feasible regions.

3.3. Effectiveness of ACDP in MOEA/D

The evolutionary process of a CMOEA can be generally divided
in three stages according to the status of the population. In the
first stage, a population is generated randomly, and most of the
individuals are far away from the real PF as shown in Fig. 2(a) and
Fig. 2(b).

In the second stage, the population begins to explore the search
space. As shown in Fig. 2(c), when using CDP in MOEA/D, the
population will be attracted to feasible regions and actually find
it difficult to go across infeasible regions. As shown in Fig. 2(d),
when ACDP is applied to MOEA/D, the population can maintain its
diversity by using angle information. Some individuals can enter
infeasible regions, which can help the population to go across in-
feasible regions effectively. Additionally, ACDP uses the proportion
of feasible solutions in the current population in its selection of
solutions to retain, which can help to balance the search between
feasible and infeasible regions.

In the third stage, the populationwill converge to boundaries of
feasible regions, with most individuals that lie on the boundaries
being non-dominated. In contrast, when using CDP, the population
tends to get trapped in local optima, because of the difficulty
of crossing infeasible regions in the second stage, as shown in
Fig. 2(e). Instead, when using ACDP, the population can converge
to the real PF more completely, as shown in Fig. 2(f), because
the population can maintain its diversity and explore infeasible
regions in the second stage.

3.4. The setting of θ

In the early stage of the evolutionary process, populationmem-
bers are usually far from the real PF. To prevent the population
from being trapped in a local optimum, the value of θ should be

Fig. 3. The changing trends of θ (k) with different initial values of θ (0).

small, to maintain the diversity. Later in the evolutionary process,
convergence should be emphasized, so the value of θ should be-
come larger. Based on the above analysis, the value θ (k) should be
dynamically increasedwith increasing generation counter k. In this
paper, a method for setting θ (k) is proposed as follows:

θ (k) =

⎧⎨⎩θ0

(
1+ k

Tmax

)cp
, 1 ≤ k ≤ Tc

π
2 , Tc < k ≤ Tmax

(9)

where θ0 is an initial threshold value,N is the size of population and
Tmax is the maximum evolutionary generation. Tc = αTmax, α ≤ 1,
is the final generation for the control of θ . The parameter cp is
initialized to log(π/(2θ0))

log(1+α) to make θ (k) = π/2 when k = Tc .
In Fig. 3, the changing trends of θ (k) with different initial values

of θ (0) are plotted, which shows that θ (k) is gradually increasing
until k = Tc . According to Eq. (9), when the generation counter k
reaches Tc , θ (k) = π

2 . In the early stage of the evolutionary process,
θ (k) increases continuously and slowly, which can help the popu-
lation to maintain diversity. When k is close to Tc , θ (k) increases
quickly, which helps the population to enhance its convergence.
When k reaches Tc , θ (k) is equal to π

2 , so ACDP is transformed into
CDP, which helps the population to maintain feasibility.

3.5. ACDP embedded in MOEA/D

The proposed MOEA/D-ACDP integrates the general frame-
work of MOEA/D and the angle-based constrained dominance
principle. The pseudocode ofMOEA/D-ACDP is listed in Algorithm
1. Lines 1–5 initialize some parameters in MOEA/D-ACDP. First, a
CMOP is decomposed into N subproblems which are associated
with weight vectors λ1, . . . , λN . Then the population P , the initial
increasing factor cp, the ideal point z∗ and the neighbor indexes
B(i) are initialized. Lines 7–11 update the angle threshold value
θ (k). Line 12 updates the proportion of feasible solutions in the
current population pf . Lines 13–23 generate a set of new solutions
and update the ideal point z∗. To be more specific, lines 14–21
determine the set of neighboring solutions thatmay be updated by
a newly generated solution yj. In line 22, the differential evolution
(DE) crossover operator is adopted to generate a new solution yj.
Meanwhile, yj is further mutated by the polynomial mutation op-
erator. The ideal point z∗ is updated in line 23. Lines 24–39 update
subproblems. In line 27, the subproblems are updated based on
the ACDP approach, for which the detailed pseudocode is listed
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Algorithm 1:MOEA/D-ACDP
Input:
N: the number of subproblems.
Tmax: the maximal generation.
N weight vectors: λ1, . . . , λN .
T : the size of the neighborhood.
δ: the selecting probability from neighbors.
nr : the maximal number of solutions replaced by a child.
θ0, α: the parameters of ACDP method.
Output: NS : a set of feasible non-dominated solutions

1 Decompose a CMOP into N subproblems associated with
λ1, . . . , λN .

2 Generate an initial population P = {x1, . . . , xN}.
3 Initialize cp to log(π/(2θ0))

log(1+α) .
4 Initialize the ideal point z∗ = (z1, . . . , zm).
5 For each i = 1, . . . ,N , set B(i) = {i1, . . . , iT }, where λi1 , . . . , λiT
are the T closest weight vectors to λi.

6 for k← 1 to Tmax do
7 if k ≤ αTmax then
8 Set θ (k) according to θ (k) = θ0(1+ k

Tmax
)cp.

9 else
10 Set θ (k) to be equal to π

2
11 end
12 Update pf in the current generation.
13 Generate a random permutation rp from {1, . . . ,N}.
14 for i← 1 to N do
15 Generate a random number r ∈ [0, 1].
16 j = rp(i).
17 if r < δ then
18 S = B(j)
19 else
20 S = {1, . . . ,N}
21 end
22 Generate yj through DE and polynomial mutation

operators.
23 Update the current ideal point.
24 Set c = 0.
25 while c ̸= nr and S ̸= ∅ do
26 select an index j from S randomly, S = S\{j}.
27 result = UpdateSubproblems(xj, yj, θ (k), pf )
28 if result == true then c = c + 1;
29 end
30 end
31 NS = NondominatedSelect(NS

⋃
P)

32 end

in Algorithm 2. At the end of each generation, non-dominated
solutions (NS) in the population are selected to update the external
archive based on non-dominated sorting in line 31.

In Algorithm 2, the algorithm updates a subproblem in terms
of Eq. (7). Lines 3–7 denote that when two feasible solutions xj
and yj are compared, the one with a better aggregation value is
selected. Lines 9–13 denote that when at least one of two so-
lutions xj and yj is infeasible, if the angle between them in the
objective space is lower than θ , the solution with a lower con-
straint violation is selected. Lines 15–20 denote that when at least
one of two solutions xj and yj is infeasible, if the angle between
them in the objective space is larger than θ , the solution with
a lower aggregation value will be selected with a probability of
pf .

Algorithm 2: Subproblem Update

1 Function result = UpdateSubproblems(xj, yj, θ (k), pf )
2 result = false
3 if φ(yj) = 0 and φ(xj) = 0 then
4 if g te(yi|λj, z∗) ≤ g te(xj|λj, z∗) then
5 xj = yj
6 result = true
7 end
8 else
9 if angle(F(yj), F(xj), z∗) < θ (k) then

10 if φ(yj) < φ(xj) then
11 xj = yj
12 result = true
13 end
14 else
15 if rand() < pf then
16 if g te(yi|λj, z∗) ≤ g te(xj|λj, z∗) then
17 xj = yj
18 result = true
19 end
20 end
21 end
22 end
23 return result
24 end

4. Experimental study

4.1. Test instances LIR-CMOPs

To evaluate the performance of the proposed MOEA/D-ACDP,
14 constrained multi-objective test problems with large infeasi-
ble regions in the objective space are used [37,38]. The general
characteristic of LIR-CMOPs is that their real PFs are blocked by a
number of large infeasible regions, and thus hard to find during
an evolutionary process. Their constraint functions are comprised
of controllable shape functions and distance functions [39]. More
specifically, the shape functions are used to make the PF shapes
convex or concave, while the distance functions are used to adjust
the convergence difficulty for CMOEAs.

4.2. Real-world engineering optimization: I-beam

To evaluate the performance of MOEA/D-ACDP for solving real
world optimization problems, an engineering optimization prob-
lem with two conflicting objectives is studied.

As defined in [40], the I-beam optimization problem shown in
Fig. 4 is a bi-objective constrained optimization problem which
needs to minimize the following objectives simultaneously:

1. Cross-sectional area of the beam;
2. Static deflection of the beam for the displacement under force

P .
The decision variable vector of the problem is x = [x1, x2, x3,

x4]T , which is in units of centimeters. The range for each decision
variable is listed as follows: 10 ≤ x1 ≤ 80, 10 ≤ x2 ≤ 50, 0.9 ≤
x4 ≤ 5, 0.9 ≤ x4 ≤ 5. Some given parameter settings are listed as
follows:

1. Permissible bending stress of the beam’s material: kg =
1.6 kN/cm2.

2. Young’s Modulus of Elasticity: E = 2× 104 kN/cm2.
3. Maximal bending forces: P = 600 kN and Q = 50 kN.
4. The length of the I-beam: l = 200 cm
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Fig. 4. The geometry modeling of I-Beam.

The I-beam optimization problem considered in this paper is
defined as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

minimize f1(x) = 2x2x4 + x3(x1 − 2x4)

minimize f2(x) =
Pl3

48EI

subject to c(x) = kg −
My

Wy
−

Mz

Wz

(10)

where I is the inertia coefficientwhich can be calculated by Eq. (11).

I =
x3(x1 − 2x4)3 + 2x2x4[4x42 + 3x1(x1 − 2x4)]

12
. (11)

The values of My and Mz are 30,000 kN cm and 2500 kN cm,
respectively.

The section modulus can be calculated by Eqs. (12) and (13).

Wy =
x3(x1 − 2x4)3 + 2x2x4[4x42 + 3x1(x1 − 2x4)]

6x1
(12)

Wz =
(x1 − 2x4)x33 + 2x4x23

6x2
(13)

To study the landscape in the objective space of the I-beam op-
timization problem, 1,000,000 sampling solutions are generated,
where 850,000 solutions are generated randomly, and the other
150,000 solutions are generated by MOEA/D-ACDP. In Fig. 5, it is
observed that there exist a few infeasible regions in the objective
space for the I-beam optimization problem (the proportion of
feasible solutions among all sampled solutions p = 0.5339, which
means that nearly half of the selected points are infeasible).

Fig. 5. The distribution of the I-Beam problem.

4.3. Experimental settings

To evaluate the performance of the proposed MOEA/D-ACDP,
it is compared with six popular CMOEAs (C-MOEA/D, MOEA/D-
CDP, MOEA/D-Epsilon, MOEA/D-SR, NSGA-II-CDP and SP), using a
differential evolution (DE) crossover operator. They are tested on
LIR-CMOP1-14 and the I-beam optimization problem. The detailed
parameters are listed as follows:

1. Polynomialmutation probability Pm = 1/n (n is the number
of decision variables) and its distribution index is set to 20.
For the DE operator, CR = 1.0, f = 0.5.

2. Population size: N = 300. Neighborhood size: T = 30.
3. Stopping condition: each algorithm is run 30 times inde-

pendently, and stopswhen 150,000 function evaluations are
reached.

4. Probability of selecting individuals in the neighborhood: δ =
0.9.

5. The maximal number of solutions replaced by a child: nr =
2.

6. Parameter setting in MOEA/D-ACDP: α = 0.8 and θ0 =
π
2N .

7. Parameter setting inMOEA/D-Epsilon: Tc = 400, cp = 2 and
θ = 0.05 N.

8. Parameter setting in MOEA/D-SR: Sr = 0.01.

4.4. Performance metric

To measure the performance of MOEA/D-ACDP, C-MOEA/D,
MOEA/D-CDP, MOEA/D-Epsilon, MOEA/D-SR, NSGA-II-CDP and SP,
two widely used metrics are employed: inverted generational
distance (IGD) [41] and hypervolume (HV ) [4]. Their definitions are
as follows.

• Inverted Generational Distance (IGD):

IGD is a metric which evaluates the performance related to con-
vergence and diversity simultaneously. Let P∗ be a set of uniformly
distributed points in the ideal PF. Let A denote an approximate
PF achieved by a certain CMOEA. The metric IGD that represents
average distance from P∗ to A is defined as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

IGD(P∗, A) =

∑
y∗∈P∗ d(y

∗, A)

|P∗|

d(y∗, A) = miny∈A{

√∑m
i=1(y

∗

i − yi)2}

(14)

In our experiment, for CMOPs with two objectives, 1000 points are
sampled uniformly from the PF to constitute P∗. For CMOPs with
three objectives, 10,000 points are sampled uniformly from the PF
to constitute P∗. A smaller IGD represents better performance with
respect to both diversity and convergence.
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Fig. 6. The non-dominated solutions achieved by MOEA/D-ACDP, C-MOEA/D, MOEA/D-CDP, MOEA/D-Epsilon and MOEA/D-SR with the median IGD in 30 independent runs
for LIR-CMOP3, LIR-CMOP5, LIR-CMOP10 and LIR-CMOP11.

Fig. 7. The non-dominated solutions achieved by NSGA-II-CDP and SP with the median IGD in 30 independent runs for LIR-CMOP3, LIR-CMOP5, LIR-CMOP10 and LIR-
CMOP11.
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Fig. 8. The non-dominated solutions achieved by each algorithm during 30 independent runs are plotted in (a)–(g). In (h), the box plots of each CMOEA are plotted.

Fig. 9. Means of IGD by using MOEA/D-ACDP for initial threshold θ0 ∈ {
π

2N×16 , π
2N×4 , π

2N , π×4
2N , π×16

2N , π×64
2N , π

2 } on LIR-CMOP5, 7, 12, 14 at 30 independent runs.
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Table 1
IGD results of MOEA/D-ACDP and the other six CMOEAs on LIR-CMOP1-14 test instances.
LIR-CMOP MOEA/D-ACDP C-MOEA/D MOEA/D-CDP MOEA/D-Epsilon MOEA/D-SR NSGA-II-CDP SP

1 mean 5.159E−02 1.591E−01† 1.348E−01† 8.234E−02† 4.406E−02 4.376E−01† 1.489E−01†

std 1.815E−02 3.534E−02 5.996E−02 5.321E−02 3.360E−02 1.071E−01 8.479E−02

2 mean 2.269E−02 1.462E−01† 1.549E−01† 4.708E−02† 2.057E−02 3.084E−01† 1.943E−01†

std 9.418E−03 4.141E−02 2.966E−02 1.339E−02 1.072E−02 9.513E−02 9.688E−02

3 mean 4.659E−02 2.309E−01† 2.268E−01† 7.858E−02† 1.529E−01† 4.082E−01† 2.054E−01†

std 1.850E−02 4.135E−02 4.403E−02 2.978E−02 7.688E−02 1.120E−01 1.296E−01

4 mean 2.784E−02 2.080E−01† 2.188E−01† 5.662E−02† 2.038E−01† 3.081E−01† 1.920E−01†

std 1.477E−02 4.197E−02 3.766E−02 3.366E−02 7.907E−02 7.367E−02 9.019E−02

5 mean 1.771E−02 1.162E+00† 1.207E+00† 1.201E+00† 1.123E+00† 1.153E+00† 1.145E+00†

std 2.965E−02 2.180E−01 1.660E−02 1.963E−02 2.842E−01 2.425E−01 2.473E−01

6 mean 1.757E−01 1.265E+00† 1.303E+00† 1.231E+00† 1.175E+00† 1.134E+00† 1.260E+00†

std 4.129E−02 3.067E−01 2.319E−01 3.602E−01 3.967E−01 4.743E−01 4.769E−01

7 mean 1.408E−01 1.620E+00† 1.623E+00† 1.568E+00† 1.136E+00† 4.596E−01† 7.327E−01†

std 4.385E−02 3.036E−01 2.905E−01 4.101E−01 7.315E−01 4.854E−01 3.714E−01

8 mean 1.812E−01 1.607E+00† 1.631E+00† 1.577E+00† 1.369E+00† 6.017E−01† 6.495E−01†

std 4.854E−02 2.680E−01 2.464E−01 3.767E−01 5.735E−01 3.991E−01 4.664E−01

9 mean 3.595E−01 4.981E−01† 4.868E−01† 4.962E−01† 4.813E−01† 5.261E−01† 5.428E−01†

std 5.345E−02 6.991E−02 5.372E−02 6.987E−02 4.571E−02 1.060E−01 1.083E−01

10 mean 1.388E−01 3.775E−01† 3.774E−01† 3.257E−01† 2.821E−01† 4.790E−01† 4.893E−01†

std 1.148E−01 7.446E−02 6.858E−02 9.833E−02 1.135E−01 1.928E−01 1.501E−01

11 mean 1.318E−01 4.422E−01† 4.662E−01† 4.154E−01† 3.489E−01† 6.052E−01† 6.342E−01†

std 4.487E−02 1.759E−01 1.439E−01 1.508E−01 1.129E−01 9.166E−02 9.894E−02

12 mean 1.497E−01 3.597E−01† 3.236E−01† 3.680E−01† 3.012E−01† 4.166E−01† 4.171E−01†

std 9.985E−03 1.074E−01 1.023E−01 8.664E−02 8.989E−02 4.386E−02 1.011E−01

13 mean 7.414E−02 1.266E+00† 1.289E+00† 1.183E+00† 1.093E+00† 1.317E+00† 1.318E+00†

std 2.727E−03 2.173E−01 6.321E−02 3.456E−01 4.269E−01 1.433E−03 5.009E−02

14 mean 6.732E−02 1.235E+00† 1.103E+00† 1.127E+00† 1.143E+00† 1.273E+00† 1.277E+00†

std 1.918E−03 1.209E−01 3.857E−01 3.329E−01 3.002E−01 2.416E−03 3.608E−02

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-ACDP and each of the other six CMOEAs. † and ‡
denote that the performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-ACDP, respectively.
The best mean is highlighted in boldface.

• Hypervolume (HV ):

HV reflects the closeness between the non-dominated set achieved
by a CMOEA and the representative PF. A larger HV means that the
corresponding non-dominated set is closer to the true PF. A HV
with a larger value represents better performance with respect to
both diversity and convergence.

HV (S) = VOL

(⋃
x∈S

[f1(x), zr1] × · · · [fm(x), z
r
m]

)
(15)

where VOL(·) is the Lebesgue measure, zr = (zr1, . . . , z
r
m)

T is a
reference point in the objective space.

Both IGD and HV metrics are used in the LIR-CMOP instances.
For the LIR-CMOPs, the reference point is set as 1.3 times the nadir
point of the real PF. As the real PF of the I-beam optimization
problem is not known, the IGD metric cannot be calculated. Thus,
we uses the HV metric [4] to measure the performance of the
tested CMOEAs on the I-beam optimization problem. In the I-beam
optimization case, the reference point is set to zr = [1000, 0.08]T .

4.5. Discussion of experimental results

4.5.1. Performance evaluation on the LIR-CMOP test instances
The IGD values on LIR-CMOP1-14 achieved by seven CMOEAs

in 30 independent runs are shown in Table 1. As discussed in
Section 4.1, LIR-CMOP1-14 have large infeasible regions in their
objective spaces. For LIR-CMOP3-14, MOEA/D-ACDP significantly
outperforms the other six compared algorithms in terms of the
IGDmetric. For LIR-CMOP1-2, MOEA/D-ACDP significantly outper-
forms C-MOEA/D, MOEA/D-CDP, MOEA/D-Epsilon, NSGA-II-CDP
and SP, and does not differ significantly from MOEA/D-SR.

The HV values on LIR-CMOP1-14 achieved by seven CMOEAs
in 30 independent runs are shown in Table 2. For LIR-CMOP3-
14, MOEA/D-ACDP significantly outperforms the compared algo-
rithms in terms of the HV metric. For LIR-CMOP1, MOEA/D-ACDP
significantly outperforms C-MOEA/D, MOEA/D-CDP, NSGA-II-CDP
and SP, and is not significantly different fromMOEA/D-Epsilon and
MOEA/D-SR. For LIR-CMOP2, MOEA/D-ACDP significantly outper-
forms C-MOEA/D, MOEA/D-CDP, NSGA-II-CDP, NSGA-II-CDP and
SP, and is not significantly different from MOEA/D-SR.

Figs. 6(a) and 7(a) show the final external archives achieved
by MOEA/D-ACDP and the other six CMOEAs with the median IGD
values on LIR-CMOP3 during 30 independent runs. It can be seen
that MOEA/D-ACDP almost converges to the whole real PF, and it
has the best diversity performance among the seven CMOEAs.

In Figs. 6(b) and 7(b), the external archives of each CMOEAwith
the median IGD values on LIR-CMOP5 during 30 independent runs
are plotted. It can be seen that MOEA/D-ACDP covers the whole PF.
However, the other six CMOEAs are trapped in local optima.

In Figs. 6(c) and 7(c), for LIR-CMOP10, MOEA/D-ACDP has the
best performance in terms of convergence. In Figs. 6(d) and 7(d),
we can see that MOEA/D-ACDP can discover most parts of the PF
on LIR-CMOP11. However, the other six algorithms can find only a
few parts of the PF.

4.5.2. Discussion of the experimental results on the LIR-CMOPs
LIR-CMOP3-4 both have several narrow and disconnected feasi-

ble regions. If the CDP mechanism is applied, it is very difficult for
the population to distribute the individuals among these narrow
and disconnected feasible regions. More likely, most individuals
will be trapped in one or a few of these feasible regions. How-
ever, when ACDP is applied, rule 2 of the ACDP mechanism will
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Table 2
HV results of MOEA/D-ACDP and the other six CMOEAs on LIR-CMOP1-14 test instances.
LIR-CMOP MOEA/D-ACDP C-MOEA/D MOEA/D-CDP MOEA/D-Epsilon MOEA/D-SR NSGA-II-CDP SP

1 mean 1.365E+00 9.499E−01† 1.009E+00† 1.353E+00 1.376E+00 9.205E−01† 1.177E+00†

std 2.493E−02 7.038E−02 1.298E−01 4.417E−02 3.974E−02 8.084E−02 9.278E−02

2 mean 1.737E+01 1.395E+01† 1.374E+01† 1.705E+01† 1.736E+01 1.080E+00† 1.321E+00†

std 1.306E−02 8.154E−02 6.160E−02 1.693E−02 1.890E−02 1.597E−01 2.036E−01

3 mean 1.188E+00 7.558E−01† 7.600E−01† 1.184E+00 9.313E−01† 7.925E−01† 9.638E−01†

std 4.929E−02 5.730E−02 5.809E−02 2.898E−02 1.620E−01 7.920E−02 1.133E−01

4 mean 1.421E+00 1.069E+00† 1.051E+00† 1.390E+00† 1.089E+00† 9.025E−01† 1.087E+00†

std 1.946E−02 6.952E−02 5.462E−02 4.405E−02 1.360E−01 1.084E−01 1.497E−01

5 mean 1.903E+00 1.192E−01† 5.805E−02† 5.829E−02† 1.707E−01† 1.774E−01† 1.968E−01†

std 5.658E−02 3.352E−01 4.042E−04 2.022E−04 4.442E−01 3.498E−01 3.488E−01

6 mean 1.280E+00 7.863E−02† 4.312E−02† 1.325E−01† 1.682E−01† 2.700E−01† 2.300E−01†

std 4.613E−02 3.011E−01 2.362E−01 4.251E−01 4.061E−01 3.622E−01 3.565E−01

7 mean 3.408E+00 2.990E−01† 2.886E−01† 4.055E−01† 1.313E+00† 2.921E+00† 2.321E+00†

std 1.409E−01 6.927E−01 6.348E−01 8.879E−01 1.567E+00 1.078E+00 7.304E−01

8 mean 3.330E+00 3.246E−01† 2.695E−01† 3.859E−01† 8.287E−01† 2.505E+00† 2.521E+00†

std 1.461E−01 5.878E−01 5.297E−01 8.166E−01 1.244E+00 8.397E−01 9.773E−01

9 mean 4.080E+00 3.715E+00† 3.755E+00† 3.724E+00† 3.752E+00† 3.513E+00† 3.472E+00†

std 9.501E−02 2.079E−01 1.600E−01 2.033E−01 1.142E−01 3.230E−01 3.466E−01

10 mean 3.755E+00 3.274E+00† 3.268E+00† 3.385E+00† 3.477E+00† 2.903E+00† 2.905E+00†

std 2.208E−01 1.623E−01 1.416E−01 2.122E−01 2.383E−01 6.628E−01 5.629E−01

11 mean 5.004E+00 3.937E+00† 3.842E+00† 4.038E+00† 4.274E+00† 3.167E+00† 3.055E+00†

std 1.564E−01 6.479E−01 5.507E−01 5.727E−01 4.463E−01 3.863E−01 3.412E−01

12 mean 6.713E+00 5.977E+00† 6.134E+00† 6.010E+00† 6.240E+00† 5.771E+00† 5.764E+00†

std 5.874E−02 3.855E−01 3.617E−01 3.074E−01 2.950E−01 1.601E−01 3.083E−01

13 mean 7.897E+00 6.444E−01† 4.728E−01† 1.092E+00† 1.513E+00† 1.601E−01† 3.083E−01†

std 2.943E−02 1.317E+00 2.689E−01 2.052E+00 2.422E+00 1.420E−02 1.692E−01

14 mean 8.641E+00 7.766E−01† 1.627E+00† 1.430E+00† 1.269E+00† 5.810E−01† 6.053E−01†

std 1.546E−02 6.140E−01 2.473E+00 2.095E+00 1.919E+00 1.683E−02 2.244E−01

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-ACDP and each of the other six CMOEAs. † and ‡
denotes that the performance of the corresponding algorithm is significantlyworse than or better than that ofMOEA/D-ACDP, respectively.
The best mean is highlighted in boldface.

enable more well-distributed individuals to survive into the next
generation. As a result, MOEA/D-ACDP can help to maintain the
diversity of the population during the evolutionary process. From
these experimental results, we can also see that MOEA/D-ACDP
performs the best on these two test instances.

LIR-CMOP5-14 have some infeasible regions in front of the real
PFs,whichmakes it difficult for CMOEAs to converge to the real PFs.
If the CDPmechanism is applied,when feasible individuals attempt
to enter the infeasible regions, they will be easily bounced back
to the feasible regions, due to rule2 of CDP. However, when ACDP
is applied, rule 3 of the ACDP mechanism will be activated when
the feasible individuals attempt to enter the infeasible regions (pf
is still high at this stage), which will facilitate a smooth entry be-
cause only convergence is considered according to rule 3 of ACDP.
Next, when most feasible individuals have entered the infeasible
regions, pf becomes lower and rule 3 is deactivated. In this case,
most individuals become non-dominated by each other, because
the dominance relationship defined by Eq. (7) does not exist any
more. The non-dominance relationship of individuals helps most
infeasible ones survive in the offspring generations, and eventually
cross the infeasible regions. As a result, using MOEA/D-ACDP can
preserve some high-quality infeasible solutions in the population,
which can help the population to find the global optimum. From
the experimental results in Tables 1 and 2, we can also conclude
that MOEA/D-ACDP has the best performance on these ten test
instances.

According to the above observations, we can conclude that the
proposed MOEA/D-ACDP outperforms the other six CMOEAs. A
common feature of the above LIR-CMOPs test instances is that
they all have large infeasible regions in their objective spaces. The
experimental results demonstrate that the proposed ACDPmethod

candealwith CMOPswell by taking advantage of angle information
among solutions of a population and the proportion of feasible
solutions.

4.5.3. Performance comparison on the I-beam optimization problem
The experimental results of HV values of MOEA/D-ACDP and

the six other CMOEAs on the I-beam optimization problem are
shown in Table 3. It can be seen that MOEA/D-ACDP significantly
outperforms the compared CMOEAs on this engineering problem.

To further study the superiority of the proposed method
MOEA/D-ACDP, the non-dominated solutions achieved by each
CMOEA during the 30 independent runs are plotted in Fig. 8(a)–(h).
The non-dominated set of all the above solutions generates a set
of ideal reference points. It is clear that MOEA/D-ACDP has better
convergence performance than the other four decomposition-
based CMOEAs (C-MOEA/D, MOEA/D-CDP, MOEA/D-Epsilon and
MOEA/D-SR). MOEA/D-ACDP has better diversity performance
than the two compared dominance-based CMOEAs (NSGA-II-CDP
and SP). The box plot of HV values of the CMOEAs is shown in
Fig. 8(h), which further illustrates thatMOEA/D-ACDP outperforms
the
other six CMOEAs on the I-beam optimization problem.

4.6. Influence of parameter setting in ACDP

There are two critical parameters in ACDP.

(1) Tc , the termination generation for control of θ (k).
(2) θ0, the initial value of θ .

In this paper, Tc = 0.8Tmax. This is a default setting of Tc for
many algorithms of the same kind in the research community [33,
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Table 3
HV results of MOEA/D-ACDP and the other six CMOEAs on the I-Beam optimization problem.

MOEA/D-ACDP C-MOEA/D MOEA/D-CDP MOEA/D-Epsilon MOEA/D-SR NSGA-II-CDP SP

mean 6.046E+01 5.905E+01† 5.921E+01† 5.916E+01† 5.948E+01† 6.026E+01† 6.017E+01†

std 1.096E−01 2.996E−01 3.508E−01 3.246E−01 2.248E−01 2.283E−01 2.775E−01

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-ACDP and each of the other six CMOEAs. † and ‡
denote that the performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-ACDP, respectively.
The best mean is highlighted in boldface.

Table 4
Comparison results of MOEA/D-ACDP on LIR-CMOP1-14 with different θ0 (population size N = 300).
θ0 =

π
2N×16 θ0 =

π
2N×4 θ0 =

π
2N θ0 =

π×4
2N θ0 =

π×16
2N θ0 =

π×64
2N θ0 =

π
2

3 3 + 1 4 2 2
1 1 − 6 10 12 12
10 10 = 7 0 0 0

Wilcoxon’s rank sum test at a 0.05 significance level is performed betweenMOEA/D-ACDPwith θ0 =
π
2N

and thatwith other six initial threshold settings. ‘+’, ‘−’ and ‘=’ denote thenumber of instances onwhich
MOEA/D-ACDP with the corresponding θ0 is significantly better/worse/not better and not worse than
that with θ0 =

π
2N in terms of the IGD metric, respectively.

42]. We therefore mainly focus on investigating the influence of θ0
in ACDP.

To analyze the influence of θ0 setting, we run MOEA/D-ACDP
with θ0 =

π
2N×16 ,

π
2N×4 ,

π
2N , π×4

2N , π×16
2N , π×64

2N , π
2 on LIR-CMOPs for

30 independent runs.
In Table 4, the performance of MOEA/D-ACDP with θ0 =

π
2N×16

and θ0 =
π

2N×4 is similar to that of MOEA/D-ACDP with θ0 =
π
2N .

When θ0 ≥
π×4
2N , the performance of MOEA/D-ACDP decreases. In

Fig. 9, the mean values of IGD on LIR-CMOP5, 7, 12 and 14 with
different values of θ0 are plotted.We can see that θ0 ∈ { π

2N×16 ,
π

2N×4 ,
and π

2N } have similar performance, and that they are better than
those of MOEA/D-ACDP with θ0 > π

2N . Thus, we suggest that θ0 be
set in the interval [ π

2N×16 ,
π
2N ]. In this work, θ0 is set to π

2N .

5. Conclusions

This paper proposes a new constraint-handling mechanism
named ACDP. It utilizes the angle information between any two
solutions to dynamically maintain the diversity of the population
during the evolutionary process. The proportion of feasible solu-
tions is also used to maintain a balance between convergence and
feasibility of a population. A set of CMOP instances called LIR-
CMOP1-14 are tested. All the test instances have large infeasible
regions in their objective spaces, which make it difficult for many
CMOEAs to achieve the real PFs. Compared with the other six
popular CMOEAs, the proposed algorithm can help the population
to cross large infeasible regions more effectively. Additionally, the
experimental results demonstrate that the proposed algorithm can
work well on a real-world engineering problem. Thus, we can
conclude that MOEA/D-ACDP outperforms the other six CMOEAs.
In summary, MOEA/D-ACDP has following advantages:

• The proposed MOEA/D-ACDP utilizes the angle information
between solutions tomaintain the diversity of the population
for CMOPs.
• MOEA/D-ACDP enhances convergence to the PF by explor-

ing feasible and infeasible regions simultaneously during the
evolutionary process, instead of wasting the useful informa-
tion represented by infeasible solutions.

Although the proposedMOEA/D-ACDPperformswell on CMOPs
with two and three objectives, we still need to enhance its ca-
pability for solving CMOPs with more than three objectives. One
aspect of our future work is to study the characteristics of con-
strained optimization problems beyond three objectives, and to
design suitable constraint-handlingmechanisms in the framework
of MOEA/D-ACDP to solve them. Additional planned future work

will focus on developing new mechanisms of mining more useful
information during the evolutionary process to further improve
the performance of the proposed algorithm.
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