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A Hierarchical Image Matting Model for Blood
Vessel Segmentation in Fundus Images
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Abstract— In this paper, a hierarchical image matting model
is proposed to extract blood vessels from fundus images. More
specifically, a hierarchical strategy is integrated into the image
matting model for blood vessel segmentation. Normally, the mat-
ting models require a user specified trimap, which separates the
input image into three regions: the foreground, background, and
unknown regions. However, creating a user specified trimap is
laborious for vessel segmentation tasks. In this paper, we propose
a method that first generates trimap automatically by utilizing
region features of blood vessels, then applies a hierarchical image
matting model to extract the vessel pixels from the unknown
regions. The proposed method has low calculation time and
outperforms many other state-of-art supervised and unsupervised
methods. It achieves a vessel segmentation accuracy of 96.0%,
95.7%, and 95.1% in an average time of 10.72s, 15.74s, and
50.71s on images from three publicly available fundus image
datasets DRIVE, STARE, and CHASE_DB1, respectively.

Index Terms— Image matting, hierarchical strategy, fundus,
trimap, region features, segmentation, vessel.

I. INTRODUCTION

RETINAL blood vessels generally show a coarse to fine
centrifugal distribution and appear as a wire mesh-like

structure or tree-like structure [1]. Their morphological fea-
tures, such as length and width, is of great importance in
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the early detection and therapy of different angiocardiopathy
and ocular diseases such as stroke, vein occlusions, diabetes
and arteriosclerosis [2]–[4]. The analysis of morphological
features of retinal blood vessels is conducive to detecting and
treating a disease in time when it is still in its early stage. Since
angiocardiopathy and ocular diseases have a serious impact on
human’s life, the analysis of retinal blood vessels is of great
significance in many clinical applications to reveal important
information of systemic diseases and support diagnosis and
treatment. As a result, the requirement of vessel analysis
system grows rapidly, in which vessel segmentation is the first
and one of the most crucial steps.

Vessel segmentation has become an important research
field in recent years [5]. Broadly speaking, existing vessel
segmentation approaches include two categories: supervised
and unsupervised. In supervised methods, a number of
different features are extracted from fundus images, and
applied to train the effective classifiers with the purpose of
extracting retinal blood vessels. In [6], Staal et al. extract
27 features for each image pixel with ridge profiles, and
perform feature selection by using sequential forward
selection method to choose the pixels that can generate better
segmentation performance by a K-Nearest Neighbor classifier.
Soares et al. [7] introduce a feature-based Bayesian classifier
with Gaussian mixtures, which makes use of the intensity
information and Gabor wavelet transform responses to build
a 7-D feature vector for each pixel. In [8], Lupascu et al.
train an AdaBoost classifier with 41 features which
incorporates various structure and geometry information.
Marínet al. [9] extract 7 features including intensity and
geometry information, and then train a neural network
classifier for vessel extraction. Roychowdhury et al. [10]
extract the major vessel from the fundus images and use a
Gaussian classifier for vessel segmentation with 8 features,
which consists of intensity features and gradient features.
Liskowski and Krawiec [11] employ a deep neural network to
extract vessel pixels from fundus images. Daniele et al. [12]
use an U-Net [13] to achieve blood vessel segmentation.
In unsupervised methods, the researchers try to discover
latent vessel properties for vessel segmentation. Unsupervised
methods can be further divided into multiscale approaches,
matched filtering, vessel tracking, mathematical morphology
and model based methods [5]. The multiscale approach
introduced by [14] develops a vessel enhancement filter
for vessel extraction with the analysis of image structure.
The matched filtering method described by [15] employs
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Fig. 1. The process of image matting. (a) An image. (b) A trimap generated
by the user. The white, black and gray regions belong to the foreground,
background and unknown regions, respectively. (c) A result achieved by [22].

different threshold probes to draw vessel pixels from the
filtered images. The methodology based on vessel
tracking [16] applies a wave propagation and traceback
mechanism to label each pixel the likelihood of belonging to
vessels in angiography images. The mathematical morphology
with the extraction of vessel centerlines [17] is also developed
to find the morphological characteristics of retinal blood
vessels. Model based methods generally use geometric
deformable models [18], parametric deformable models [19],
vessel profile models [20] and active contour models [21] for
blood vessel segmentation.

Image matting means precisely segmenting the foreground
from an image. Generally image matting includes two main
steps. The first step is generating a user specified trimap.
Fig.1(b) gives an example of a user specified trimap. Trimap
is a hand-drawn segmented image, which is composed of the
foreground, background and unknown regions. The second
step is employing the matting model to pick the pixels
belonging to the foreground from the unknown regions, on the
basis of the samples of foreground and background pixels
annotated by the observers. Fig.1(c) gives an exemplary result
achieved by [22]. Image matting is of great importance in
many applications, such as, image (or video) segmentation,
video production, new view synthesis, and film making.
To the best of our knowledge, image matting has rarely been
employed previously to extract blood vessels from fundus
image, and so far we have only found [23], which uses Hu’s
moment features [9] and KNN matting [24] to perform blood
vessel segmentation. The major reason is that generating a
user specified trimap for vessel segmentation is an extremely
laborious and time-consuming task. In other words, it is not
appropriate to obtain a trimap manually for vessel segmen-
tation. In addition, a proper image matting model needs to
be designed carefully to improve the vessel segmentation
performance. In order to address these issues, region fea-
tures of blood vessels are employed to generate the trimap
automatically. Then a hierarchical image matting model is
proposed to draw the vessel pixels from the unknown regions.
The proposed model is evaluated on the public available
datasets DRIVE, STARE, and CHASE_DB1, which have been
extensively used by other scientists to develop their own
methods. The segmentation performance verifies the efficiency
and effectiveness of the proposed hierarchical image matting
model.

The remainder of this paper is constructed as follows:
Section II introduces some background knowledge of image
matting. Section III details the process of generating the

trimap of a fundus image automatically, and the proposed
hierarchical image matting model. Section IV introduces the
public available datasets and the commonly used evaluation
metrics. The experimental results are detailed in Section V.
The conclusion is provided in Section VI.

II. IMAGE MATTING

As aforementioned, image matting aims to accurately
extract the foreground given a trimap of an image. Concretely,
the input image I can be considered as a linear aggregation
of a foreground image F and a background image B:

I = αz F + (1 − αz)B (1)

where alpha matte αz indicates the probability of the fore-
ground, which ranges from 0 to 1.

After obtaining the user specified trimap, to derive the αz in
the unknown regions, Chuang et al. [25] uses sets of Gaussian
distribution to obtain the color models of the foreground and
background colors, and estimates the optimal alpha value by
using a maximum-likelihood criterion. In [26], Levin et al.
derives an effective objective function based on the color
smooth hypothesis, and employs this function to obtain the
optimum of the alpha matte. Zheng and Kambhamettu [22]
performs image matting based on the local and global learning
methods. In [27], Heet al. solves a large kernel matting
Laplacian, and achieves a fast matting algorithm. In [28],
Shahrian and Rajan use an effective cost function to select
the optimal (F, B) couple for alpha matte evaluation. In [24],
Chen et al. proposes a matting technique, and obtains an effi-
cient result by leveraging on the preconditioned conjugate gra-
dient method. Shahrian et al. [29] expands the sampling range
of foreground and background regions, and collects a repre-
sentative set of samples for image matting. In [30], Cho et al.
presents an image matting method to assess alpha mattes on
sub-images of a light field image. Karacan [31] et al. proposes
a sampling method, and employs a new distance metric to
obtain the results of image matting. In [32], Cho et al. utilizes
a deep convolutional neural network to achieve image matting.
Li et al. [33] designs a novel feature and three-layer graph
framework for image matting. Aksoy et al. [34] designs an
inter-pixel information flow to achieve image matting. In [35],
Lee and Yang performs parallel image matting on large images
with multiple processing cores.

III. METHODOLOGY

In this section, the process of generating the trimap of an
input fundus image automatically is introduced, followed by
detailing the proposed hierarchical image matting model.

A. Trimap Generation

Region features of blood vessels have been used for blood
vessel segmentation and performed well on segmentation
accuracy and computational efficiency [36]. In this paper,
the trimap of an input fundus image is generated automatically
by by utilizing region features of blood vessels. The definitions
of regions features are given as follows:
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Fig. 2. An example to illustrate the bounding box and convex hull. (a) The
exemplary image. (b) The image for the illustration of bounding box. The red
boxes are the bounding boxes. (c) The image for the illustration of convex
hull. The red polygons are the convex hulls.

TABLE I

THE DEFAULT THRESHOLD VALUES OF REGION FEATURES:Extent, VRatio,
Solidity AND THEIR RECOMMENDED RANGES USED IN THIS WORK

• Area indicates the number of pixels in the region.
• Bounding Box specifies the smallest rectangle incorpo-

rating the region. Fig.2(b) gives an example of bounding
box.

• Extent represents the region proportion in the bounding
box.

• VRatio represents the ratio of the length to the width of
the bounding box.

• Convex Hull means the smallest convex polygon incor-
porating the region. Fig.2(c) gives an example of convex
hull.

• Solidity represents the region proportion in the convex
hull.

The default threshold values of region features: Extent,
VRatio, Solidity and their recommended ranges used in this
work are reported in Table I. e1 and e2 are two threshold
values of Extent features used in this work; r is the threshold
value of V Ratio feature; s is the threshold value of Solidi ty
feature. For Area feature, two threshold values: a1 = fi × 2
and a2 = fi × 35 are used in this work. fi , called the internal
factor, is calculated as d × max(h,w)

min(h,w) , where d = 21 is roughly
the diameter of the biggest vessels in fundus images [37],
h and w are the height and width of the fundus image.

The proposed model is not sensitive to the above mentioned
region features. In other words, these region features can
be selected in a relatively large range without sacrificing
the performance. In Section V(D)-“Sensitivity analysis of
threshold values of region features and the weight parameter,”
empirical study is directed to demonstrate the insensitivity of
the proposed model to the threshold values of region features.

Creating the trimap of the input fundus image automatically
includes two main steps: 1) Image Segmentation and 2) Vessel
Skeleton Extraction. The process of trimap generation is given
in Fig.3.

1) Image Segmentation: Image segmentation aims to sepa-
rate the input image into three regions: the vessel (foreground),
background and unknown regions. Firstly the enhanced vessel
image Imr generated by morphological reconstruction [37] is
segmented into three regions: the background regions (B),

Fig. 3. The process of trimap generation. B represents the background
regions; U represents the unknown regions; V2 represents the denoised prelim-
inary vessel regions; S represents the skeleton of blood vessels; V represents
the vessel regions.

Fig. 4. Image segmentation. (a) The fundus image I . (b) The green plane of
the fundus image Ig . (c) The enhanced vessel image Imr . (d) The background
regions B . (e) The unknown regions U . (f) The denoised preliminary vessel
regions V2.

unknown regions (U ) and preliminary vessel regions (V1)

Imr =
⎧
⎨

⎩

B if 0 < Imr < p1
U if p1 � Imr < p2
V1 if p2 � Imr

(2)

where p1 = 0.2 and p2 = 0.35 restrict the unknown region
as thin as possible in order to achieve the better matting
result [28], [38]. In order to remove the noise regions in V1,
the regions with Area > a1 in V1 are extracted firstly (V ∗

1 ).
Then regions in V ∗

1 whose Extent ≤ e1 && V Ratio ≤ r &&
Solidi ty ≥ s are abandoned, resulting in the denoised prelim-
inary vessel regions V2. Fig.4 gives an exemplary process of
image segmentation.
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Fig. 5. Vessel skeleton extraction. (a) The green plane of the fundus
image Ig . (b) The vessel enhanced image Iiuwt . (c) The binary image T .
(d) The background regions T1. (e) The candidate regions T2. (f) The vessel
regions T3. (g) T4: The preserved regions in T2. (h) The combined regions
of T3 and T4. (i) The vessel skeletons S.

2) Vessel Skeleton Extraction: Vessel Skeleton Extraction
aims to further distinguish the unknown regions and pro-
vide more information on blood vessels. In Section V(B)-
“Vessel Segmentation Performance,” the effectiveness of ves-
sel skeleton extraction will be presented. Firstly, a segmented
image T is generated by thresholding the enhanced vessel
image Iiuwt generated by the isotropic undecimated wavelet
transform [39].

T =
{

1 Iiuwt > t
0 Iiuwt � t

(3)

where t = Otsu(Iiuwt )−ε, ε is set as 0.03. Then T is divided
into three regions according to the Area feature:

T =
⎧
⎨

⎩

T1 if 0 < Area < a1
T2 if a1 ≤ Area ≤ a2
T3 if a2 < Area

(4)

In vessel skeleton extraction, the regions in T3 are preserved
while the regions in T1 are abandoned. Then the regions in
T2 with Extent > e2 && V Ratio ≤ r are preserved as T4.
Finally skeleton extraction [40] is performed on the combined
regions of T3 and T4 in order to obtain the vessel skeleton S.
Fig.5 gives an exemplary process of vessel skeleton extraction.

After performing image segmentation and vessel skeleton
extraction, the trimap of the input fundus image is generated
(as shown in Fig.6(b)), which is composed of the background
regions (B), unknown regions (U ) and vessel (or foreground)
regions (V = V2 ∪ S).

Fig. 6. (a) An input image. (b) A trimap generated by the proposed method.
The white, black and red regions belong to the foreground, background
and unknown regions, respectively. (c) The result achieved by the proposed
hierarchical image matting model.

B. Hierarchical Image Matting Model

Hierarchical image matting model is proposed to label the
pixels in the unknown regions as vessels or background in
an incremental way. Specifically, after stratifying the pixels in
unknown regions (called unknown pixels) into m hierarchies
by a hierarchical strategy, let u j

i indicates the i th unknown
pixel in the j th hierarchy, the segmented vessel image Iv (u

j
i )

is modeled as follows:

Iv (u
j
i ) =

{
1 if β(u j

i , V ) > β(u j
i , B)

0 else
(5)

where β indicates the correlation function (depicted in
Equation (8)). The implementation of the hierarchical image
matting model consists of two main steps:

Step 1 Stratifying the unknown pixels: Stratify pixels in the
unknown regions into different hierarchies.

Step 2 Hierarchical update: Assign new labels (V or B) to
pixels in each hierarchy.

The pseudocode implementing this model is shown in
Algorithm 1.

1) Stratifying the Unknown Pixels: In this stage,
the unknown pixels are stratified into different hierarchies.
For the i th unknown pixel in U , its Euclidean distances with
all vessel pixels in V are calculated first. Then the closest
distance di is chosen and assigned to the i th unknown pixel.
After that, the unknown pixels are stratified into different
hierarchies according to the closest distances. The first
hierarchy has the lowest value of the closest distance while
the last hierarchy has the highest value of the closest distance.
The unknown pixels reside in low hierarchy suggests that
they are close to blood vessels; The unknown pixels stay in
high hierarchy indicates that they are far away from blood
vessels. Fig.7 gives an exemplary process of stratifying the
unknown pixels.

2) Correlation Function: In step 2 of Algorithm 1, given
an unknown pixel u j

i and its neighboring labelled pixel k j
l ,

a color cost function βc is defined to describe the fitness of
u j

i and k j
l first:

βc(u
j
i , k j

l ) = ||c
u j

i
− c

k j
l
|| (6)

where c
u j

i
and c

k j
l

are intensity level of u j
i and k j

l in Imr .
A spatial cost function βs is further defined:

βs(u
j
i , k j

l ) =
||x

u j
i
− x

k j
l
|| − xmin

xmax − xmin
(7)
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Fig. 7. An exemplary process of stratifying the unknown pixels. (a) An exemplary image (green pixels represent vessel pixels, red pixels represent unknown
pixels). (b) Calculating the closest distance for each unknown pixel (di means the closest distance for the ith unknown pixel). (c) Stratifying unknown pixels
into different hierarchies.

Algorithm 1 Implementing the Hierarchical Image Matting
Model

where x
u j

i
and x

k j
l

are the spatial coordinates of u j
i and k j

l . The
terms xmax = max j ||xu j

i
− x

k j
l
|| and xmin = min j ||xu j

i
− x

k j
l
||

are the maximum and minimum distance of the unknown pixel
u j

i to the labelled pixel k j
l . The normalization factors xmin and

xmax ensure that βs is independent from the absolute distance.
Our final correlation function β is a combination of the

color fitness and the spatial distance:

β(u j
i , k j

l ) = βc(u
j
i , k j

l ) + ωβs(u
j
i , k j

l ) (8)

where ω is a weight parameter to trade off the color fitness
and spatial distance. ω is assigned as 0.5 in our experiment.
Generally a small β indicates that the labelled pixel has a
close correlation with the unknown pixel, and they have a
high probability of belonging to the same class.

Fig. 8. An example for the illustration of assigning a label (V or B) to
an unknown pixel. (a) An exemplary image (green triangles represent vessel
pixels, blue pluses represent background pixels, red points represent unknown
pixels). vi indicates the ith vessel pixel, bi indicates the ith background pixel.
(b) Calculating the correlation functions between a unknown pixel and its
neighboring labelled pixels (vessel pixels and background pixels) (βi means
the correlation between the unknown pixel and the ith labelled pixel).
(c) Assigning a label (V or B) to the unknown pixel. (d) The resultant image.

3) Hierarchical Update: After performing initialization
with the hierarchical strategy, in each hierarchy, the correla-
tions between each unknown pixel and its neighboring labelled
pixels (vessel pixels and background pixels) included in a 9×9
grid are computed. Then the labelled pixel with the closest
correlation is chosen, and its label is assigned to the unknown
pixel. After all unknown pixels in one hierarchy are updated,
they are used for updating the next hierarchy. The unknown
pixels are updated from the first hierarchy to the last hierarchy.
An example to illustrate the process of updating unknown
pixels in one hierarchy is shown in Fig.8.

C. Postprocessing

Since some non-vessel regions may still exist in the final
segmented vessel image Iv , the regions whose Area < a2 &&
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Extent > e2 && V Ratio < r in Iv are abandoned to remove
these non-vessel regions.

IV. DATASETS AND EVALUATION METRICS

In this section, three publicly available datasets are intro-
duced. These datasets have been extensively used by other
scientists to develop their own methods. Then some commonly
used evaluation metrics are presented, which are also utilized
in our experiment to make a comparison between the proposed
model with several other approaches.

A. Datasets

The proposed model is evaluated on three standard datasets:
DRIVE [6], STARE [15] and CHASE_DB1 [37].

DRIVE1 consists of 40 fundus images. These images are
taken by a Canon camera at 45◦ field of view (FOV). Each
image is of 584 ×565 pixels. The DRIVE dataset is separated
into two sets: a training set and a test set each including
20 fundus images. The training set is marked by two observers;
The test set is marked by two independent observers.

STARE2 consists of 20 fundus images. These images are
taken by a TopCon camera at 35◦ FOV. Each image is
of 605 × 700 pixels. The STARE dataset is marked by two
independent observers.

CHASE_DB13 consists of 28 fundus images acquired from
multiethnic school children. These images are captured by a
Nidek camera at 30◦ FOV. Each image is of 960 ×999 pixels.
The CHASE_DB1 is marked by two independent observers.

For the DRIVE, STARE and CHASE_DB1 datasets,
the manual segmentations of the first observer are used
in this work, which is a common choice for these
datasets [5], [11], [21], [46].

B. Evaluation Metrics

For vessel segmentation, each pixel is classified as ves-
sels or background, thereby resulting in four events: two
correct (true) classifications and two incorrect (false) classi-
fications (as shown in Table III).

To evaluate the performance of the vessel segmentation
algorithms, three commonly used metrics are applied.

Sensitivity = T P

T P + F N

Specificity = T N

T N + F P

Accuracy = T P + T N

T P + T N + F P + F N

Sensitivity (Se) and Specificity (Sp) reflect the algorithm’s
ability to detect vessel pixels and background pixels. Accu-
racy (Acc) is a global measure of classification performance
combing both Se and Sp. The performance of the vessel
segmentation method is also measured by the area under a
receiver operating characteristic (ROC) curve (AUC). The

1http://www.isi.uu.nl/Research/Databases/DRIVE/
2http://www.ces.clemson.edu/ ahoover/stare/
3https://blogs.kingston.ac.uk/retinal/chasedb1/

conventional AUC is calculated from a number of operating
points, and normally used to evaluate the balanced data
classification problem. However, in practice the researchers
need to select an operating point to compare their method
with other methods. In addition blood vessel segmentation is
an imbalanced classification problem, in which the number of
vessel pixels is much smaller than the number of background
pixels. In order to evaluate the performance of blood vessel
segmentation properly, AUC = (Se + Sp)/2 [21], [48] is
applied to indicate the overall vessel segmentation perfor-
mance, which is suitable to describe the overall performance of
imbalanced data classification problem and specifically for the
case when only one operating point is used. The calculation
time of extracting blood vessels from a fundus images is also
stored.

In addition, the Dice scores (D) [21] is applied to evaluate
the similarity between the manual segmentations and results
of vessel segmentation algorithms: D = 2(M ∩ S)/(M + S),
where M represents the manual segmentation and S represents
the segmentation result.

V. EXPERIMENTS AND RESULTS

In this section, four experiments are conducted to evaluate
the proposed hierarchical image matting model. In the first
experiment, the comparison between the proposed model and
other state-of-art methods was presented. In the second exper-
iment, the vessel segmentation performance of the proposed
model was analyzed. In the third experiment, the proposed
hierarchical image matting model was compared with several
other conventional image matting models. In the last exper-
iment, the sensitivity analysis of the threshold values of the
region features and the weight parameter ω used in the work
was given.

A. Comparison With Other Methods

In this section, the proposed model is compared with other
methods on two most popular public datasets: DRIVE and
STARE. The CHASE_DB1 dataset is not employed here since
it is relatively new and has relatively few results in the
literature. The segmentation performance and calculation time
of the proposed model in comparison with other methods on
the DRIVE and STARE datasets are given in Table II. The
Dice scores is not introduced in Table II since it is not given
by other methods. For the DRIVE dataset, the accuracy of the
proposed model is the highest among all existing methods with
Acc = 0.960, Se = 0.736 and Sp = 0.981. On the STARE
dataset, the accuracy and AUC of the proposed model are
the highest among unsupervised methods with Acc = 0.957,
AUC = 0.880. In addition, the proposed model has a low
calculation time compared with other segmentation methods.
Although the supervised method [11] has the best performance
on STARE dataset, the method is computationally more com-
plex due to the use of deep neural networks, which may
need retraining for new datasets. The supervised method [12]
obtains excellent segmentation results on DRIVE and STARE
datasets, and has a low computational time with a powerful
system. However, it may need retraining for new datasets. And
the proposed method has a lower calculation time.
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TABLE II

COMPARISON BETWEEN THE PROPOSED MODEL AND OTHER METHODS

Fig. 9. Ground truth (left) and segmentation result (right): (a) and (b) are the images from DRIVE dataset, (c) and (d) are the images from the STARE
dataset.

TABLE III

FOUR EVENTS OF VESSEL CLASSIFICATION

B. Vessel Segmentation Performance

The segmentation performance of the proposed method on
three public available datasets is given in Table IV. Fig.9
presents Some exemplary segmentation results.

When treating the unknown regions as background regions,
trimap can achieve segmentation results of Acc = 0.959,
AUC = 0.833, Se = 0.679, Sp = 0.986, D = 0.765 on
the DRIVE dataset, Acc = 0.958, AUC = 0.853, Se =
0.728, Sp = 0.977, D = 0.737 on the STARE dataset,
Acc = 0.948, AUC = 0.771, Se = 0.565, Sp = 0.977,
D = 0.598 on the CHASE_DB1 dataset, respectively. These
segmentation performances show that trimap can already have
fairly good segmentation performance, which indicates that the
selection of region features is effective in segmenting blood
vessels.
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TABLE IV

THE SEGMENTATION PERFORMANCE OF THE PROPOSED MODEL ON THREE TEST DATASETS

TABLE V

SEGMENTATION PERFORMANCE OF EIGHT DIFFERENT IMAGE MATTING MODELS AND THE PROPOSED MODEL

However, the performance is still not satisfactory enough
when compared with other methods. A hierarchical image
matting model is proposed to improve the segmentation
performance. AUC = 0.837, 0.862, 0.789 achieved by
the proposed hierarchical matting model on the DRIVE,
STARE and CHASE_DB1 are 0.4%, 0.9% and 1.8% higher
than that of trimap, respectively. Se = 0.688, 0.748, 0.597
achieved by the proposed hierarchical matting model on the
DRIVE, STARE and CHASE_DB1 are 0.9%, 2% and 2.8%
higher than that of trimap, respectively. In addition, D =
0.771, 0.745, 0.650 obtained by the proposed hierarchical mat-
ting model on the DRIVE, STARE and CHASE_DB1 are
0.6%, 0.8% and 5.2% higher than that of trimap,
respectively.

The segmentation performance can be further improved by
applying vessel skeleton extraction. From Table IV, it can
be observed that compared with the proposed image matting
model without vessel skeleton extraction, the matting model
with vessel skeleton extraction can achieve 4.8% increase of
Sensi tivi ty, 2.2% increase of AUC and 0.9% increase of D
on the DRIVE dataset, 4.3% increase of Sensi tivi ty, 1.9%
increase of AUC and 0.7% increase of D on the STARE
dataset, 6% increase of Sensi tivi ty, 2.8% increase of AUC
and 1.5% increase of D on the CHASE_DB1 dataset, which
demonstrates the effectiveness of applying the mechanism of
vessel skeleton extraction.

C. Comparison With Image Matting Models

The effectiveness of the proposed model in blood vessel
segmentation has been validated through previous experi-
ments. In order to further verify the effectiveness of our
model, the proposed model is compared with eight other
state-of-art image matting models: Anat Model [26], Zheng
Model [22], Shahrian Model [28], Improving Model [29],
Karacan Model [31], Cho Model [32], Li Model [33] and
Aksoy Model [34]. The segmemtation results of these models
on the DRIVE, STARE, and CHASE_DB1 datasets are given
in Table V. The proposed model outperforms these image
matting models in terms of Acc and Sp in the DRIVE, STARE
and CHASE_DB1 datasets.

D. Sensitivity Analysis of Threshold Values of Region
Features and the Weight Parameter

The default threshold values of region features: e1 = 0.35,
r = 2.2, s = 0.53, e2 = 0.25 are applied in this experiment.
To demonstrate the insensitivity of the proposed model to
these threshold values, the variations in Acc by varying e1,
e2, r and s are given in Fig.10.(a), (b), (c) and (d). From
Fig.10, it can be observed that the proposed model can
maintain high segmentation accuracy on the DRIVE, STARE
and CHASE_DB1 datasets as e1 varies in [0.2, 0.6] or e2
varies in [0.15, 0.3]; For r and s, the proposed model can
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Fig. 10. Sensitivity analysis of threshold values of region features used in
the work. (a) Variations in mean segmentation accuracy by varying e1 when
r = 2.2, s = 0.53, e2 = 0.25. (b) Variations in mean segmentation accuracy
by varying e2 when r = 2.2, e1 = 0.35, s = 0.53. (c) Variations in mean
segmentation accuracy by varying r when e1 = 0.35, s = 0.53, e2 = 0.25.
(d) Variations in mean segmentation accuracy by varying s when r = 2.2,
e1 = 0.35, e2 = 0.25.

Fig. 11. Variations in mean segmentation accuracy by varying ω.

maintain high segmentation accuracy as r varies in [2, 10] or s
varies in [0.4, 0.8]. In addition, the variation in Acc by varying
ω is given in Fig.11. From Fig.11, it can be observed that the
proposed model can maintain high segmentation accuracy on
the DRIVE, STARE and CHASE_DB1 datasets as ω varies in
[0.4, 0.8]. From the above observation, it can be seen that the
proposed model is not sensitive to these threshold values of
region features and the weight parameter ω.

VI. CONCLUSION

Image matting means precisely segmenting the foreground
from an image, which is crucial in many important applica-
tions. However, to the best of our knowledge, image mat-
ting has rarely been employed previously to extract blood
vessels from fundus image. The major reason may be that
generating a user specified trimap for vessel segmentation is
an extremely laborious and time-consuming task. In addition,
a proper image matting model needs to be designed carefully
to improve the vessel segmentation performance. In order
to address these issues, region features of blood vessels are
first employed to generate the trimap automatically. Then a
hierarchical image matting model is proposed to extract the

vessel pixels from the unknown regions. More specifically,
a hierarchical strategy is integrated into the image matting
model for blood vessel segmentation.

The proposed model is very efficient and effective in
blood vessel segmentation, which achieves a segmentation
accuracy of 96.0%, 95.7% and 95.1% on three public available
datasets with an average time of 10.72s, 15.74s and 50.71s,
respectively. The experimental results show that it is a very
competitive model compared with many other segmentation
approaches.

REFERENCES

[1] S. Abbasi-Sureshjani, M. Favali, G. Citti, A. Sarti, and B. M. ter Haar
Romeny, “Curvature integration in a 5D kernel for extracting vessel
connections in retinal images,” IEEE Trans. Image Process., vol. 27,
no. 2, pp. 606–621, Feb. 2018.

[2] J. J. Kanski and B. Bowling, Clinical Ophthalmology: A Systematic
Approach. London, U.K.: Elsevier Health Sciences, 2011.

[3] M. W. K. Law and A. C. S. Chung, “Segmentation of intracranial vessels
and aneurysms in phase contrast magnetic resonance angiography using
multirange filters and local variances,” IEEE Trans. Image Process.,
vol. 22, no. 3, pp. 845–859, Mar. 2013.

[4] Y. Cheng, X. Hu, J. Wang, Y. Wang, and S. Tamura, “Accurate vessel
segmentation with constrained B-snake,” IEEE Trans. Image Process.,
vol. 24, no. 8, pp. 2440–2455, Aug. 2015.

[5] M. M. Fraz et al., “Blood vessel segmentation methodologies in retinal
images—A survey,” Comput. Methods Programs Biomed., vol. 108,
no. 1, pp. 407–433, 2012.

[6] J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and
B. van Ginneken, “Ridge-based vessel segmentation in color images
of the retina,” IEEE Trans. Med. Imag., vol. 23, no. 4, pp. 501–509,
Apr. 2004.

[7] J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek, and
M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet
and supervised classification,” IEEE Trans. Med. Imag., vol. 25, no. 9,
pp. 1214–1222, Sep. 2006.

[8] C. A. Lupas, D. Tegolo, and E. Trucco, “FABC: Retinal vessel seg-
mentation using AdaBoost,” IEEE Trans. Inf. Technol. Biomed., vol. 14,
no. 5, pp. 1267–1274, Sep. 2010.

[9] D. Marín, A. Aquino, M. E. Gegúndez-Arias, and J. M. Bravo, “A new
supervised method for blood vessel segmentation in retinal images by
using gray-level and moment invariants-based features,” IEEE Trans.
Med. Imag., vol. 30, no. 1, pp. 146–158, Jan. 2011.

[10] S. Roychowdhury, D. D. Koozekanani, and K. K. Parhi, “Blood vessel
segmentation of fundus images by major vessel extraction and subim-
age classification,” IEEE J. Biomed. Health Inform., vol. 19, no. 3,
pp. 1118–1128, May 2015.

[11] P. Liskowski and K. Krawiec, “Segmenting retinal blood vessels with
deep neural networks,” IEEE Trans. Med. Imag., vol. 35, no. 11,
pp. 2369–2380, Nov. 2016.

[12] D. Cortinovis and O. Srl. (2016). Retina Blood Vessel Segmentation
With a Convolution Neural Network (U-Net). [Online]. Available: https://
github.com/orobix/retina-unet

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. (Lecture Notes in Computer
Science). Berlin, Germany: Springer, 2015, pp. 234–241.

[14] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever,
“Multiscale vessel enhancement filtering,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Berlin, Germany: Springer, 1998,
pp. 130–137.

[15] A. D. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood
vessels in retinal images by piecewise threshold probing of a matched
filter response,” IEEE Trans. Med. Imag., vol. 19, no. 3, pp. 203–210,
Mar. 2000.

[16] F. K. H. Quek and C. Kirbas, “Vessel extraction in medical images
by wave-propagation and traceback,” IEEE Trans. Med. Imag., vol. 20,
no. 2, pp. 117–131, Feb. 2001.

[17] A. M. Mendonca and A. Campilho, “Segmentation of retinal blood
vessels by combining the detection of centerlines and morphological
reconstruction,” IEEE Trans. Med. Imag., vol. 25, no. 9, pp. 1200–1213,
Sep. 2006.

Authorized licensed use limited to: Shantou University. Downloaded on October 27,2020 at 14:33:54 UTC from IEEE Xplore.  Restrictions apply. 



2376 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 5, MAY 2019

[18] K. Sum and P. Y. S. Cheung, “Vessel extraction under non-uniform
illumination: A level set approach,” IEEE Trans. Biomed. Eng., vol. 55,
no. 1, pp. 358–360, Jan. 2008.

[19] B. Al-Diri, A. Hunter, and D. Steel, “An active contour model for
segmenting and measuring retinal vessels,” IEEE Trans. Med. Imag.,
vol. 28, no. 9, pp. 1488–1497, Sep. 2009.

[20] B. S. Y. Lam, Y. Gao, and A. W.-C. Liew, “General retinal vessel seg-
mentation using regularization-based multiconcavity modeling,” IEEE
Trans. Med. Imag., vol. 29, no. 7, pp. 1369–1381, Jul. 2010.

[21] Y. Zhao, L. Rada, K. Chen, S. P. Harding, and Y. Zheng, “Automated
vessel segmentation using infinite perimeter active contour model with
hybrid region information with application to retinal images,” IEEE
Trans. Med. Imag., vol. 34, no. 9, pp. 1797–1807, Sep. 2015.

[22] Y. Zheng and C. Kambhamettu, “Learning based digital mat-
ting,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Sep./Oct. 2009, pp. 889–896.

[23] P. Talwar and M. D. Gupta, “Alpha-matting based retinal vessel extrac-
tion,” U.S. Patent 9 675 247, Jun. 13, 2017.

[24] Q. Chen, D. Li, and C.-K. Tang, “KNN matting,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2012, pp. 869–876.

[25] Y.-Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski, “A Bayesian
approach to digital matting,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 2, Dec. 2001, p. 264.

[26] A. Levin, D. Lischinski, and Y. Weiss, “A closed-form solution to natural
image matting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2,
pp. 228–242, Feb. 2008.

[27] K. He, J. Sun, and X. Tang, “Fast matting using large kernel matting
Laplacian matrices,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2010, pp. 2165–2172.

[28] E. S. Varnousfaderani and D. Rajan, “Weighted color and texture sample
selection for image matting,” IEEE Trans. Image Process., vol. 22,
no. 11, pp. 4260–4270, Nov. 2013.

[29] E. Shahrian, D. Rajan, B. Price, and S. Cohen, “Improving image
matting using comprehensive sampling sets,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2013, pp. 636–643.

[30] D. Cho, S. Kim, and Y.-W. Tai, “Consistent matting for light field
images,” in Proc. Eur. Conf. Comput. Vis. Zurich, Switzerland: Springer,
2014, pp. 90–104.

[31] L. Karacan, A. Erdem, and E. Erdem, “Image matting with KL-
divergence based sparse sampling,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Dec. 2015, pp. 424–432.

[32] D. Cho, Y.-W. Tai, and I. Kweon, “Natural image matting using deep
convolutional neural networks,” in Proc. Eur. Conf. Comput. Vis. Zurich,
Switzerland: Springer, 2016, pp. 626–643.

[33] C. Li, P. Wang, X. Zhu, and H. Pi, “Three-layer graph framework with
the sumd feature for alpha matting,” Comput. Vis. Image Understand.,
vol. 162, pp. 34–45, Sep. 2017.

[34] Y. Aksoy, T. O. Aydin, and M. Pollefeys, “Designing effective inter-
pixel information flow for natural image matting,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Apr. 2017, pp. 228–236.

[35] Y. Lee and S. Yang, “Parallel block sequential closed-form matting
with fan-shaped partitions,” IEEE Trans. Image Process., vol. 27, no. 2,
pp. 594–605, Feb. 2018.

[36] Z. Fan, J. Lu, and Y. Rong, “Automated blood vessel segmentation of
fundus images using region features of vessels,” in Proc. IEEE Symp.
Ser. Comput. Intell. (SSCI), Dec. 2016, pp. 1–6.

[37] M. M. Fraz et al., “An ensemble classification-based approach applied to
retinal blood vessel segmentation,” IEEE Trans. Biomed. Eng., vol. 59,
no. 9, pp. 2538–2548, Sep. 2012.

[38] J. Wang and M. F. Cohen, “An iterative optimization approach for unified
image segmentation and matting,” in Proc. 10th IEEE Int. Conf. Comput.
Vis. (ICCV), vol. 2, Oct. 2005, pp. 936–943.

[39] P. Bankhead, C. N. Scholfield, J. G. McGeown, and T. M. Curtis,
“Fast retinal vessel detection and measurement using wavelets and edge
location refinement,” PLoS ONE, vol. 7, no. 3, p. e32435, 2012.

[40] R. Kresch and D. Malah, “Skeleton-based morphological coding
of binary images,” IEEE Trans. Image Process., vol. 7, no. 10,
pp. 1387–1399, Oct. 1998.

[41] B. S. Y. Lam and H. Yan, “A novel vessel segmentation algorithm for
pathological retina images based on the divergence of vector fields,”
IEEE Trans. Med. Imag., vol. 27, no. 2, pp. 237–246, Feb. 2008.

[42] M. A. Palomera-Pérez, M. E. Martinez-Perez, H. Benítez-Pérez, and
J. L. Ortega-Arjona, “Parallel multiscale feature extraction and region
growing: Application in retinal blood vessel detection,” IEEE Trans. Inf.
Technol. Biomed., vol. 14, no. 2, pp. 500–506, Mar. 2010.

[43] M. S. Miri and A. Mahloojifar, “Retinal image analysis using curvelet
transform and multistructure elements morphology by reconstruction,”
IEEE Trans. Biomed. Eng., vol. 58, no. 5, pp. 1183–1192, May 2011.

[44] A. Budai, R. Bock, A. Maier, J. Hornegger, and G. Michelson, “Robust
vessel segmentation in fundus images,” Int. J. Biomed. Imag., vol. 2013,
no. 6, 2013, Art. no. 154860.

[45] U. T. V. Nguyen, A. Bhuiyan, L. A. F. Park, and K. Ramamohanarao,
“An effective retinal blood vessel segmentation method using multi-scale
line detection,” Pattern Recognit., vol. 46, no. 3, pp. 703–715, 2013.

[46] R. Annunziata, A. Garzelli, L. Ballerini, A. Mecocci, and E. Trucco,
“Leveraging multiscale hessian-based enhancement with a novel exudate
inpainting technique for retinal vessel segmentation,” IEEE J. Biomed.
Health Inform., vol. 20, no. 4, pp. 1129–1138, Jul. 2016.

[47] J. I. Orlando, E. Prokofyeva, and M. B. Blaschko, “A discriminatively
trained fully connected conditional random field model for blood vessel
segmentation in fundus images,” IEEE Trans. Biomed. Eng., vol. 64,
no. 1, pp. 16–27, Jan. 2017.

[48] X. Hong, S. Chen, and C. J. Harris, “A kernel-based two-class classifier
for imbalanced data sets,” IEEE Trans. Neural Netw., vol. 18, no. 1,
pp. 28–41, Jan. 2007.

Zhun Fan received the B.S. and M.S. degrees
in control engineering from the Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 1995 and 2000, respectively, and the Ph.D. degree
in electrical and computer engineering from Michi-
gan State University, Lansing, MI, USA, in 2004.
He was an Associate Professor with the Technical
University of Denmark from 2007 to 2011, with
the Department of Mechanical Engineering and with
the Department of Management Engineering, and
as an Assistant Professor with the Department of

Mechanical Engineering, Technical University of Denmark, from 2004 to
2007. He is currently a Full Professor with Shantou University (STU),
Shantou, China. He also serves as the Head of the Department of Electrical
Engineering and the Director of the Guangdong Provincial Key Laboratory of
Digital Signal and Image Processing. He has been a Principle Investigator of a
number of projects from the Danish Research Agency of Science Technology
and Innovation and the National Natural Science Foundation of China. His
major research interests include intelligent control and robotic systems, robot
vision and cognition, MEMS, computational intelligence, design automation,
optimization of mechatronic systems, machine learning, and image processing.

Jiewei Lu is currently pursuing the M.S. degree in
information and communication with the Key Lab of
Digital Signal and Image Processing of Guangdong
Province, School of Engineering, Shantou Univer-
sity, Shantou, China. His current research interests
include medical image analysis, image processing,
and machine learning.

Caimin Wei received the B.S. degree in mathe-
matics and applied mathematics from Guangxi Uni-
versity for Nationalities, Guangxi, China, in 2000,
the M.Sc. degree in operational research and cyber-
netics from Yanshan University, Hebei, China,
in 2002, and the Ph.D. degree in operational research
and cybernetics from the Dalian University of Tech-
nology, Dalian, China, in 2005. He is currently a
Full Professor with the Department of Mathematics,
Shantou University, Shantou, China. His current
research interests include queuing theory, scheduling
theory, and financial mathematics.

Authorized licensed use limited to: Shantou University. Downloaded on October 27,2020 at 14:33:54 UTC from IEEE Xplore.  Restrictions apply. 



FAN et al.: HIERARCHICAL IMAGE MATTING MODEL FOR BLOOD VESSEL SEGMENTATION IN FUNDUS IMAGES 2377

Han Huang received the B.Man. degree in applied
mathematics and the Ph.D. degree in computer sci-
ence from the South China University of Technology
(SCUT), Guangzhou, China, in 2002 and 2008,
respectively. He is currently a Professor with the
School of Software Engineering, SCUT. He is also
the Director of Intelligent Algorithm and Intelli-
gent Software Studio. His current research interests
include evolutionary computation, and swarm intel-
ligence and their applications.

Dr. Huang is a Senior Member of CCF.

Xinye Cai received the B.Sc. degree in informa-
tion engineering from the Huazhong University of
Science and Technology, Wuhan, China, in 2004,
the M.Sc. degree in electronic engineering from the
University of York, York, U.K., in 2006, and the
Ph.D. degree in electrical engineering from Kansas
State University, Manhattan, KS, USA, in 2009.
He is currently an Associate Professor with the
Department of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics,
Nanjing, China, where he is also leading an Intelli-

gent Optimization Research Group. His current research interests include evo-
lutionary computation, optimization, and data mining and their applications.

Dr. Cai was a recipient of the Evolutionary Many-Objective Optimiza-
tion Competition at the 2017 IEEE Congress on Evolutionary Computa-
tion. He serves as an Associate Editor for the Swarm and Evolutionary
Computation.

Xinjian Chen received the Ph.D. degree in pat-
tern recognition and machine intelligence from the
Institute of Automation, Chinese Academy of Sci-
ences, Beijing, China, in 2006. He is currently a
Distinguished Professor with the School of Electrical
and Information Engineering, Soochow University,
Suzhou, China, and the Director of the Medical
Image Processing, Analysis and Visualization Lab-
oratory. He has authored or co-authored more than
100 papers in prestigious journals and conferences,
including the IEEE TRANSACTIONS ON MEDICAL

IMAGING and IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. His
research interests include medical image processing and analysis, pattern
recognition, and machine learning.

Dr. Chen has served as an Associate Editor for the IEEE TRANSACTIONS

ON MEDICAL IMAGING and the IEEE JOURNAL OF TRANSLATIONAL ENGI-
NEERING IN HEALTH AND MEDICINE.

Authorized licensed use limited to: Shantou University. Downloaded on October 27,2020 at 14:33:54 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


