

基于深度学习的电厂仪表识别

报告人:安康

汕头大学人工智能与机器人实验室

指导老师: 崔岩教授、范衡教授

2020/6/14

Contents

- 1 研究背景
- 2 算法设计
- 3 实验结果
- 4 工作总结

研究背景

在发电厂变电站中,各种仪表显示的信息反映了不同设备的工作状态,因此,需要工作人员定时的执行巡检任务以保证设备的正常运行。但是,由于受到现场复杂环境的影响,人工巡检的效率和效果并不好。随着机器人产业的发展,巡检机器人的出现可以代替或辅助人工解决这一问题。

图1.巡检机器人

研究背景 研究难点

- (1) 环境复杂,难以准确找到仪表位置;
 - (2) 仪表类别繁多,数量不平衡;
- (3) 光照变化较大,存在高曝光、弱光场景,以及光线变化场景;
- (4) 不同类别的仪表需要相应不同的 识别方法;
 - (5) 数据难以采集,不具有多样性;
- (6) 数据存在一些漏标记和错标记情况。

如何针对不同类别的仪表,提出相应鲁棒性好的识别方法是仪表识别研究的重

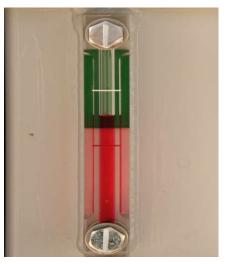
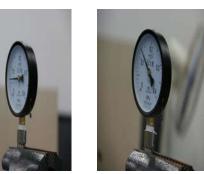


图2.现场采集数据集示例

研究背景 数据介绍

数据集包含四类仪表,共有3480张图片。其中,两类指针式仪表的量程为0-1和0-0.4,各有1240张图片。数据集的主要特点为:**多数值显示,多角度拍摄**。数据来自汕头大学人工智能与机器人实验室。



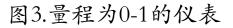


图4.量程为0-0.4的仪表

算法设计 整体流程框图

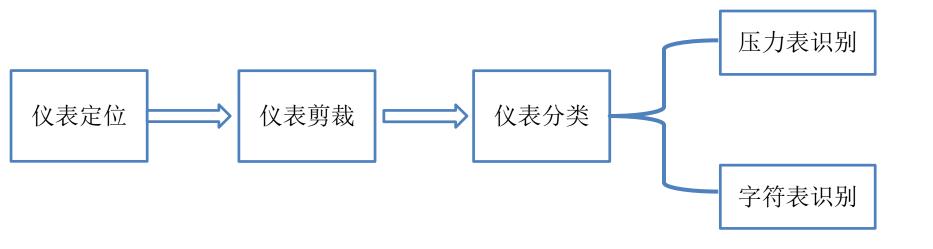


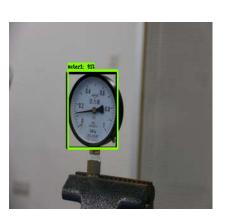
图5.算法流程图

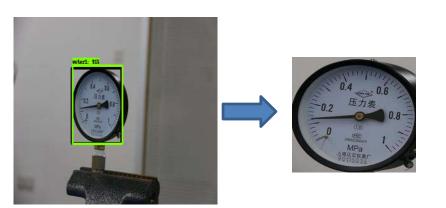
算法设计 仪表定位

B
all de la constant de

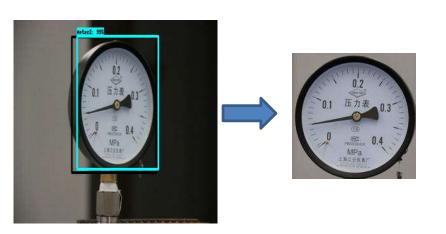
	Train Set	Faster R-CNN	SSD	YOLO	RFCN
mAP@0.5IOU	8:2	0.96	0.90	0.86	0.92
mAP@0.5IOU	9:1	0.99	0.92	0.89	0.95

表1.定位算法结果




图6.仪表定位结果

[1]Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015.


广东省数字信号与图像处理技术重点实验室

算法设计 仪表裁剪

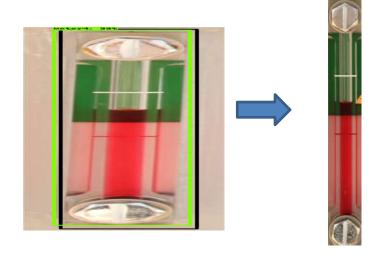


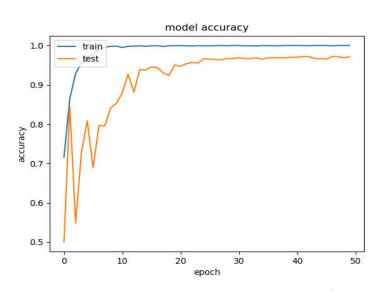
图7.仪表剪裁结果

算法设计 仪表分类

	6:4	7:3	8:2
LeNet5	0.79	0.82	0.89
AlexNet	0.84	0.90	0.92
VGG-16	0.89	0.92	0.95
InceptionV4	0.90	0.95	0.97

表2.仪表分类算法结果

算法设计 仪表分类


海馬与圖像处理技术。
The Hotel Hotel
E La Sand Image Processing of the latest and Image
Sanal and Image Processing of Case

Data	TP	FP	FN	Acc	Re	F1
606	579	27	27	0.95	0.95	0.95

Acc=TP/(TP+FP)

Re=TP/(TP+FN)

F1=2*Acc*Rr/(Acc+Re)

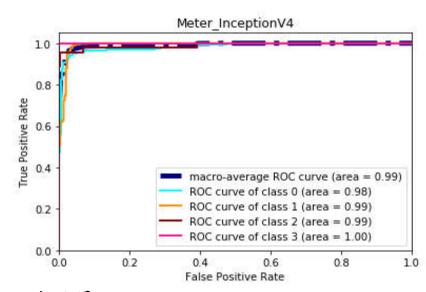


图8.IncepionV4效果展示

[2] Szegedy, Christian, et al. "Inception-v4, inception-resnet and the impact of residual connections on learning." Thirty-first AAAI conference on artificial intelligence. 2017.

广东省数字信号与图像处理技术重点实验室

字符表识别 (当前主流)

算法流程: 输入图片、阈值分割、中值滤波、开操作、字符切割、字符分类

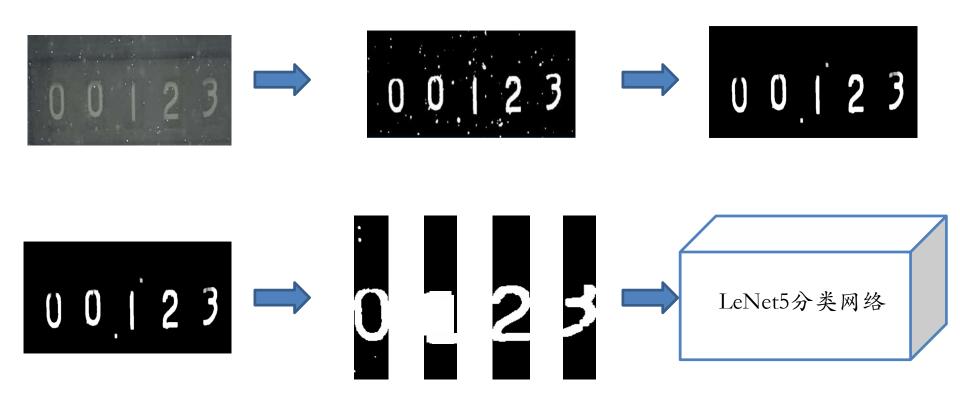


图9.传统字符识别流程图

字符表识别(CRNN)

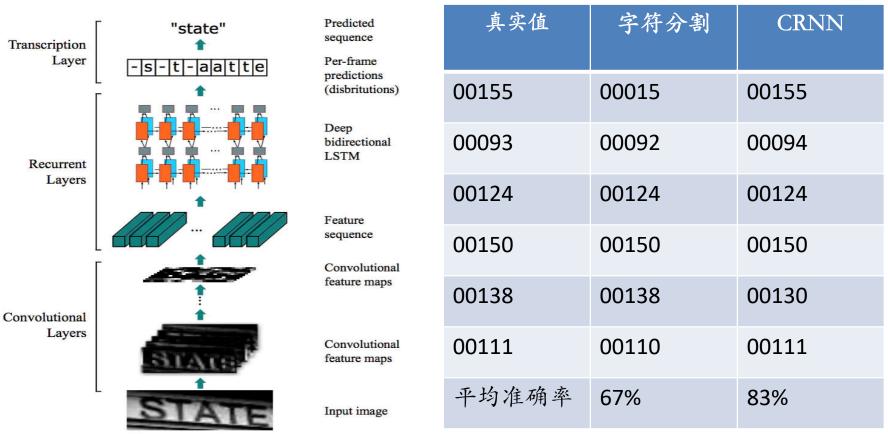


图10.CRNN结构图

图10.CRNN结果展示

[3]Shi, Baoguang, Xiang Bai, and Cong Yao. "An end-to-end trainable neural network for imagebased sequence recognition and its application to scene text recognition." IEEE transactions on pattern analysis and machine intelligence 39.11 (2016): 2298-2304. 广东省数字信号与图像处理技术重点实验室 12

压力表识别--油压表(当前主流)

算法流程:输入图片、阈值分割、中值滤波、腐蚀、膨胀、计算黑色像素比例

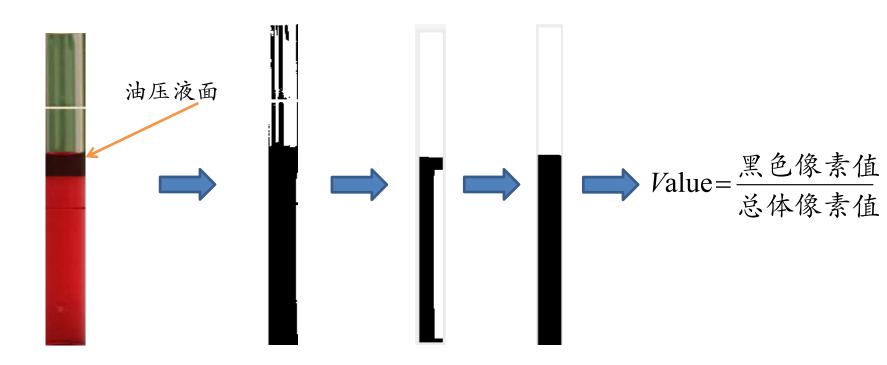
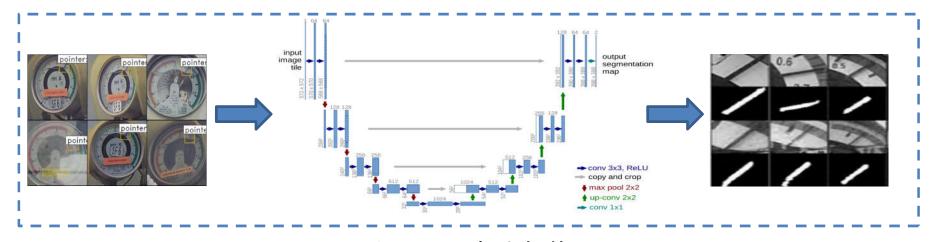



图12.油表识别流程图

压力表识别--指针式仪表 (最新方法)

算法流程:输入图片、指针定位、图像预处理、U-Net提取指针、角度法识别示数

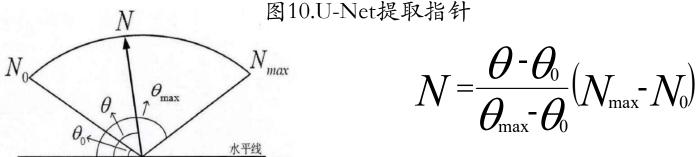


图11.角度法原理

[4]基于Faster R-CNN和U-Net的变电站指针式仪表读数自动识别方法[J]. 万吉林,王慧芳. 电网技术. 2020(01)

广东省数字信号与图像处理技术重点实验室

指针式仪表识别 (传统图像处理方法)

算法流程:灰度化、中值滤波降噪、边缘检测、获取表盘、提取指针、角度法识别示数

图12.图片加光照不均

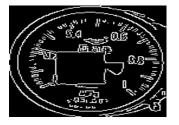
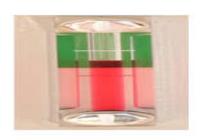


图13.图片加遮挡

基于卷积神经网络的指针式仪表、油压表识别

为了更好的贴近现实情景,我们在原有的数据集中对每张指针式仪表和油压表进行了数据增广,对每张仪表图片都增加了光照和遮挡的效果,三类仪表总计11420张图片。



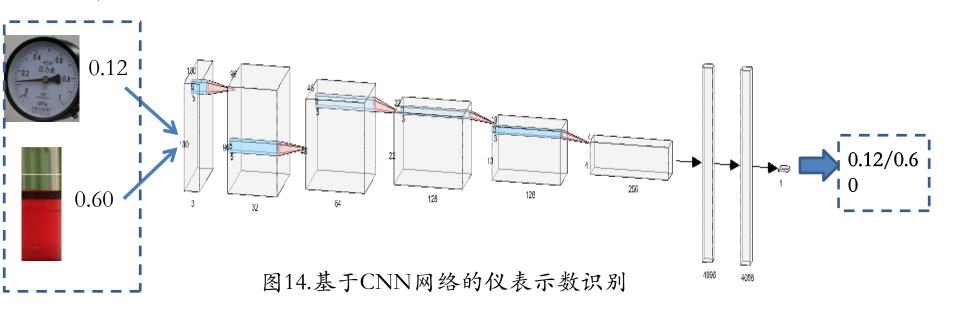


图15.数据增广

基于卷积神经网络的指针式仪表、油压表识别

算法背景:传统图像处理方法需要进行图片预处理,对图片质量和拍摄角度有较高要求,且不同仪表需要不同的算法进行读数,因此算法复杂度较高,准确性不稳定。

[5]Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.

广东省数字信号与图像处理技术重点实验室

基于卷积神经网络的指针式仪表、油压表识别

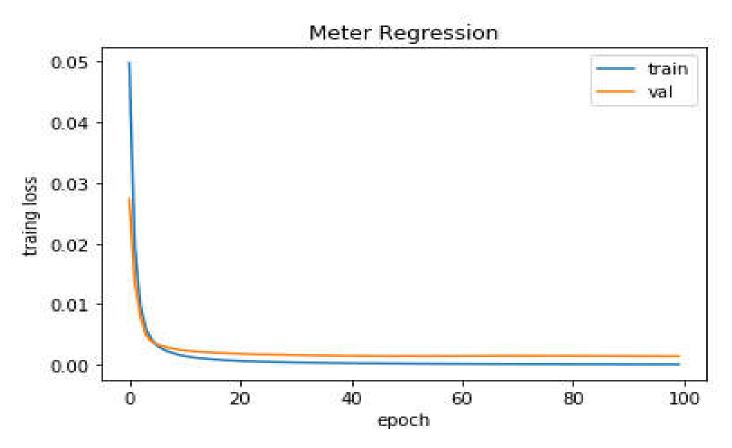


图15. CNN做回归训练损失图

基于卷积神经网络的指针式仪表、油压表识别

CNN回归法和角度法、传统图像处理方法的实验对比

指针仪表	角度法	CNN回归法	油压表	传统方法	CNN回归法
0.12	0.101245	0.110462	0.55	0.511462	0.543016
0.14	0.111573	0.145531	0.60	0.567824	0.596735
0.16	0.201136	0.159672	0.50	0.482064	0.496587
0.40	0.362314	0.398516	0.65	0.632973	0.649876
0.35	0.331596	0.350365	0.70	0.680421	0.692683
0.52	0.497631	0.519416	0.45	0.427415	0.449637
误差	2%-4%左右	1%之内	误差	2%-4%左右	1%之内

工作总结

工作总结

使用基于卷积神经网络的方法解决了电厂仪表识别的问题,包括仪表定位、仪表分类、仪表示数识别,各部分准确度都较高,可以实现替代或辅助人工进行工作。

创新点

提出了一种基于卷积神经网络的指针式仪表、油压表的示数识别方法,主要是用卷积神经网络做回归任务,将仪表图片和其示数(作为标签),送入网络进行学习,输出是其预测示数。该方法减少了传统方法中的预处理部分,代替了手动提取仪表特征部分,降低了对图片质量、拍摄角度、指针位置的依赖,具有较高的准确性和一定的泛化性。

未来展望

当前提出的算法虽然准确度和泛化性较好,但是还是需要分步骤做处理。为了进一步减少算法的复杂度,需要提出一种端到端的网络,即输入一张仪表图片,送入网络,同时输出仪表的位置、类别、示数识别等信息。

工作总结

硕士期间主要成果

项目情况

1.电厂触屏机器人

项目组成员

合作方: 华能电力海门热电有限公司

2. 电厂巡检机器人

仪表项目负责人

合作方: 华能电力海门热电有限公司

3.中华白海豚背鰭识别

项目组成员

合作方: 汕头大学海洋所

4.钢筋端面识别

项目组成员

合作方: 汕头俊国科技有限公司

科研成果

- 1.发表专利《一种基于卷积神经网络的钢筋端面识别方法》 发明人: **范衡**, 卢杰威, 邱本章, **安** 康, 姜涛(专利起草人)
- 2.发表专利《一种基于卷积神经网络的指针式仪表识别方法》 发明人: 范衡,安康,姜涛,邱本章,朱贵杰,卞新超(专利起草人)
- 3.发表专利《一种基于卷积神经网络的字符仪表识别方法》 发明人: **范衡**,姜涛,安康,邱本章,朱贵杰,卞新超
- 4.发表专利《一种手眼机械臂》 发明人:海门电厂,范衡,安康,姜涛,邱本章. (专利起草人)
- 5.发表论文《Automated Steel Bar Counting and Center Localization with Convolutional Neural Networks.》 (已发表到 axive) **Zhun Fan**, Jiewei Lu, Benzhang Qiu, TaoJiang, **KangAn**

工作总结

References

- [1] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015.
- [2] Szegedy, Christian, et al. "Inception-v4, inception-resnet and the impact of residualconnections on learning." Thirty-first AAAI conference on artificial intelligence. 2017.
- [3] Shi, Baoguang, Xiang Bai, and Cong Yao. "An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition." IEEE transactions on pattern analysis and machine intelligence 39.11 (2016): 2298-2304.
- [4] 基于Faster R-CNN和U-Net的变电站指针式仪表读数自动识别方法[J]. 万吉林,王慧芳. 电网技术. 2020(01)
- [5] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.

Thanks!

